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Pattern formation in growth of snow crystals occurring
in the surface kinetic process and the diffusion process
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(Received 19 June 1989)

We propose a model of pattern formation in the growth of snow crystals that takes into account
the actual elemental processes relevant to the growth of crystals, i.e., a surface kinetic process for
incorporating molecules into a crystal lattice and a diffusion process. This model gives a clear
correspondence between the patterns produced and the actual growth conditions such as supersa-
turation and the diffusion coefficient. Circular patterns due to kinetic roughening, hexagonal pat-
terns, and dendritic patterns are obtained starting from a circular crystal under various growth con-
ditions. We analyze these patterns and discuss the mechanisms of appearance of round patterns, the
development of hexagonal patterns, and the formation of dendritic patterns of snow crystals. Final-

ly, it is shown that the dimensionless crystal size with reference to the mean free path of a water
molecule plays an important role in the pattern formation of growing snow crystals.

I. INTRODUCTION

The great variety of growth forms of snow crystals is
one of the marvels of nature. The form of a growing
snow crystal changes with time as follows. First, a spher-
ical single ice crystal of the order of 1-10pm in radius is
formed by the freezing of a supercooled water droplet in
a cloud; this frozen droplet adsorbs supersaturated water
vapor, thus growing into a hexagonal prism, which is the
fundamental form of ice crystals bounded by two basal
I0001), and six prism I1010I, faces. ' The hexagonal
prism develops further into various patterns such as
plate, column, needle, sector plate, and dendrite accord-
ing to the growth conditions in the cloud. ' Since the
growth rate of each position of a surface depends on
growth conditions, the pattern produced therefore de-
pends on those conditions.

Nakaya investigated for the first time the relation be-
tween the growth patterns of snow crystals and the
growth conditions of temperature T and supersaturation
cr with respect to ice. Since then many experimental
studies of growth patterns have been made. These re-
sults are consolidated in a (T, cr) diagram by Kobayashi
(Fig. 1).

This diagram first shows that the complicated habit
change of snow crystals occurs with a decrease in temper-
ature; i.e., the plates change to columns at T= —4'C,
columns change to plates at —10 C, and plates change to
columns at —22'C. It has recently been found that the
habit change depending on temperature is attributable to
surface melting and the roughening of basal and prism
faces. ' The diagram shows secondly that the morpho-
logical instability of polyhedral crystals occurs with an
increase in the degree of supersaturation. At low super-
saturation polyhedral snow crystals can grow in a stable
way, retaining their forms. With increasing supersatura-
tion, however, their patterns develop into sector plates
and, ~here supersaturation is high, into dendrites at

T= —15'C or into needles at T= —6'C by preferred
growth of edges and corners of the crystal; this is mor-
phological instability. "'

Here we should distinguish this instability from the
Mullikins-Sekerka instability for the round interface, e.g.,
the crystal-melt interface, which is rough in the molecu-
lar scale. ' ' In the latter case, the dendrites develop
from perturbations at the interface. Furthermore, equi-
librium conditions are assumed at the interface, since the
kinetic barrier for the growth of the rough interface is
negligible.
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FIG. 1. Habit changes and stability of polyhedral forms of
snow crystals depending on temperature and supersaturation
with respect to ice [after Kobayashi (Ref. 8)].
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The growth patterns of snow crystals also depend on
factors other than temperature and supersaturation. It
has been found that the development of skeletal or den-
dritic structures is reduced by an increase in the diffusion
coefficient of water vapor, and, on the other hand, the de-
velopment of these structures increases with increasing
thermal conductivity of the atmosphere. '

However, theoretical studies on the time evolution of
the pattern of growth have recently been developed.
There are the following two approaches.

The first is an approach which assumes simple growth
laws and produces various complicated patterns similar
to natural snow dendrites. ' The second is an ap-
proach which takes into account actual elemental pro-
cesses relevant to the growth of crystals; these are the
surface kinetic process for incorporating water molecules
into a crystal lattice and the diffusion process.

Although the former approaches, using simple growth
laws, seem to have succeeded, they are unsatisfactory as
regards the correspondence to the actual growth process-
es of snow crystals. Specifically, it is impossible to clarify
the quantitative relation between the parameters appear-
ing in the simple growth laws and the actual growth con-
ditions given by supersaturation, diffusion coefficient, and
so on. Recently, in order to obtain this correspondence, a
Monte Carlo simulation based on a modified diffusion-
limited-aggregation (DLA) model with a simplified sur-
face kinetic process has been carried out. ' However, the
quantitative consideration of the mechanism of pattern
formation of growth represented by Fig. 1 still remains
insufficient. Therefore the second approach mentioned
above is significant for obtaining a clear correspondence
between the patterns produced and the actual growth
conditions, even though it involves a mathematically
difficult treatment.

