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Orientational instabilities in Couette flow of non-fiow-aligning nematic liquid crystals
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A numerical solution of the continuum equations for nonaligning nematic liquid crystals in cylin-
drical Couette Now is obtained. The initial orientation of the director is radial and therefore con-
tained in the plane of the shear. The stability of the solution is analyzed for a series of sets of ma-
terial constants in order to investigate the dependence of the stability threshold with temperature.
The results are compared with experiments.

I. INTRODUCTION
It is well known that in liquid crystals the orientation

of the molecules is coupled to the macroscopic velocity
through viscous torques. In simple shearing flow, when
the alignment lies in the plane defined by the velocity vec-
tor and the velocity gradient (we refer to this plane as the
shear plane), there is an equilibrium position at which the
viscous and elastic torques balance. With an increase of
the local shear stress, the preferred orientation tends to
align in the flow at a certain angle 80 to the stream lines. '

However, this situation can occur only when the Leslie
viscosity coefficients a2 and a3 are negative. In Poiseuille
flow experiments with p -n-hexyl-oxybenzylidene-p'-
aminobenzonitrile (HBAB), Gah wilier observed that
below a certain temperature the coefficient a3 becomes
positive and a turbulent state develops instead of the ex-
pected flow alignment. After some dispute, Pieranski
and Guyon measured a3 in plane shear flow with HBAB
and showed that a3 did change sign at a certain tempera-
ture. They analyzed these new instabilities with two
different configurations. In the first one, the director at
both bounding plates is aligned orthogonal to the plane of
shear. When cx3 is positive and the shear rate is increased
beyond a critical value, a cellular (or rolls) instability was
observed, with the axis of the rolls parallel to the veloci-
ty. In the other geometry, the director at the plates is
aligned parallel to the velocity so that the director lies in
the shear plane; we shall refer to this as planar orienta-
tion. They found that at a certain shear rate the director
turns out of the plane of shear. They did not report the
critical value for the instability, but they found that for
sufficiently large shear rate (s =1 sec ' for a 0.19-mm-
width sample), the director is practically perpendicular to
the plane of the shear. With a further increase of the
shear rate (s =4 sec ') a cellular instability was also ob-
served.

Using the same geometry, the same material (HBAB),
and planar configuration, Pieranski, Guyon, and Pikin
measured the variation of the tilt angle 8 with the veloci-
ty of the upper plate. They found again that for veloci-
ties larger than a critical value the director tumbles to a
new state which involves the director out of the plane.

Cladis and Torza studied Couette flow of HBAB and
ofp-cyanobenzilidene-p -octylaniline (CBOOA), choosing

for each fluid a temperature range where a3 is positive.
In the experiment, both cylinders were made out of glass
so that a polarizing microscope could be used to observe
directly the director orientation. As they fixed homeotro-
pic orientation at the walls, the director aligns along the
radial direction when both cylinders are at rest. Flow
was generated by rotating the inner cylinder, with the
outer one fixed. As the angular velocity of the inner
cylinder was increased, three distinct regimes were ob-
served. In the first, the director and velocity vectors are
contained in the plane of the shear. The shear stress tilts
the director from its orientation at the walls (8=0) to a
maximum angle 8 somewhere in the gap. When 8 is
about —m/2, an instability occurred and the system
jumped to a new state. In this new state, 8 is smaller
than —n.. This first instability was called "tumbling, "
and two regions were observed in the gap where the
director is radial, i.e., 8= n(tum—bling lines). Although
across most of the gap the director remains in the shear
plane, there are two layers near the walls where the direc-
tor is oriented axially. In spite of the different initial
orientations (planar in Ref. 4 and homeotropic in Ref. 6),
the different geometry (plane shear flow and cylindrical
Couette flow ) and the above-mentioned layers near the
walls, Cladis and Torza claimed that their results are in
contrast with those of Pieranski and Guyon, who did not
observe, after the first instability, a stable solution with
the director in the plane.

