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Lattice model for surfactants in solution
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A three-dimensional lattice model for surfactant mixtures is presented in this paper. We extend
the spin-1 or Blume-Emery-Griffiths model to include orientational degrees of freedom for each
molecule. The model is then applied to ternary mixtures of surfactant with equal amounts of water
and oil, and to binary mixtures of surfactant and water. For each case, phase diagrams are calculat-
ed using both mean-Geld and Bethe approximations. One interesting feature of this model is that it
can exhibit long-period lamellar phases even though a simple Hamiltonian, containing only
nearest-neighbor interactions, is used. The model also produces a "disorder line, "which is thought
to divide the disordered phase of the ternary mixture into a region of ordinary disordered fluid and
a region of microemulsion.

I. INTRODUCTION

Liquid mixtures of water, oil, and surfactant (amphi-
phile) exist in numerous phases, which are of both com-
mercial and biological interest. The underlying reason
for the rich behavior of these mixtures is due to the ten-
dency of the surfactant molecules to position themselves
along water-oil interfaces. Recently, a substantial effort
has gone into finding models which reproduce the phases
observed experimentally. ' ' A new model, which exhib-
its some of these phases, is introduced in this paper.

For a liquid mixture of water and oil there are three
possible isotropic phases. At high temperatures, the wa-
ter and oil molecules mix in a disordered phase, but at
lower temperatures, the water and oil separate into
water-rich and oil-rich phases, resulting in a water-oil in-
terface. Away from the critical point, the surface tension
of such an interface is quite large, about 50 dyn/cm. The
addition of surfactant molecules often decreases this sur-
face tension by several orders of magnitude, causing the
water and oil regions to mix down to microscopic scales.

A typical surfactant molecule consists of a polar head
group with a hydrocarbon tail attached to it. The polar
head group is more attracted to water than to oil, and
vice versa for the hydrocarbon tail, making it favorable
for a surfactant molecule to be located between water and
oil molecules. It is this mechanism which tends to mix
the water and oil molecules, competing against their nat-
ural tendency to separate. This results in numerous
phases such as the microemulsion, lamellar, hexagonal,
and cubic phases. A brief discussion of these different
phases can be found in the paper by Chen et al.

One approach to studying these mixtures is to use phe-
nomenological models. ' An advantage of such an ap-
proach is the ability to model features that are difficult to
treat in a molecular theory. A disadvantage is that the
free energy depends upon coefficients whose relation to
molecular properties is unspecified. Furthermore,
relevant types of microstructures, such as bilayer mem-
branes, are assumed to exist a priori rather than being de-

rived through a statistical treatment of molecular associa-
tion.

Recently, several molecular models of surfactant solu-
tions have been examined. Most of these models employ
a discrete translational phase space, ' where the
volume of the fiuid is divided into a lattice of cubical
molecular-sized cells. At each lattice site is placed one of
the three types of molecules. As one may notice, the lat-
tice forces the spacing between all molecules to be equal,
and consequently each molecule has the same effective
volume. In reality, the size of a water or oil molecule is
smaller than a surfactant molecule. This can be ignored
if all one desires is a model which reproduces qualitative-
ly the phases of the real system, since varying sizes of the
molecules is not responsible for the existence of the
different phases. Alternatively, a site occupied by water
could be assumed to contain a number of molecules such
that their volume equals the volume of one surfactant
molecule. The same would apply to sites occupied by
oil.

The restriction of the lattice site occupancy removes
the need to consider the hard-core part of the intermolec-
ular potentials, leaving only the attractive portion to con-
sider. For each pair of molecules, the intermolecular po-
tential depends both on their separation and relative
orientations. Most of the models have ignored the orien-
tational dependence of the water and oil molecules. The
orientations of the surfactant molecules cannot be ig-
nored, as there is an important distinction between the
head and tail of such a molecule. Schick and co-
workers and Chen et al. have constructed models
where the orientation of surfactant molecules is not
specified, and have instead used three-particle interac-
tions which favor having a water and oil molecule on op-
posite sides of a surfactant molecule to mimic the behav-
ior of the surfactant. The model considered by Widom
and co-workers " does account for surfactant orienta-
tions, although at present the identification of mi-
croemulsion phases in that model is problematic. ' A
summary and critique of the above theories have been
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given by Gompper and Schick. '-'