The actual elemental processes relevant to the growth
of snow crystals are as follows: (i) a diffusion process for
supplying water molecules in air toward the crystal sur-
face, (ii) a surface kinetic process for the incorporation of
water molecules into the ice crystal lattice, which in-
cludes their adsorption onto a crystal surface; surface
diffusion of admolecules toward the steps, which are sup-
plied by two-dimensional nucleation or with the aid of
screw dislocations; and the lateral motion of the steps,
etc. ; and (iii) a heat conduction process for removing the
latent heat generated at the crystal surface.

It is quite obvious that these processes are closely
reflected in growth patterns of snow crystals. In particu-
lar, the surface kinetic process plays a very important
role in the formation of such polyhedral features of snow
crystals as hexagonal prisms and facets seen at the tips of
dendrites (Fig. 2). We emphasize that such surfaces are
molecularly smooth and that they cannot grow without
the lateral motion of steps. However, in the previous
theoretical studies of pattern formation only the diffusion
process was considered and the surface kinetic process
was completely disregarded, since the r'ough surface
is tacitly assumed in their papers. As a result, the tips of
dendrites produced are round and their methods never
produce facets.

The purposes of the present study are as follows: (i) to

FIG. 2. A typical example of snow crystals (provided by
Furukawa).

produce the growth patterns of snow crystals under vari-
ous growth conditions such as supersaturation and the
diffusion coefficient by computer simulation which takes
into account the diffusion process and the surface kinetic
process, (ii) to analyze the patterns produced by the simu-
lation, and (iii) to discuss the mechanisms of the appear-
ance of round pattern, the development of facets, and the
formation of a dendritic pattern in terms of both process-
es.

To be precise, the heat conduction process may also
contribute to the pattern formation of snow crystals.
However, it can be considered that its contribution to the
growth rate is relatively small compared to the diffusion
and the surface kinetic processes, unless the growth rate
is too large. ' Furthermore, it has been found experi-
mentally that the heat conduction process contributes
minimally to the pattern formation. '

This moving boundary problem in which two processes
are coupled is extremely difficult to solve. To simplify
the problem, we treat two-dimensional single crystals
starting from a circle which is perpendicular to the c axis
of a hexagonal snow crystal. This boundary value prob-
lern is solved by means of the boundary element method
(BEM). Then the growth under the conditions of no air
flow is treated. The effect of air flow on pattern forma-
tion will be discussed briefly in Sec. III. Lastly, the tem-
perature of the whole system is assumed to be uniform at
—15 C, which is a typical temperature for the develop-
ment of dendritic pattern crystals.
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II. GROWTH PROCESSES AND METHODS
OF SIMULATION

A. Surface kinetic process

Ps Pe
S

Pe
(2)

For the kinetic barrier to be overcome, the degree of
slight excess vapor pressure p, —p, or supersaturation cr,
at the surface should be positive. Thus cr„i.e., the driv-
ing force for surface kinetic process, is included in the
growth rate V&.

P(8, cr, ) represents the activity of the surface for incor-
porating the water molecules into the crystal lattice. The
surface inclined by 8 from the singular surface, i.e., a
molecularly smooth surface, grows by the lateral motion
of steps which are, in a parallel manner, distributed with
a distance A, corresponding to 8. Thus the surface grows
by d when the steps advance by k. Burton, Cabrera, and
Frank ' obtained the rate of advancement of a step by
solving the two-dimensional surface diffusion equation of
admolecules in which the molecular Aux from the vapor
to the terraces is taken into account. As a result, the
P(8,o, ) is expressed as

s s
P(8, o', ) =P,„—tanh —,

s)
(3)

Figure 3 shows part of a growing crystal surface com-
posed of a number of monomolecular steps. The growth
rate V& determined by a surface kinetic process in the
direction normal to a surface is given by

Vz =P(8,a, )o, ,

where o, is the local surface supersaturation and P(8, o, )

is the kinetic coefficient.
0, is defined using the pressure p, of the water vapor at

the surface and the equilibrium vapor pressure p, of ice

P,„=a,u,p, /(2mmkT)'~

where A. is the mean step distance, d the step height, x,
the mean surface diffusion distance of a molecule on the
surface, a& the sticking coefficient, i.e., the ratio of mole-
cules that stick on the surface at the instant when they
have impinged on it, U, the volume of a molecule in the
crystal, m the mass of a molecule, k the Boltzmann con-
stant, and T the absolute temperature. It should be no-
ticed that P(8, a, ) depends not only on the local slope
s =tan8 of the surface against the singular surface but
also on o, through the frequency of generation of steps
on the singular surface and their lateral motion.