Increasing the shear rate, Cladis and Torza found a
second instability leading to a third regime where they
observed rolls. They also studied the variations of both
thresholds with temperature. The first threshold behaves
in the same way for both nematics. Its value diverges as
the temperature increases to a certain value at which
a3=0. The second threshold shows behavior for HBAB
different from that for CBOOA. For CBOOA, starting at
a temperature of about 100'C (at which a3 just becomes
positive) and decreasing the temperature, they found the
threshold diverges as a3 approaches ~a2~, so that for tem-
peratures below T =88'C, the instability does not occur
and therefore the second regime is stable to the highest
shear rate used. All this is in contrast with the threshold
measured for HBAB, which is almost constant in the
range of temperatures used in the experiment. These
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different behaviors are due to the fact that CBOOA
presents a nematic —smectic-A transition. It was predict-
ed by Jahnig and Brochard that, near such a phase tran-
sition, a3 diverges to + ~.

In a later experiment, Pieranski and Guyon also used
CBOOA to investigate the instability of plane shear flow.
They discussed very briefly the case where the director is
fixed at the boundaries parallel to the velocity because the
results are similar to those with HBAB, namely that,
when a3 is positive beyond the first instability, the direc-
tor is out of the plane. They also studied the case where
the director is initially orthogonal to the plane of the
shear and it was found that the threshold for cellular in-
stability behaves with temperature in the same way as the
corresponding one in the experiments of Cladis and Tor-
za, i.e., the cellular instability occurs only in the range of
temperatures at which a3 is positive but smaller than

~az~, and the threshold diverges as a3 approaches ~az~.
Based on the above similarities, the authors pointed out
that in spite of the different orientation of the director at
the boundaries (planar in Ref. 4 and homeotropic in Ref.
6), the cellular instability observed in both experiments
would be of the same nature if the director aligned or-
thogonal to the plane of the shear in most of the gap.

The theoretical studies are very much behind experi-
ments. Cladis and Torza presented approximate analy-
ses of instabilities in an attempt to interpret their obser-
vations more fully, while earlier papers by de Gennes
and Pikin' also discussed this topic. Manneville" con-
sidered plane shear flow with the initial assumption that
the director remains in the plane of shear. By numerical
integration of the two-dimensional equations it was found
that the maximum value of the tilt angle 8 is a mul-
tivalued function of the shearing velocity V. Manneville
then explained the tumbling as a discontinuous jump
from one branch to another. Subsequently, Carlsson, '

also by numerical integration of simplified continuum
equations, showed that the function 8 ( V) is multivalued
only for small negative values of the ratio a3/a2.

However, in order to explain an instability with the
director out of the plane of the shear, it is necessary to
consider three-dimensional equations. With simplified
equations only valid for small distortion about planar
orientation, Pieranski, Guyon, and Pikin suggested that
there are two different instabilities: one in the shear
plane and another taking the director out of the shear
plane. However, both corresponding thresholds are so
close to each other that the former is concealed by the
latter. Carlsson' studied the stability of plane shear flow
but neglected transverse flow effects. According to his
analysis the anchoring of the director at the walls can ex-
plain both experimental findings. In the case of planar
boundary conditions, the instability is first out of the
shear plane, but with a homeotropic boundary conditions
is first in the shear plane. This is in contrast with results
in plane shear flow obtained by Zuhiga and Leslie. '

They obtained a numerical solution of the fu11 equations
and examined its stability to perturbations both in and
out of the plane of shear. They concluded that, at least
for the series of sets of materia1 constants they have stud-
ied, the solution after the first instability always involves

the director out of the plane and this result is indepen-
dent of whether the initial alignment is planar or homeo-
tropic.

Homeotropic orientation was also considered in experi-
ments by Hiltrop and Fisher. ' They studied the flow of
a layer of p'-methoxybenzylidene-p -n-butylaniline
(MBBA} in radial Poiseuille flow. Using basically the
same optical technique as Cladis and Torza, three con-
secutive deformation modes of the director were found.
In the first and in the third mode the director is con-
tained into the shear plane, but in the second mode the
director comes out of the shear plane. ZuFiiga and
Leslie' studied the stability of numerical solutions
describing first and third mode. They calculated the crit-
ical pressure drop at which the first mode becomes unsta-
ble to perturbations out of the shear plane, while the
third mode is stable to the highest pressure drop they
considered.