The model examined in this paper is similar to ones re-
cently considered in Refs. 5, 13, and 14. All of these
models explicitly allow for surfactant orientational de-
grees of freedom. The main differences between the mod-
els are due to the forms of the intermolecular potentials
used, those in the present paper being rather more gen-
eral than in previous works (as noted in Sec. II). As in

the work by Ciach, Hdye, and Stell, ' the present model
allows for only discrete orientations of the molecules, so
that the polar head group of a surfactant can only point
toward one of its six nearest neighbors. At the level of
approximations and for the types of phases considered,
we do not expect that the results would be qualitatively
modified on allowing for continuous orientations. '

We note that there have been some attempts to study
models that retain a continuous translational phase
space. This has been done by Ciach, Hs(ye, and Stell' for
a one-dimensional model, while retaining a discrete orien-
tational phase space. A model which is fully continuous
in both positions and orientations has been used by Telo
da Gama and Gubbins' to examine the interface between
water-rich and oil-rich phases. Another such model for
water-surfactant mixtures has been studied using
molecular-dynamics methods by Gunn and Dawson. '

An advantage of using a discrete model over a continu-
ous model is the increased number of methods that can
be used to calculate the free energy. With continuous
models in three dimensions, one is realistically forced to
use mean-fie1d theory, a single-particle cluster method.
With lattice models one can also use larger cluster
methods, renormalization-group methods, temperature
series expansions, as well as several other methods. In
this paper, both the mean-field and Bethe (or two-particle
cluster) methods are used. Our results for the
temperature-dependent phase diagrams are considerably
more extensive than those described in Refs. 5, 13, and
14.

There is a similar interest in binary mixtures of water
and surfactant. " In these mixtures, the surfactant mol-
ecules try to arrange themselves as to only expose their
polar head groups to the water molecules. Just as for the
ternary mixtures, these mixtures exhibit a variety of
phases such as the lamellar, hexagonal, cubic, and micel-
lar phases. The model chosen in this paper treats the in-
teractions in a suSciently realistic way that it can be ap-
plied to these binary mixtures.

II. MODEL

To model this three-component system, an extension of
the spin-1 or Blume-Emery-Griffiths (BEG) model' on a
cubic lattice is used. The vector r;, measured in units of
the lattice spacing, is used to specify the direction from
lattice site i to lattice site j. As in the spin-1 or BEG
model, at each lattice site i there is a statistical variable
0.; which can take on the values +1, 0, or —1, which in
this case represent water, surfactant, or oil, respectively.
The extension to the spin-1 model is a second statistical
variable s; at each site specifying the orientation of the
molecule. In general, one could allow the orientations to
vary continuously, although in this paper we shall restrict

where

p =1—g 2 (la)

(lb)

P2 „=o,(p, s, ri;)+o, (p, s, r,, ),
P3.V ~ '

~i ~j~i i'
P~, = —(p;s; Xr; ) (p s Xrj, ) .

(1c)

(ld)

(le)

The symbol (ij ) denotes that the summation is over all
distinct pairs of NN sites i and j. The constants J and
E for a = 1 —4 determine the bonding energies, and p, is
the surfactant chemical potential to within an additive
constant.

Notice that all the terms in the Hamiltonian, the P;.'s
and the p s, are invariant under any even number of the
following transformations. T&

.. o; —cr;, which inter-
changes all water and oil molecules; T2. s; —s;, which
Aips a11 surfactant molecules; and T3. r; —r,j, which
inverts the lattice. In Table I, these transformations are
applied to a single representative bond between two NN
lattice sites, demonstrating that the energy of a bond
remains unchanged after an even number of transforma-
tions. It specifically shows that the bonds ~O and:
have the same energy, and similarly, the bonds ~O and
~O have equal energies. (An open circle represents a
water molecule, a solid circle represents an oil molecule,
and an arrow represents a surfactant molecule and its
orientation s;.)

Due to these symmetries, only 11 of all the possible
bonds between NN sites are distinct. That is, any bond

TABLE I. Symmetry transformations applied to a single
bond.