Figure 4 shows the dependence of P(8, o, ) on 8, which
is, schematically, the rotation angle about the c axis. It
possesses six minimums at 0', +60', +120', and 180' cor-
responding to six prism faces, i.e., singular surfaces
which are smooth on a molecular level. Although there
is no step on the prism faces in the equilibrium state, the
steps are actually generated by two-dimensional nu-
cleation or with the aid of screw dislocation in the none-
quilibrium state. As shown with thick arrows in Fig. 4,
the kinetic coefficient PO=P(O, o, ) of prism faces is not
zero but positive. The value is determined by the slope
so=tan8& of a growth hillock composed of generated
steps on the prism face. It is to be noted that the devel-
opment of facets is due to anisotropy of P(8, o, ). Since
the frequency of step generation increases in keeping with
O.

„

the slope so formed by steps increases in keeping with
o, . The anisotropy of P(8, cr, ) is weakened with increas-
ing Po, which is determined by o, on prism faces. If Po
becomes equal to P,„with an increase in cr„the anisot-
ropy of P(8, cr, ) completely vanishes. We call a vanish-
ment of anisotropy of growth rate due to such kinetic
reason the kinetic roughening.

In the case of spiral growth with the aid of a screw
dislocation, ' the slope so =tan8& of a growth hillock
on prism faces is given by

s =tan8=d/A. ,

si =d/2x~

(4) d dos
S
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FIG. 3. Schematic representation of the step distribution of a
growing crystal surface.

FIG. 4. Dependence of the kinetic coefficient P(8, o, ) on
8=tan 's, which is the rotation angle about the c axis.
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where r is the radius of a critical two-dimensional nu-
cleus, ~ the edge free energy per unit length along a step,

and fo the surface area occupied by a molecule.
The kinetic coefficient Po=P(0, o, ) for spiral growth

increases linearly with 0., in the range of cr, &&0., since
the frequency of step generation increases with increasing
o„and approaches P, „

for cr, »0, [Fig. 5(a)], because
neighboring steps scramble for admolecules when o.,
exceeds cr &. When we assign the edge free energy
K =2.0 X 10 erg/cm, the growth rates obtained by
Eqs. (1)—(8) agree well with experimental valuess4 [Fig.
5(b)].

In order to interpret the experimental values by two-
dimensional nucleation growth, ' we must assign an ex-
traordinarily small value v=4. 0X 10 erg/cm. On the
other hand, the value of the edge free energy derived
from the broken bond model is very large, i.e.,
a=3.7X10 erg/cm. Although the actual value may be
smaller because of the entropy effect and adsorption of
impurities at the step, Ic=4.0X 10 erg jcm assigned for
the two-dimensional nucleation growth, this value is un-
reasonably smaller than the value for the broken bond
model. Accordingly, we consider only the spiral growth
to occur with the aid of a screw dislocation and assign
a=2.0X10 erg/cm. Furthermore, the steps are sup-
plied from screw dislocations emerging at the center of
six prism faces until a circular crystal develops into a per-
fect hexagon, and they are generated at its corners where
the supersaturation is largest, once a perfect hexagon has
been developed.

7'

8 5

4

B. Dift'usion process

Using the typical growth rate of snow crystals and the
diffusion coefficient of water molecules, it can be shown
that the growth rate of the crystal surface is negligibly
small in comparison with the quick movement of the
molecules by diffusion. Accordingly, the supersaturation
o. in the region 0 surrounding a crystal (Fig. 6) is
governed by the quasistatic diffusion equation

50.=0 . (9)

The boundary conditions for solving Eq. (9) are as fol-
lows: (i) the supersaturation is specified by

(b)

0
0 20

surface supersaturation trs {'/, }

FIG. 5. (a) Dependence of the kinetic coefficient Po for prism
faces on the surface supersaturation cr, in the case of spiral
growth for edge free energy ~=2.0X10 erg/cm (solid line)
and in the case of two-dimensional growth for edge free energy
K—4.0 X 10 erg/cm (dashed line). {b) Dependence of the
growth rate V on the surface supersaturation a, corresponding
to (a) for spiral growth {solid line) and for two-dimensional
growth (dashed line). Open circles show the experimental
values in Ref. 34. FIG. 6. Diffusion field surrounding a crystal.
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(10)

on the boundary I
&

which is set off the center of the crys-
tal by the distance R, and (ii) mass conservation condi-
tion is required on the boundary I 2 representing the crys-
tal surface, i.e., the growth rate Vk determined by the
surface kinetic process should be equal to the growth rate
Vd determined by the volume diffusion process under
steady-state conditions" '

Vk = Vd = V .

The growth rate V„is given by Eq. (1) and the growth
rate Vd is given by

vent

1

cryst

FIG. 7. Procedure for drawing a growth pattern.

Ucpe
Vd — Dq, , (12)

where D is the diffusion coefficient and q, =(Bo /Bn ), the
normal gradient of supersaturation at a position on the
surface. Thus, by substituting Eqs. (1) and (12) into Eq.
(11),we obtain the boundary conditions on I"2 as follows:

P(8,o, )o, — Dq, =0 .

Equation (11') is important for determining self-
consistently the growth rate V controlled both by the
diffusion process and by the surface kinetic process.