In this paper we solve numerically continuum equa-
tions for nematics in cylindrical Couette flow. The stabil-
ity of the solution is analyzed in order to investigate
whether the rotation and the cylindrical geometry of the
Couette could be the reason why the flow is different
from plane shear flow and Poiseuille flow. In the next
section the relevant continuum equations for this prob-
lem are discussed. A derivation of the equations is given
in the Appendix. In Sec. III a numerical solution of the
basic steady flow is computed and described. The stabili-
ty of the solution is analyzed in Sec. IV, and some con-
clusive remarks are presented in $ec. V.

II. BASIC EQUATIONS

1 ~

r cv'g (8}+ 8( y, +y2 cos28
2r

1 ~

+2 co'g(8)+ 8(y, +y2cos28 =prtv,
2r

(2)

Consider flow between two concentric circular
cylinders of radii R, and Rz (R

~
(R2), which are rotat-

ing with constant angular velocities 0& and 02, respec-
tively. Cylindrical polar coordinates r, hatt, and z are
chosen such that the z axis is parallel to the common axis
of the cylinders. With this choice we consider the physi-
cal components of the velocity v and the director n to be
of the following forms:

u, =0, v&=rtv(r, t), u, =v(r, t),
n„=sin8 cosP, n &

=cos8 cosP, n, =sing,

where 8 and P are also functions of r and t. We only con-
sider r and t dependence because experimental observa-
tions showed that the first instability led to a state in-
variant along P and z. Therefore this analysis is not valid
for the rolls regime observed beyond a subsequent insta-
bility.

A derivation of continuum equations for nematics in
this geometry is given in the Appendix. After being
linearized with respect to v, P, and 8, the equations
reduce to
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2f(8) 8"+—'8' + "f (8)'+—'
d0 r2

r—co'(y, +y 2cos28) —2y&8=0, (4)

f&(8)P"+ + —f&(r) P'+ f2+ res'sin28
dr r ' 2

F2 V1
v'sin8 —y, P =0, (5)

where the superposed dot denotes 8/Bt, the prime
denotes 8/Br,

2g, (8)=a4+ (as —a2)sin 8,
2g2(8) =(2a, sin 8+a3+a6)cos8,

g (8)=g&(8)+gz(8)cos8,

P] =&3 Q2, y2= ct6 —a5 =a2+(x3,

o.
&

to a6 are viscosity coefficients,

f (8)=K,cos 8+K3sin 8,
f, (8)=K2+(K3 —Kz )sin 8,
fz =8"(K2 —K~ )—,'sm28

+(8') [Kz —(3K2 K&
—2K3)—sin 8]

L9I+—(5K& —4K3 —K, }sin28

[v'g, (8)+res'g2(8)$+Pazsin8)'

+—[v'g, (8)+res'g2(8)P+Pazsin8]=pv, (3)
1

the director. Terms involving functions f, f„and f2 are
elastic torques associated with distortions of the director
field, while those involving velocity derivatives are
viscous torques coupling velocity and director fields. Fi-
nally, the viscous damping terms are proportional to the
8 and P.

Equation (4) gives the dynamic equilibrium of the pro-
jection of the torques in the plane of shear. A certain
shear rate co' induces through the viscous torques a defor-
mation of the director field. As a result of the deforma-
tion there is an elastic torque of opposite sign until an
equilibrium position is reached. However, if the defor-
mation is such that m (8 & 3m /2, both elastic and viscous
torques are of the same sign and the director tumbles.

Equation (5) gives the dynamic equilibrium among
torques associated with distortions of the director out of
the shear plane. In this geometry for slow shear rates the
director and the applied velocity are contained in the
plane of shear (P=v =0} and the equation is satisfied.
Note that in addition to the viscous torque associated
with velocity perturbations U' in the z direction there is
also a term proportional to the applied shear velocity co'.

The elastic torques depend now on the twist elastic con-
stant ECz as expected, but they also depend on the direc-
tor splay-bend distortion in the plane of shear. At low
shearing rates small perturbations of P and v are damped.
For high enough shearing rates the total torque changes
sign and the perturbations out of the plane will grow.
Fischer, ' considering a model with pure splay-bend, i.e.,
no flow and no twist, found a critical deformation beyond
which the director comes out of the plane.