Transformation

Initial bond
Tl
T2

T3
Tl
T2

Bond Energy

—J —E2 2

Jz —KZ
—J —E2 2

Jz —Kz
—J —K2 2

Jz —Kz

s; to point only toward one of the six nearest neighbors
(NN) of site i .For a surfactant molecule, s; represents
the direction of the polar head group.

For simplicity, the Hamiltonian is chosen so that the
energy of the system is independent of the orientation of
the water and oil molecules. Hence for the water and oil,
the orientational degrees of freedom due to s, contribute
just to the entropy and not to the energy. For additional
simplicity, the Hamiltonian is chosen to contain only NN
pair interactions, and to treat symmetrically the water
and oil molecules and the two ends of the surfactant mol-
ecules. With these symmetries, the most general Hamil-
tonian is

4
H= —g g (J P;i+K P~;J ) —ju, gp;,
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can be obtained by some even number of transformations
on one of the 11 distinct bonds. These 11 bonds are
shown in Table II. Under the condition of water-oil sym-
metry, the Hamiltonian is completely general, even
though the energy for three of the distinct bonds is
chosen to be zero. It is possible to do this because of the
chemical-potential term in the Hamiltonian, and the con-
straints that all lattice sites must be occupied and that all
surfactant molecules must point to one of their nearest
neighbors.

To give this model the proper behavior for the ternary
mixture, the J 's are chosen to be positive. The I( 's are
less crucial to the phase diagram, and for this paper have
been chosen to be zero. A positive J, favors oil-water
separation, and a positive J2 gives the surfactant tails
their hydrophobic behavior and the heads their hydro-
philic behavior. When J3 is positive, the surfactant mole-
cules tend to line up tail to tail or head to head, as op-
posed to tail to head. Finally, a positive J4 favors the
alignment of surfactant molecules parallel rather than an-
tiparallel when side by side. The results that are present-
ed later have been obtained using the following ratio of
the bonding energies:

J) =J2= 3J3 5J4:J)0, (2a)

III. MEAN-FIELD
AND BETHE APPROXIMATIONS

x;=(O„s,),
V;(x;)= —p,p, ,

(4a)

(4b)

4—g(J P;+E P;),
V; (x;,x, )= .

if i and j are NN

0, otherwise .

In this section, a method is described for calculating, in
either the mean-field or Bethe approximation, the free en-

ergy associated with the more general Hamiltonian

H=g V; (x;,x )+g V;(x;) .
(ij) i

The symbol (ij) on the first summation denotes that the
sum is carried out over all distinct pairs of lattice sites.
The x s are the state variables, the V,.(x; )'s are the one-
particle potentials, and the V; (x;,x. )'s are the two-
particle potentials. For the specific Hamiltonian used in
this paper,

K) —I( 2
—E3 —K4 —0 . (2b)

(4c)
As noted previously, the lattice models in Refs. 5, 13,

and 14 are similar to the present model in that they ex-
plicitly include orientational degrees of freedom for the
molecules. The model in Ref. 13 is applied to water-oil-
surfactant mixtures and those in Refs. 5 and 14 are ap-
plied to water-surfactant mixtures, while the present
model is applied to both. The Halley-Kolan model and
the Dawson-Kurtovic model' allow for continuous rath-
er than discrete orientations. All three models are less
general in their treatment of surfactant-surfactant in-
teractions than the present model. Dawson and Kurto-
vic' include an interaction disfavoring orthogonal align-
ment between NN surfactant molecules, but independent
of the lattice vectors r; and (in the particular case stud-
ied) not distinguishing between surfactant head and tail.
The model of Ref. 5 does not include any orientation-
dependent surfactant-surfactant interactions, while Ciach
and co-workers' consider only a very simplified, two-
state representation of these interactions. Apart from
asymptotic results at low temperatures and near critical
points, global phase diagrams for the models in Refs. 13
and 14 have not been calculated, while these are investi-
gated for the present model in the following sections.

The mean-field and Bethe approximations require one
to solve for one-particle and two-particle distribution
functions, respectively. The single-particle distribution
function p, (x, ) gives the probability that site i is in the
state x;. These probability distribution functions must
satisfy the normalization condition

gp;(x;)=I .
x

Similarly, the two-site probability distribution function
p;J(x;,xj ) gives the probability that site i is in state x; and
site j is in state. x . These probability distribution func-
tions must satisfy

gp; (x, ,x, )=p;(x;) .