This problem, characterized by the boundary condi-
tions Eq. (11') involving both o, and its derivative q„is a
so-called third boundary value problem which remains
unclarified. It should be noted that both distributions o,
and q, are unknown, but they are connected by Eq. (11').

C. Methods of simulation

q„o*—o„q' I
along I

&

(13)

where o.„.is the supersaturation at a point i on I 2

representing the crystal surface (Fig. 5), q„the normal
gradient of supersaturation on I l which is set off the
center of the crystal by the distance R, o.* satisfies
her'+5;=0 (5, , the Dirac delta function at a point i),
and q* is Bo.*/Bn. We approximately replace q„with
the following equation under the assumption that I l is
far from I 2.

q„=
R ln(R/r, )

(14)

which is obtained for the diffusion field surrounding a cir-
cular crystal with a radius r„which is half of the mean
length along the a and b axes and with a perfect sink, i.e.,
o. =0.

S

We solve Eq. (9) by means of the boundary element
method as follows. At first, we obtain the boundary in-
tegral equation from Eq. (9) using Green's theorem and
boundary conditions [Eqs. (10) and (11')]:

r

kTP(8, o, )
rr„/2+ f q" +v" e,d I'

along I"2 U~pe

I 2 is divided into N elements, Eq. (13) is changed to an
algebraic equation with respect to the surface supersa-
turation o„andN simultaneous equations for all points i
are derived from the algebraic equation. We find the dis-
tribution of o., by solving these algebraic equations and,
consequently, get the growth rate V at each position on
the surface at a certain moment and then determine the
shape of a growing surface after ht sec. Here, the value
of P(8, 0, ) in Eq. (13) is determined by only the local
slope s = tan8 except Po at the prism faces. On the other
hand, the Po depends on o, through the slope of the
growth hillock [Eq. (7)]. Po and cr„therefore, must be
self-consistently solved by iteration methods. ' To avoid
calculation errors, the number N of elements is so in-
creased in keeping with the crystal periphery that the
length of each element is kept nearly constant.

It is to be noted that the faster growing surface is cut
by neighboring slower growing surfaces, while the
slowest growing surface develops the largest area. A
growth pattern is, therefore, determined by the inner en-
velope of the lines perpendicular to each vector Vht at its
point because of the finite value ht (Fig. 7). By repeating
this procedure we can simulate the pattern formation in
the growth of snow crystals.

III. RESULTS

The numerical values used for simulation are as fol-
lows: temperature T =281.15 K ( = —15 'C), equilibrium
vapor pressure p, =1.66X10 dyn/cm =1.66X10 Pa
corresponding to —15'C, molecular volume of ice crystal
U, =3.25X10 cm, surface area occupied by a water
molecule fo =8.3 X 10 ' cm, mass of a water molecule
m =3.0 X 10 g, step height or lattice constant
d =4.5 X 10 cm, mean surface diffusion distance
of an admolecule x, =400d, adsorption energy
E,d =6.23 X 10 ' erg/molecule, Boltzmann constant
k = 1.38 X 10 ' erg/deg, edge free energy per unit
length along a step a.=2.0X 10 erg/cm (see Sec. II), ra-
dius of initial crystal r,p=5 X 10 cm, ratio of a distance
R to the outer boundary I, from the crystal to an aver-
age radius r, of the crystal (Fig. 6) R/r, =6.5—when
this ratio is used, the growth rate in this two-dimensional
simulation is nearly equal to that of the three-
dimensional model, i.e., spherical crystal.
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A. Development of facets and kinetic ronghening

Figures 8, 9, and 10 show three examples of pattern
formation for large diffusion coefficient D =40 cm /s
(corresponding to 500 Pa of air pressure, i.e., about
5X10 atm) and the sticking coefficient ' a, =0.1 at
various supersaturations o„.Since water molecules are
supplied to the crystal surface faster at large D, the su-

persaturation 0., at the surface does not largely drop
from 0

For the sake of convenience let us de6ne the degree of
anisotropy of the kinetic coefficient as 10 cm

1

20. 8
1

41.6

62. 4
72. 8
83.2
93.6

&max

max

(15)

where 5p= 1 means the maximum anisotropy which cor-
responds to the limit of cr, ~O, and 5P=O means com-
plete vanishment of anisotropy. It is to be noted that 5P
increases with a decrease in surface supersaturation o„
since the value of Po for prism faces decreases in keeping
with its surface supersaturation cr, . Figure 8 shows

(b)

103s

a axis a axis

0s
39.5

FIG. 9. (a) Development of prism facets due to the recovery
of the anisotropy of the growth rate with increasing surface area
for D=40 cm2ls and o =8.5%. (b) 5P=0.04 at 0 s.
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FIG. 8. (a) Development of prism faces, i.e., hexagonal pat-
tern for D =40 crn /s (corresponding to 500 Pa of air pressure)
and o.„=3.5%. (b) Supersaturation along the crystal surface.
The degree of anisotropy 5P=0.4 at 0 s. o,(1)=1.26% at
corners denoted by +1, cr, (0)=1.23% at centers of surface
denoted by 0 at 79 s.

a axis a axis

FIG. 10. (a) Circular pattern due to kinetic roughening for
D =40 cm /s and o „=17%. (b) 5P=0.01 at 0 s; 5P =0 04 at 50.
s.