%ith the assumption that there is strong anchoring at
the cylinders, we take the boundary conditions on the
director to be

+—[K, —(K, +K~ —2K3)cos 8],
r

and E&, Ez, and K3 are elastic constants.
Equations (2) and (3) express the conservation of the

components of linear momentum along the f and z axis,
respectively. In the viscous forces, on the left-hand side
of both equations, there are two kind of terms. Those
proportional to velocity derivatives are the anisotropic
extension to the viscous terms in isotropic fluids [the
viscosity instead of a constant is now a function g(8)].
The second kind of terms that are peculiar to nematics
represent contributions due to nonuniform orientation of
the director. Note that the coefficients of both
differential equations are variables because the initial
alignment is nonuniformly distorted by the flow. Conse-
quently, no simple solution of the equations can be found
analytically. This is in contrast with the particular
configuration where the initial orientation of the director
is parallel to the cylindrical axis, i.e., perpendicular to
shear plane. In that configuration the flow does not dis-
tort the director and the nematic behaves as a Newtonian
fluid with viscosity a4/2. In that configuration, as the
shear rate is increased, another interesting series of insta-
bilities is found. '

Angular momentum conservation is expressed in Eqs.
(4) and (5). Each term can be seen as a torque exerted on

8(R, )=8, 8(R2)=8 +n~,

P(R, )=P„, P(R2)=$„+me. ,

where m and n are integers. It is clear that we can find a
different solution for each value of m and n. However,
here we consider only the case where the initial alignment
is radial with 8„=m/2, $„=0, m =0, n =0. The solu-
tion with n =1, for instance, represents the director un-

dergoing a net rotation of m between the boundaries.
In addition, the usual no-slip condition gives

co(R, )=Q„co(R~)=Q~, v(R, )=v(R~)=0,

and we take Oz=O. This choice of boundary conditions
corresponds to the experiments of Cladis and Torza.

III. STEADY SOLUTION

In view of the boundary conditions (6) and (7), and for
sufficiently small values of the angular velocity 0& of the
inner cylinder, one expects that there will be a steady
state in which the director remains in the r /plane w-ith

no axial velocity, i.e., v and P are both zero. In this
event, Eq. (2) reduces to

[re@'g (8)]'+2''g (8)=0,
and thus
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r co'g (8)=c,
where c is a positive constant equal to the couple per unit
length on either cylinder. With (9), Eq. (4) may now be
written

1.0—

2f (8)(r 8"+r8')+ [r (8') +1]

C
(y, +yzcos28) =0 .

g 8
(10)

0.5-

An analysis of the above equations when the viscosity
coefficient a3 is negative was done by Atkin and Leslie. '

They showed that there is a solution in which the direc-
tor rotates from 8 =0 at one boundary to a maximum
value 8 somewhere in the gap, and then, reversing the
direction of rotation, returns to the value 8 at the other
boundary. For larger shear rates, 8 tends to the Leslie
angle 8o= —,'tan '(a3/az)' in the gap, except for thin

layers at the walls.
However, when a3 is positive, 8 increases without

limit as c is increased. In this case it is necessary to solve
Eqs. (9) and (10) numerically. For a given value of c, we
determine 8(r) from (10) and then co(r) from (9).

The computation was performed using dimensionless
equations. We used the radius R I as the natural length
scale and y,R, /K, as the time scale. The equations
would read exactly as they are written if we make the fol-
lowing substitutions:

(f,fl)=(f fl)/&i fz=R tfz/&»

(gag] gz) (g gl gz)/yl

A =c/Ei, E„=yiR iQi/ICi .

We rename all the dimensionless quantities without the
hat, but we keep A for the dimensionless couple per unit
length and the so-called Ericksen number E, for the di-
mensionless angular velocity of the outer cylinder.