With this method, one isolates a cluster of sites using
effective fields to replace the interactions of the cluster
with the remaining system. U,"(x, ) is defined to be the
effective field acting on site i due to a different site j,
when site i is in the state xi. To begin, the energy of a
single-particle cluster at site i is

TABLE II. The distinct bonds. 0 denotes an arrow directed
out of the page.

E(x, =)V( x) +g U;, (x;)
JWl

Bond

oo
oo

Energy

—J —K1 1

Jl —Kl
—J —K2 2

J —K
—J —K3 3

J3 —K3

Bond

'rf

0 f'

OT

Energy

—J —K4 4

J4 —K4
0
0
0

and

p; (x; ) =c;exp[ PE, (x, )], — (8)

where P:(ksT) ' is the in—verse temperature and the
constant c; is determined by Eq. (5). In the mean-field
approximation, one stops here with the effective fields
given by
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U,,(x, )=gp (x, )V,, (x, ,x, ) .

The energy of a two-particle cluster is

(9) mean-field approximation p;.(x;,xj)=p;(x;)p (x. ), while
in the Bethe approximation it is given by Eqs. (10}and
(11). Once the probability distribution functions are
known, the free energy can be obtained from

and

E;,(x;,xj ) = V, (x; )+ V (x.)+ V; (x;,xj )

+ g [Uk(x;)+Uk(x )]
kWi,j

p,j(x, ,x~ ) =c;cjexp[ I3EJ(x—;,xj )] .

F=E—TS,
w~ere

E =g gp;(x;) V;(x;)
X ~

+g g p;J(x;,xj)VJ(x;,xj),

(13)

(13a)
Choosing c;c as the constant in Eq. (11), although con-
venient, was arbitrary. In the Bethe approximation, the
U, (x, )'s are determined by requiring Eq. (6) to be
satisfied. Substituting Eqs. (7), (8), (10), and (11) into (6)
gives

exp[ —PU,, (x; ) ]

=c g exp —P V (x )+ V~(x;,x~)

(ij) x,. ,x

S=—ks ggp, (x, )ln[p, (x, )]

—ks g g f p,"(x,,x )in[p; (x, ,x, )]

—p,.(x, )p, (x )ln[p;(x; )p (x, )]J .

(13b)

+ g Uqk(xj)
kWi,j

(12)

Note that if V,"(x,,x, )=0 for all x, , then U,"(x, )=0.
Therefore, for a Hamiltonian with only NN interactions,
U;&(x; } is zero if i and j are not NN sites.

For either of the two approximations, one can now
create a system of equations where the only unknowns
are the effective fields. For the mean-field approximation,
using Eqs. (5), (7), and (8), one expresses p (x ) in terms
of the efFective fields and substitutes the result into (9).
Similarly for the Bethe approximation, using Eqs. (5), (7),
and (8), one expresses c in terms of the effective fields
and substitutes that result into (12), to obtain the system
of equations.

One can now solve the system of equations for either
approximation to find the effective fields. Usually for a
given location on the phase diagram, there are multiple
solutions, each corresponding to a different phase. When
a number of solutions exist simultaneously, the physically
accepted solution will be that which minimizes the free
energy. In some cases, there can even be an infinite num-
ber of solutions, and consequently a certain degree of
judgment is required to retain only the reasonable phases
to be solved for. We believe that for our model, we have
considered all the reasonable phases, and therefore be-
lieve that our phase diagrams are complete.

For all the phases that we had to consider, there were
only a finite number of distinct efFective fields (the nuin-

ber varied from 3 to about 50). Thus these systems of
equations were of reasonable size and could be solved by
the Newton-Raphson iteration method. For a trial solu-
tion from which to start the iterations, it is generally
su%cient to use the T=O solution for an ordered phase
or the T= ac solution for a disordered phase, both being
solutions that can be obtained analytically.