ETSURO YOKOYAMA AND TOSHIO KURODA 41

5P=0.4 at 0 s. The surface supersaturation cr, is small
for o „=3.5% in spite of large D. Consequently, prism
faces develop their area easily and an initial circular crys-
tal becomes a perfect hexagon within 79 s, since anisotro-

py of the kinetic coefficient is large. Then, the hexagonal
crystal grows retaining its Hat surface.

Since the supersaturation o., at the surface increases
consistently with 0.„,the anisotropy of the kinetic
coefficient 5P decreases with an increase in o„.In Fig. 9
(o „=8.5%), 5P=0.04 at 0 s. This value is one-tenth of
5P in Fig. 8 (cr „=3.5%%uo) at 0 s, so that an initial circular
crystal cannot develop into a perfect hexagon even when
the crystal size has increased to three times the initial
size.

Furthermore, the o, increases as o
„

increases in Fig.
10. Hence, the anisotropy of the kinetic coefficient de-
creases extremely with increasing 0„.Since 5P=0.01 at
0 s because of larger a „=17%in Fig. 10, the anisotropy
of the growth rate almost vanishes. In other words, a so-
called kinetic roughening defined in Sec. II occurs. Ac-
cordingly, the prism faces can hardly develop, even
though the crystal size increases to three times the initial
size during growth for 50 s. Furthermore, Fig. 10 also
shows that small facets begin to develop as the crystal
grows further. This is due to a decrease in o, with in-

creasing crystal size, since the supply of water molecules
to the surface becomes insufficient because of the increase
in the area of surface acting as sink for molecules. In

fact, 5P increases to 0.04 at 50 s, in keeping with crystal
size [Fig. 10(b)].

Figure 11 shows an example for small D =0.2 cm /s
(corresponding to 1 atm, i.e., 1.013 25 X 10 Pa) and

a& =0.01 (Ref. 38) at o „=8.5%. Since o, largely drops
from o.„because of the insufficient supply of molecules

by diff'usion under the conditions of small D, 5P is larger
in comparison with the case of D =40 cm /s. For exam-

ple, 5P=0.74 at 0 s in Fig. 11. This value is much larger
than 5P=0.04 at 0 s in Fig. 9. Hence, the prism faces
can grow easily, as shown in Fig. 11, and an initial circu-
lar crystal becomes a perfect hexagon during a slight
growth in size.

The growth rate is much smaller than that for
D =40 cm /s (compare growth times in Fig. 9 with those
in Fig. 11), since 0, in Fig. 11(b) is smaller than that in

Fig. 9(b). Furthermore, the supersaturation is not uni-
form over its surface at 1200 s: it is largest
cr, (1)=0.73% at the corners denoted with +1 and small-
est cr, (0)=0.56% at the center of the surface denoted by
0. Let us define the degree of inhomogeneity in supersa-
turation as

ho.

~, (1) ' (16)

where Acr =a, (1)—0, (0). Since 5o in Fig. 11(b) (=0.23
at 1200 s) is not large enough for preferred growth of
corners, the hexagonal crystal grows retaining its Oat sur-
face in spite of its inhomogeneity. The details will be de-

scribed in Sec. IV.
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FIG. 11. (a) Hexagonal pattern for D=0.2 cm2/s (corre-
sponding to 1 atm) and o.„=8.5'iso. (b) o., ( 1)=0.73%,
o,(0)=0.56%, and 5o.=0.23 at 1200 s.

FIG. 12. (a) Dendritic pattern for D =0.2 cm /s and
o.„=17%.(b) cr, (1)=1.73%, o, (0)=1.22/o, and 6o.=0.29 at
915 s.
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B. Dendritic pattern

Figures 12—14 show examples of dendritic pattern for
small D =0.2 cm /s and a&=0.01 at various o . The
degrees of anisotropy at 0 s are as follows: 5P=0.51 in
Fig. 12, 5P=0.34 in Fig. 13, and 5P=0. 12 in Fig. 14.