The solution is plotted in Figs. 1 and 2 for two different

0.0
1.0 1.5 2.0

FIG. 2. The solid line corresponds to the dimensionless ve-

locity profile of the nematic across the gap just below the first

instability. Set 3 of material constants A =140 and R =2 were

used in the computation. The dashed line corresponds to the

profile of an isotropic fluid.

values of A. We use a set of material constants with

a3/~az~ =0.05 (set 3 of Table I); this corresponds approx-
imately to HBAB at 85'C, which was used in the experi-
ments of Cladis and Torza. In Fig. 3 the difference be-
tween the velocity profile UI of a Newtonian fluid and the
velocity profile vz of a nematic is shown. The difference

v~ —
UI has two stationary values, one near each wall.

Near the inner wall the nematic moves faster than the
equivalent Newtonian fluid, whereas near the other wall
the nematic moves slower. However, the maximum
difference in the velocities is only about 0.15%%uo of the ac-
tual velocity, and therefore, in most of the gap, the flow
can be considered to be nearly Newtonian. All this is in
qualitative agreement with experimental findings. A
closer comparison is impossible for two reasons: first, be-
cause we have used for the computation values of the ma-

2.0-

1.5- a= f40
I

/
/

1.0
1.5 2.0 2.5 XO

—0.05 o.bs
Var-Vr

0.15

FIG. 1. Tilt angle across the gap for two different values of
the dimensionless couple per unit length A exerted on each
cylinder. The calculation was performed using set 3 of material
constants and a ratio between cylinders R =2.

FIG. 3. Difference between the velocity of an isotropic fluid

ul and that v& for a nematic liquid crystal, for two values of the
dimensionless couple A. It shows how the nematic moves faster
near the inner wall and it moves slower near the outer wall.
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TABLE I. Numerical values of viscosities and elastic constants of 8CBP. All viscosity values are in Pa s and elastic constants in
N. The values are taken from Refs. 24—27. Unfortunately, we have not found complete sets of viscosities and elastic constants of
HBAB or CBOOA in the range of temperature at which a3 is positive. In sets 2 and 4 the values of y, have been slightly modified in
order to obtain positive values of a& and intermediate values of e. The results show that the important parameter of the problem is
the ratio e and are not very sensitive to variations of the other constants.

Set

CX(

CX2

Q3

a4
a5
Q6

X,(10")
I( 2(10")

Z, (10")

0.026
0.052

0.825 X10-'
0.050
0.043

—0.82 X10-'
1.29
0.60
1.30
0.016

0.014
0.049

0. 15 X 10-'
0.049
0.036

—0.011
0.90
0.40
0.90
0.031

0.038
0.059

0.305 X 10-'
0.052
0.047

—0.84X 10
1.20
0.56
1.20
0.052

0.0078
0.045

0.42 X 10
0.048
0.026

—0.014
0.70
0.35
0.67
0.094

0.134
0.070
0.014
0.056
0.053

—0.29X10-'
1.40
0.70
2.10
0.2

0.39
0.070
0.027
0.057
0.059
0.016
1.45
0.90
2.80
0.39

terial constants corresponding to 4-n-octyl-4'-
cyanobiphenyl (8CBP) (see Table I), and second, because
the velocity profile given in Fig. 1 of Ref. 6 seems to have
been measured at a shear rate well beyond the occurrence
of the first instability ' and therefore it is outside the
scope of the present analysis.

The integration was achieved by means of a NAG rou-
tine based on finite difference technique with deferred
correction and Newton iteration. The routine, supplied
with an initial "guess" for the profiles 8(r) and cu(r), finds
a solution satisfying the boundary conditions. In princi-
ple, increasing the absolute error tolerance and the num-
ber of mesh points, the solution could be obtained at any
desired accuracy compatible with the roundoff error of
the computer. However, there is a critical value of A

(point P, in Fig. 4) at which the solution seems to disap-
pear. For values of A higher than the critical one, a
second solution (point P2 in Fig. 4) characterized by a
much higher distortion is found. There is a kind of nu-
rnerical instability associated with this point and a very
good estimate of the solution is required by the procedure
to converge. Using the second solution as initial guess
and either increasing or decreasing A, one can explore
the range (region III in Fig. 4) at which the solution ex-

ists. There is an intermediate region (region II) between
P, and P3 where a third solution can be found. In the
case of plane shear How, Carlsson' computed the dissipa-
tion energy of each solution, showing that in the range of
values of A at which there is more than one solution, the
minimum dissipation energy corresponds to that involv-
ing the smallest director distortion.