Having solved for the effective fields, one needs to
evaluate the free energy corresponding to each solution
to determine which are physically acceptable. First, one
calculates c; and p;(x,. ) using Eqs. (5), (7), and (8). In the

Equation (13a) is the definition of average energy, and
thus is exact. The entropy given by Eq. (13b) is an ap-
proximation, which comes from a series expansion in n-
site probability distribution functions truncated at
n =2.' Fortunately, due to the choice of c,c as the con-
stant in Eq. (11), the free energy according to Eq. (13) is
also given by simpler expressions, (14a) for the mean-field

approximation and (14b) for the Bethe approximation:

FMr =k&TQ ln(c, )
—g g p, (x,. )p. (x. )V,"(x,,x.),

Fs =ks T g ln(c; ) .

(14a}

(14b)

IV. PHASE DIAGRAM
FOR THK TERNARY MIXTURE

With the choice of bonding energies made previously,
we find six phases, five of which are ordered phases. Two
of the ordered phases are uniform and the other three are
nonuniform layered phases. These ordered phases gen-
erally exist at low temperatures. At high temperatures,
there is a disordered phase (D), for which the entropy is
large and the occupation of lattice sites is more or less
random.

The water-rich phase ( W) and oil-rich phase (0) are
the two uniform ordered phases. Because of the symme-
try between water and oil in the Hamiltonian, the 8'and

An equivalent method for the mean-field approxima-
tion is to substitute p,"(x,,x, ) =p, (x, )p (x ) into (13), and
to minimize the free energy with respect to the p;(x; }'s,
under the constraint of Eq. (5). Similarly, there is a varia-
tional method equivalent to the Bethe approximation. In
this case, one minimizes Eq. (13) with respect to the
p;J(x;,x }'s, under the constraints of Eqs. (5) and (6). Ng
and Barry describe this method in detail for the BEG
model.
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F~+o ——3(J& +K
&

) —k& T ln(6) . (15)

0 phases both have the same free energy, and conse-
quently are always in coexistence. The free energy per
lattice site to first order in temperature is

0000000000000000
0 0 0 0 0 0 0 000000000
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~
0 ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~
~ ~ 0 ~ ~ ~ ~ ~
0 ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~

M+ ~ ~~+-~
+-H +-W +- W +- H
+ ~+ ~+-~+-~
+-H +-H 4- H +- H
+ W+ W+-W+-W
+-H +-H +-W +-W
+-H +-W +-H +-H
+-H +-H 4-W +-H

F,„=E„„,i(n+ I )+F~+o, (16)

The entropy k~ln(6) is due to the orientational degenera-
cy of the water and oil molecules.

This model also exhibits a number of lamellar phases
(L„),where there are surfactant monolayers separated al-
ternately by n layers of water and n layers of oil. At low
temperatures, the free energy per site for these phases is
approximately

0+- ~ MO+- ~ -+0+- ~ ~0
0+ ~ HO+ ~ ~0~ ~ ~0
0+" ~ +0 0- ~ +0+- ~ +0
0+ ~ MOW ~ MO+ ~ ~O
Q + ~ W 0 + ~ W Q + ~ ~ Q
Q+ ~ WQ+ ~ W0+ ~ ~0
0+ ~ +0+ ~ +0+ ~ +0

~ +0+ ~ +0+ ~

0

0 +- ~

0 +- ~

0 +- ~

Q + ~

0 +- ~

0 +- ~

Q + ~

0 +- ~

~ ~ 0
~ ~ 0
~ + Q
~ ~ 0
~ ~ 0
~ ~ 0
~ ~ 0
~ + 0

0 +- ~

0 +- ~

0 +- ~

0 +- ~

+ ~

0 ~ ~

0 +- ~

0 +- ~

~ ~ 0 0
~ ~ 0 0
~ ~ 0 0
~ + 0 0
~ ~ 0 0
~ ~ 0 0
~ ~ 0 0
~ ~0 0

where the domain-wall free energy is given by

E„,s =4(J]+K] )
—2(J2+K2 )

—2( J4+K4 )

+k~ T ln(6) —p, (16')

Ll L2

FIG. 1. Schematic diagrams of the five ordered phases of the
ternary mixture at T=O.

At nonzero temperatures, our numerical results indicate
that there is always a finite number of lamellar phases,
where the number depends on the choice of bonding en-
ergies. For the choice made previously [Eq. (2)], there
are just the two lamellar phases L& and L2. ' It seems
possible that for this model, lamellar phases which do not
have the simple periodic layering described above could
also exist, although such phases never seem to be energet-
ically favorable except at T=O.