When an initial circular crystal has become a perfect
hexagon in Fig. 12, the growth rate at the corners is
larger than that at the center of the surface because of the
large inhomogeneity in surface supersaturation, and con-
sequently preferred growth at the corners begins. This is
the onset of transition from a hexagonal to a dendritic
pattern. Figure 12(b) shows that the supersaturation in-
homogeneity is 5cr =0.29 at 915 s. This value is greater
than that of Fig. 11(b) (5o =0.23) because of an increase
ln cT

Furthermore, the dendritic pattern becomes more re-
markable and the width of a primary branch decreases
with an increase in cr

„

in Figs. 13 and 14. We will dis-
cuss the reason in Sec. IV. It should be noted that the
dendritic patterns shown in Figs. 13 and 14 are obtained
for o „(26%and 50%},much larger than the maximum
supersaturation 16% at —15'C, which is realized when
water vapor is equilibrated with supercooled water drop-
lets in clouds, while similar patterns are seen in natural
snow crystals grown during their fall in clouds at
cr „16%.The difference between o

„

in this simulation
and 0.

„

in natural growth can be explained as follows. If

the air Qows relatively to the snow crystal, the thickness
5d of a diffusion boundary layer decreases in proportion
to Nn, '~ (Na, . the Reynolds number, which is propor-
tional to flow velocity U}, while 5& is of the order of
crystal size for U=0 in this simulation. On the other
hand, o, increases with decreasing 5d for a constant o„.
%hen snow crystals grow during their fall through the
air under conditions of water saturation, cr, can reach the
large value enough for dendritic pattern; for example,
3.69% which corresponds to the growth at o „=50%in
simulation for U =0.

Figure 15 shows further development of dendritic pat-
tern for cr„=34%.The crystal size is about 0.8 mm
across in diameter. One should note that the six primar~
branches grow with a periodical structure at the tips
which is caused by bunching of monomolecular steps.
Such bunches may act as the trigger for the formation of
secondary branches.

IV. ANALYSES OF THE PATTERN FORMATION
AND DISCUSSION

A. Kinetic ronghening

As defined in Sec. II, the kinetic roughening corre-
sponds to such vanishment of anisotropy of growth rate
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FIG. 13. (a) Dendritic pattern for D=0.2 cm js and
o.„=26%.(b) o,(1)=2. 11%%uo, o.,(0)=1.41%, and 5o =0.33 at
970 s.

FIG. 14. (a) Dendritic pattern for D=0.2 cm /s and
o =50%. (b) o', (1)=3.69%, o', (0)=2.35%, and 5o =0.36 at
740 s.



2046 ETSURO YOKOYAMA AND TOSHIO KURODA

that the kinetic coefficient Po for prism faces becomes
equal to P,„with increasing surface supersaturation o, .
To be precise, Po reaches P,„only when o, approaches
the infinite value. However, a crystal actually becomes
spherical on the scale of the optical microscope at large
finite 0, Accordingly, let us so define it that the kinetic
roughening occurs when

On the other hand, cr, controlled both by the difFusion

process and the surface kinetic process depends on the
supersaturation O.„atinfinity, the difFusion coeScient D,
and crystal size r, . %hen the kinetic roughening takes
place, the supersaturation cr, =(o,') is constant all over
the surface of the circular crystal. Hence, from the mass
conservation conditions at the surface [Eq. (11'}],the fol-
lowing equation is obtained:

pa= po =0.98p,„. (17)

By substituting Eqs. (3), (5), (7), and (8) into Eq. (17), we

obtain the critical surface supersaturation 0,' above
which kinetic roughening occurs

Up, D o „—o,'
kT r, ln(R Ir, )

By substituting Eq. (6) into P, „

in Eq. (19), we obtain

(19}

pK
0 —53.2

kTx,
(18} (20}

It is to be noted that a,' depends on the step energy ~.
For the numerical values used in this study, o,' = 13.8%.

where

and

a&ur, ln(R Ir, )

c 4D
(21)

Gs
760

'l 520
2280
3040
3800
4560
5320
6080
6840
7600
8360
9120
9880

10640
11400
12160
12920
'I 3680

8kTV=
mm

' 1/2

(22)

Here U is the mean speed of water molecules. By substi-
tuting the value of cr, ' determined by Eq. (18) in Eq. (20),
we obtain the relation between 0.„,D, and r, correspond-
ing to critical conditions for the kinetic roughening.

For drawing the relation between o„,D, and r, [Eq.
(20)] corresponding to critical conditions for the kinetic
roughening in the diagram distinguishing between hexag-
onal and dendritic patterns (Fig. 17), we rewrite r, in Eq.
(21) by 2mr, ln(R Ir, ) =6L, where L is the length of a side
of hexagon. Thus we obtain

0 S I+6IbyX ' (23)

where bP=P( —,'}—P( —,')=0.5554, P( —,'), and P( —,') are the
polygamma function; X is given by Eq. (28). The relation
between o „andX given by Eq. (23) for o,' =13.8% is
represented by a dashed line in Fig. 17.

B. Mechanism of dendritic pattern formation

760s

FIG. 15. (a} Dendritic pattern with a periodical structure at
the tips for D=0.2 cm /s and o.„=34%.(b) o, (1)=2.92%,
o,(0)= 1.97%, and 5o.=0.33 at 970 s.