IV. STABILIY ANALYSIS

Experimental observations suggest that when the above
steady Now first becomes unstable, the perturbations are
independent of the axial coordinate z and have a nonos-
cillatory growth in time t. Therefore we consider pertur-
bations of the form

(co, u, 8,$)=(Q(r), V(r), e(r), 4(r))e

where o. is real. We substitute the perturbed solution
(co+co, V, 8+8,$) into Eqs. (2)—(5) and neglect second-
order terms in the perturbations. We also neglect inertia
terms proportional to ~ and U. We thus obtain two un-
coupled equations for the perturbations 8 in the plane of
the shear and P out of the plane of the shear:

+Q f + A Sln8
~ 8+ 2g2a g (8)

r g(8) y,g, (8)
d, (8)

f, (8)4"+4' f,(8)+8'— +0.,4 1— CX2

sin8
V1

1

g)(8)
=0,

(12)

y(8)e"+e —'y(8)+8 "~ +e
dO

df(8) 8 +18, 1 d f(8), ~ 1

d8 r 2 d82 r2

A
2A, sin28+ ( I+A, cos28}

1 dg (8)
2r g(8) g(8) d8

1+cr;e 1 — (1+A, cos28} =0, (13)
4g (8)

with A, =yz/y, . We consider strong anchoring of the
director at the walls and therefore we impose the follow-
ing boundary conditions for the perturbations:

4=8=0 at I =R „R2 . (14)

Due to the fact that Eqs. (12) and (13) are uncoupled,
they define two independent neutral stability thresholds.
For a given value of the couple A we determine the
steady solution from (9) and (10), and then we solve the
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TABLE II. Maximum distortion angle P =8 —8, critical
Eriksen number and dimensionless couple for diferent sets of
material constants. The computation was performed using
R =R~/R

&
=2. With set 6 the solution tumbles from

13 =77.0 to P =105.4, but it is unstable to perturbations out
of the plane of shear since P = 103.1'.

Pg

~ ~

Set

—0.0163
—0.0937
—0.0519
—0.0930
—0.2000
—0.3870

94.14
95.85
97.97

102.0
138.6
77.0

PQUt

94.01
95.28
96.83
99.69

101.4
103.1

208.5
141.0
101.2
70.3
48.3
25.45

291.0
194.0
142.0
96.6
80.9
92.0

I I 1 I I I I I 1 I I I 1 I I I I 1 1

100 150 200

FIG. 4. Maximum tilt angle 8 vs the dimensionless couple
A. The calculation was performed with set 3 of material con-
stants.

eigenvalue problems (12)—(14) to compute cr, and 0; as
the eigenvalues. The steady solution will be unstable to
perturbations out of the shear plane if 0, is negative and
will be unstable to perturbations in the shear plane if 0;
is negative.

All this analysis is somewhat similar to the equivalent
one for plane shear flow when a3 is negative (Currie and
MacSithigh ) and when a3 is positive (Zuniga and
Leslie' ), except that now the equations governing the
perturbations are not of the Sturm-Liouville type. This
fact does not make much difference from a numerical
point of view, as we use a general technique for two-point
boundary-value problems based on a shooting and match-
ing method. As we mentioned before, there are some
difficulties for calculating the basic solution near a criti-
cal value of the shear rate at which the solution seems to
disappear. Such a critical value is very close to the one at
which the solution becomes unstable to perturbations in
the shear plane. In the case where the solution is first un-
stable to perturbations out of the plane the basic solution
can be easily calculated and the threshold is found at the
required accuracy. However, this is not the case when ei-
ther both thresholds are very close to each other or the
solution is first unstable to perturbations in the shear
plane. In those cases the threshold for instability out of
the shear plane has to be found by interpolation.

The computational results are summarized in Table II.
They differ only very little from those in plane shear
flow, ' and therefore suggest that the rotation and cylin-
drical geometry have only a small effect on the first
threshold. In different geometry a complete comparison
between the hydrodynamic instabilities in Couette flow in
isotropic fluids and those of nematics is given by Dubois-
Violette and Manneville. ' The cylindrical geometry is
stabilizing in the sense that the director achieves a bigger
value of 8 before the solution becomes unstable. For
the data sets 1—5 (Table I) the threshold for instability out

0.4

r&
/ i ~

~ ~
~ ~

\

0.8

0.2 0.6

C o.o 0.4

-0.2 0.2

-0.4
1.0 1.2 1 ~ 4 1.8 2.0

o.o

FIG. 5. Eigenfunction P(r) at A =130. Dotted line corre-
sponds to the solution with the smallest deformation, region I.
The dashed line corresponds to the intermediate deformation,
region II; and the solid line to the largest deformation, region
III.

of the plane is always smaller than that for instability in
the plane. For set 6 (which may well be out of the range
of temperatures at which the experiments were per-
formed} the instability in the plane takes place first, but
the director tumbles to a new state that is already unsta-
ble to perturbations out of the plane (see caption of Table
II}. As we discussed above we have computed the solu-
tion beyond the first instability, regions II and III in Fig.
4. Although linear stability analysis is only valid for
small perturbations, we have studied the stability of the
solution in the three regions. In region II the solution is
always unstable. In region III the solution is stable. This
result is in contrast with that found for plane shear flow
where the solution beyond the first instability was always
unstable to perturbations out of the plane. In Fig. 5 the
eigenfunction P(r) in the three regions when A =130 is
plotted. The dotted line corresponds to the eigenfunction
before the first instability, region I. The eigenfunction



2056 IGNACIO ZUNIGA 41

-0.4 -0.3
I

-0.2 -0.1 -0.0

0.15-
-200

0.10-

3
0.05-

Er

-100

shows one maximum near the center of the gap. The
solid line corresponds to the eigenfunction after the insta-
bility, region III. There are now two maxima near the
boundaries that may resemble the two observed layers
where the director has a nonzero axial component. It is
possible that after the first instability the director
somehow comes back to the shear plane and the solution
adopted by the system is the corresponding to region III.
The shape of the eigenfunction gives an idea of the criti-
cal mode. So one expects that in the first instability the
director comes out of the shear plane mainly in the mid-
dle of the gap. During the transition, region II, the direc-
tor is twisted in one direction in one half of the gap and
in the opposite direction in the other half. Finally, in re-
gion III, the shape of the eigenfunction suggests that in
the next instability the director will come out of the plane
mainly near the boundaries. This could be an explana-
tion of experimental findings, but it is only a conjecture
as we are neglecting nonlinear terms in P and U.

In Fig. 6 the critical velocity corresponding to the first
instability is plotted as a function of the ratio a3/az,
which we denote by e. We also plot the experimental re-
sults given in Fig. 2(a) of Ref. 6. In spite of the different
scales used at the axes and the fact that we are using
values for a different material, the agreement with experi-
ments is fairly good. In the experiment the estimated
value for e is 0.06 for HBAB at 85'C and, using
R2/R, =3 with R

&

=0.16, the critical velocity was found
to be co, =0.07 rev/sec. Our result for data set 3 is

m, =(E~/y~R ~
)(E„/2n')=(46X10 )/2. 03=0.025 rev/

sec. This value lies between co, =0.07 for HBAB and
co, =0.02 for CBOOA at the same temperature.

In order to investigate the effect of the curvature on
the stability, we have compared the critical angular ve-
locity for different values of the ratio R =R, /R2. In-

TABLE III. Critical angular velocity for different values of
the ratio between the radii of the cylinders R. Data set 3 of con-
stants were used in the computations.

R2/R, E„(R2rR I
—1)

223
101
63
46

1.5
2.0
2.5
3.0

111
101
94
92

terestingly, we find that the product of the critical angu-
lar velocity with the gap width is almost constant (see
Table III).

V. CONCLUSIONS

Steady solutions of the hydrodynamical equations for
cylindrical Couette flow have been obtained numerically,
and are found to be in qualitative agreement with experi-
mental measurement of the velocity profile. The stability
of the solution has also been considered, and critical
values for velocity and tilt angles 8 computed for insta-
bilities both in the plane of shear and out of the plane of
shear. Several sets of material constants have been used
to investigate the effect of temperature on the critical ve-
locity, and the results are in agreement with experiments.
Couette flow instabilities in nematic liquid crystals are
similar to those in plane shear because they are mainly
orientational and occur at small angular velocities for
which centrifugal forces are negligible.