When a hexagonal crystal grows retaining its macro-
scopically flat surface, the supersaturation is not uniform
over its surface —it is largest o, (1) at the corners, and
smallest o, (0}at the center of surface (Fig. 11).

First let us consider the reason why a hexagonal crystal
can grow retaining its flat surface in spite of the inhomo-
geneity in supersaturation for smaller o „(Refs.11 and
12} (see Fig. 11}. The steps generated at the corners
where o,(l) is largest spread toward the center of the
surface where cr, (0) is smallest. Since the step velocity
reduces approaching the center of the surface because of
the decrease in o., from the corners to the center of the
surface, the steps become closer together approaching the
center of the surface. As a result, the loca1 slope is small-
est at the corners and largest at the center of the surface
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or

P,„o,(0;0,") =P(o,")o,", (24)

where Vkm, „(0)"is the maximum growth rate corre-
sponding to P,„atthe center of the surface, Vk(1)" the
critical growth rate at the corners, 0,"=0,*'(1)the criti-
cal supersaturation at the corners, and o, (0;o,") the
critical supersaturation at the center of the surface which
depends on cr, (1)"[Eqs. (25) and (26)].

Here, in the case of the regular hexagonal crystal, the
supersaturation inhomogeneity ba =cr, (l)—cr, (0) is ex-
pressed as

60= Lq, .
2m

(25)

The normal gradient q, of the supersaturation at surface
is represented by Eq. (11'),

kT13(o,")
qs=

UeS'e
(26)

crystal

s=d
X

center corner

FIG. 16. Schematic representation of the step distribution for
compensation of inhomogeneity in supersaturation.

(Fig. 16). Since the local kinetic coefficient P increases
with local slope [Eq. (3)],P increases from the corners to-
ward the center of the surface. Thus the growth rate
V(0) at the center of the surface can reach V(1) at the
corners and the growth rate V can be constant over the
whole surface, if the inhomogeneity 5o. in supersatura-
tion is small. It should be noted that the surface of the
hexagonal crystal is macroscopically flat, since such small
5o can be compensated by a slight local slope of the or-
der of 10 at the center of the surface.

On the other hand, the slope at center of the surface in-
creases in keeping with o„,since the inhomogeneity So
increases with 0„.Consequently, the value of P at the
center reaches the value of the upper limit P,„with in-

creasing o „because of step-step interaction through sur-
face diffusion of admolecules. Once P at center of the
surface becomes equal to P,„atcritical supersaturation
0'„',the growth rate V(0) at the center of the surface
can never reach the growth rate V(1) at the corners at
0 „aboveo'„',even though the slope at the center of the
surface increases in keeping with o„.After all, the criti-
cal conditions for the limit of stable growth of the hexag-
onal crystal, i.e., transition from hexagonal to dendritic
pattern, is given by, '

Vk,„(0)"= Vk(1)",

By substituting Eqs. (25) and (26) in Eq. (24) and rear-
ranging the expression, we obtain

tanh
0, 0,** I+X ' (27)

where X is the dimensionless crystal size given as follows:

lX JUL

8m D
(28)

In Eq. (28), it should be noted that the ratio of diffusion
coefficient D to the mean speed of water molecules v is
the mean free path of a water molecule I. Thus X is the
dimensionless crystal size with reference to l.

On the other hand, the surface supersaturation 0,(1)
at the corners is determined as a function of the supersa-
turation 0„,dift'usion coefficient D, and crystal size. Let
us derive the relation between o.„,D, and L correspond-
ing to the critical conditions that o, (1) becomes equal to
the value cr,"determined by Eq. (27). The 0,(1) is given

s39,41

(29)

where F is a constant which depends on the ratio R /L.
Here, R is the distance from the crystal to the outer
boundary I &. By substituting Eqs. (26), (27), and (28) in

Eq. (29), we obtain the surface supersaturation under the
conditions for transition from the hexagonal to the den-
dritic pattern

1+FX /( 1+X)
(30)

The relation between cr„,D, and L corresponding to the
conditions for transition from the hexagonal to the den-
dritic pattern can be obtained by solving the simultane-
ous Eqs. (27) and (30).

C. Diagram of growth pattern

Figure 17 is a diagram showing relation between pat-
terns and conditions (cr„,X) The so.lid line in Fig. 17
represents the transition from the hexagonal to the den-
dritic pattern determined by Eqs. (27) and (30) for F =25
corresponding to R /r, =6.5. The dashed line represents
conditions for kinetic roughening given by Eqs. (23) with
cr,' = 13.8%.