Concerning the differences in the experimental obser-
vations between the instabilities in plane shear flow and
those in Couette flow, our conclusions are very much the
same as in our previous paper. ' We find that the direc-
tor comes out of the plane of shear after the first instabili-
ty. This means that the transition between the first basic
solution and a second solution requires some component
of the director out of the shear plane. In contrast with
the plane shear flow case, beyond the first instability
there is a stable solution with both velocity and director
fields contained in the shear plane. Assuming that the
director comes back to the shear plane this latter solution
could be the one observed in the experiments. However,
this analysis is only valid for small perturbations of the
basic solution in the plane of shear. Therefore more
definitive conclusions require the consideration of non-
linear terms in the three-dimensional equations.

0.00
70 90

0
100

ACKNOWLEDGMENTS

FIG. 6. The dashed line is the nondimensional critical angu-
lar velocity E, for the first instability as a function of t.'=a3/A2.
The points used to interpolate the curve are those given in Table
I. Both solid lines are experimental measurements of critical
angular velocity m, vs temperature (Ref. 6). The upper one cor-
responds to HBAB and the lower to CBOOA.

I wish to thank Professor F. M. Leslie for suggesting
this problem and both Professor F. M. Leslie and Dr. B.
R. Duffy for stimulating discussions and criticisms of the
manuscript. This research was partially supported by
Comunidad de Madrid, Spain, while I was visiting Strath-
clyde University.



41 ORIENTATIONAL INSTABILITIES IN COUETTE FLOW OF. . . 2057

APPENDIX

cr „„+ ( 0' ~„C7yy ) pr co
1 Bp 2

r

1
rr'„~+ (—0 „~+cr ~„}=prco

r

(Al)

(A2)

The linear momentum equations are taken from
Leslie in the present geometry they reduce to

The linearized director stress tensor components are

H„„=8'[K, + ( K3 K—
z }sin 8]cos8

+ [K, E2——K4 —(K3 —Kz )cos 8]2 sinO

H „&,
=8'[(Kz —K, )sin 8—Kz ]sin8

+[(K3—K2)sin 8—K~]

(A10)

(A 1 1)

1~~+ O~ PU (A3) H~„=8'[(K3 —K2 )cos 8 K4]—sin8

The stress tensor components, when linearized with
respect to the variables u, P, and 8, are

—[(K3—K2)cos 8+Kz]
cos8

(A12)

cr„~= f (8)—8' — + rco'g (8)1, 1 df(8)
pr2 dO

+ 2(yl+y2cos28)8, (A4)

H&&=8'[(K, —K2 —K4) —(K3 K2)si—n 8]cos8

+[K, +(K3 —K2)cos 8]
r

(A13)

1 df(8), z 18, f 1 d f(8)
2 d8 r dO

+ rco'[g (8)——,'(y, +yzcos28)]

—[y, —
—,
'

( y, +yzcos28) ]8,
0 =u'g, (8)+rco'g2(8)$+Pa2sin8 .

(A5)

(A6}

H„, =P'[(K, K2 )sin—8+Kz ], (A14)

—y, 8 cos8 —
—,'(y, +y, )rco'cos8, (A15)

and the linearized intrinsic-director body-force com-
ponents are

g„=(Kz—K3) (8') sin8 ——8'cos81

r

Inserting (A4)—(A6) into (Al)—(A3), one obtains Eqs. (2)
and (3). For the present problem, the angular momentum
equations' reduce to

g&
= (K3 K2 )

—8'—sin8 ——cos81, . 1

g„+H'„, + —(II„„—H&&)+ y sin8=0,1

r

1
g~+H'„~+ —(H„&+H&„)+ycos8=0,

r

(A7)

(A8)

~2 ~1+y &O sinO — re@'sinO,

72 71
g, = —y, P

— u'sin8 .

(A16)

(A17)

g, +H'„, +—H„, +(ty =0 .1

r
(A9) After the elimination of the director tension y from Eqs.

(A7)—(A9), one obtains Eqs. (4) and (5).
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