The diagram clearly shows three regions of patterns,
i.e., a circular pattern due to kinetic roughening, a hexag-
onal pattern, and a dendritic pattern. Furthermore, the
diagram also shows that an increase in X during the
growth causes a transition from the circular pattern due
to kinetic roughening to hexagonal pattern to dendritic
pattern at constant cr „above 16%. The dash-dotted line
A in Fig. 17 corresponds to the conditions of D =40
cm /s, a&=0. 1, and r, =50 pm. The dash-dotted line B
in Fig. 17 corresponds to the conditions D=0.2 cm /s,
a&=0.01, and L =100 JMm. Under later conditions, the
value o., * for the transition from the hexagonal to the
dendritic pattern is nearly equal to 17%. It should be
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0,(1) o,
tanh

~, ( 1) 1+S(1—x') (31)

In Eq. (31), x =0 corresponds to Eq. (27)—the condi-
tions for transition from hexagonal to the dendritic pat-
tern. Since the left-hand side of Eq. (31) increases
through o, (1) in keeping with cr„,x has to approach 1,
i.e. the corners. The width (1—x) of the primary branch,
therefore, decreases with an increase in o„.

Figure 18 is a three-dimensional (T, o„,and X) dia-

gram which is composed of both a diagram showing the
relation between patterns and conditions (cr„,X) at
—15'C (Fig. 17) and a diagram showing the relation be-
tween patterns (Fig. 1) seen in snow crystals grown in the
growth chamber and conditions (T,cr„). It should be
noted that the (T,cr„}diagram is based on the experi-
ment without convection (U=0}. The same conditions
are set also in this study. Consequently, the transition
from plates to sector plates in the ( T, cr„)diagram occurs

noted that the produced patterns of snow crystals sensi-

tively depend on cr
„

for the constant X (Fig. 17}.
Let us interpret why the width of a primary branch de-

creases with an increase in o
„

in the region of dendritic
patterns (Figs. 12—15). The results of simulation mean
that the position x, where the growth rate can never
reach the growth rate V(1) at the corners, moves toward
the corner from the center of the surface with increasing
o„.The x, which is normalized by l. /2, is a temporary
measure of the width of a primary branch.

In a way similar to the derivation of conditions for
transition from hexagonal to dendritic pattern, x is deter-
mined by the conditions V(x)= V(1). Furthermore, we
assume that Eqs. (25) and (26) hold at the onset of the for-
mation of dendritic pattern, and obtain

I
I

I I

I

I

I
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1
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I

)
IQ~ .
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o
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L
OP
CL
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FIG. 18. Three-dimensional (T,o.„,and X) diagram, which
is composed of both Figs. 17 and 1.

near the critical value a'„'distinguishing the hexagonal
pattern and the dendritic pattern in the range of
10 2&X &5X10 (corresponding to the order of crys-
tal size 10 cm in the atmosphere} in the (cr„,X}dia-
gram.

It has been considered that the patterns of snow crys-
tals were determined only by the temperature T and the
supersaturation 0 „sofar. As shown in Fig. 18, howev-
er, the patterns of snow crystals also depend on the di-
mensionless crystal size 2 with reference to the mean free
path T( =D /v) of a water molecule [Eq. (28)].

10:

0
10:—

1:—II~(os+i ~

I

hexagonal t
W

jng

A

100 20 40 60
supersaturation e (X)

FICir. 17. Diagram showing the relation between the obtained
patterns and conditions (cr„,X).

V. CONCLUDING REMARKS

In the present study, a simulation of the pattern forma-
tion of growing snow crystals was carried out by taking
into account both the surface kinetic process and the
diff'usion process. A variety of patterns of snow crystals
was produced corresponding to the various growth con-
ditions such as supersaturation and the difFusion
coefBcient. Then, the features of the patterns were ana-
lyzed from the standpoint of not only the growth condi-
tions but also the crystal size, and the mechanisms of for-
mation of the pattern of growing snow crystals were dis-
cussed in terms of the di8'usion process and the surface
kinetic process.

The following three patterns of snow crystals are ob-
tained. (i) Circular pattern due to kinetic roughening:
Prism faces can hardly grow because of the vanishment
of anisotropy of growth rate, i.e., kinetic roughening, and
a circular pattern remains during growth. (ii) Hexagonal
pattern: An initial circular crystal develops into the per-
fect hexagon bounded by six prism faces, and then the
hexagonal crystal can grow retaining its Aat surface
macroscopically. (iii) Dendritic pattern: An initial circu-
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lar crystal develops into the perfect hexagon, and then
the hexagon develops into a dendritic pattern by way of
preferred growth of six corners. The width of a primary
branch decreases with an increase in supersaturation.

The critical conditions for kinetic roughening are given
by the supersaturation O. „andthe dimensionless crystal
size X. The conditions for the transition from the hexag-
onal to the dendritic pattern are also given by o „andX.
It is shown for the first time that the dimensionless crys-
tal size X. with reference to the mean free path l of a wa-
ter molecule plays an important role in the pattern for-
mation of growing snow crystals. Specifically, the pat-
tern of growing snow crystal depends not only on the
temperature and the supersaturation but also on the di-
mensionless crystal size.
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