The last ordered phase is the surfactant-rich phase (S).
This phase consists of layers of surfactant, arranged so
that the polar heads of one layer are adjacent to the polar
heads of a neighboring layer, and similarly for the hydro-
carbon tails. Most models to date have not exhibited an
equivalent phase, as a consequence of not including orien-
tational interactions between the surfactant molecules.
(The Dawson and Kurtovic' model, used for water-
surfactant mixtures, is one exception. ) The free energy
per site for this phase at low temperatures is approxi-
mately

tinguishable on the scale of the diagram. ) The tricritical
point where the first-order line between 8'+0 and D
turns into a second-order line is also marked by a dot (4).
Also of interest are the limiting temperatures for the
second-order line as p, ~—00 (5), and for the first-order
line between S and D as p,,~+ ao (6). These six points
are given in Table III.

At low temperatures, the line which separates 8'+0
and L, and on which all the lamellar phases L„(n & 1)
exist is approximately given by E„,&&

=0

p, =k& T ln(6)+4(J~+K& ) —2(J2+K2) —2(J4+K4) .

(18)

The first-order line between L
&

and S is found by solving
Fz =Fs. Using Eqs. (16) and (17), it follows that at low

temperatures, this line is given by

Fs-——(J3+K3)—2(J~+K4) —p, . (17)

Figure 1 is a schematic diagram of each of the five or-
dered phases at zero temperature.

Following are the phase diagrams calculated by both
the mean-field approximation (Figs. 2 and 3) and Bethe
approximation (Figs. 4 and 5). In each case, the phase di-
agram is plotted in both the temperature and surfactant-
chemical-potential plane, and the temperature and
mean-surfactant-density plane, where the llutter is denot-
ed p, . The solid lines represent first-order transitions,
and the dashed lines represent second-order transitions.
The dotted lines represent the "disorder line, "which will
be discussed later.

In the chemical-potential plots, the L2 phase is an ex-
tremely narrow strip between the 8'+0 and L, phases,
from T=O to the first dot marking the multiphase point
where 8' 0, L, , and L2 coexist (1). Also marked by dots
are the multiphase points where W, 0, L, , and D coexist
(2), and where L&, D, and S coexist (3). [In Fig. 2 for the
mean-field approximation, the points (1) and (2) are indis-

3

W+0

0

FIG. 2. Phase diagram of the ternary mixture calculated by
the mean-field approximation and plotted in the temperature
and surfactant-chemical-potential plane. The solid lines denote
first-order transitions, and the dashed line denotes a second-
order transition.
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W+0 W+0

2 ~ ~ w+ 2-
+0

I

0+L)

W+0+L, L2+L, S+L, W+0+L, L2+L) S+L,

0
0.0 0.2 OA O.S 0.8 1.0

0 I

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Phase diagram of the ternary mixture calculated by
the mean-field approximation and plotted in the temperature
and surfactant-density plane. The solid lines denote first-order
transitions, and the dashed line denotes a second-order transi-
tion. The disorder line is shown with a dotted line.

FIG. 5. Same diagram as in Fig. 3, but obtained by the Bethe
approximation.

V. DISORDER LINK

JM, =ks T I (n6)+2(J +iE, )+2(J2+lt.'z)

—2(J 3+K )~ 2(J~+E—~) . (19)

From Eqs. (18) and (19), the approximate width of the L,
phase EL along the p, axis is

1

EL = —2(J, +E, )+4(J2+E2)—2(J3+E3) .

2 ~

W+0

~ ~
~ ~

In order that the lainellar phases exist in the phase dia-
gram, one must choose the above width to be positive.
Figures 2 and 4 show that the low-temperature asymptot-
ic result (20) is indeed closely obeyed over most of the re-
gion in which the lamellar phase L, exists.

The mean-field results compare reasonably well to
those obtained by the presumably more accurate Bethe
approximation. The locations of features in the phase di-
agram are noticeably different for the two methods, but
nevertheless they both predict the same features in rela-
tively the same locations. Thus if all one wanted were
topologically correct phase diagrams, then the mean-field
approximation should be sufficient.

An isotropic phase of the water-oil-surfactant mixtures
which has received must interest is the microemulsion
phase. ' ' ' At small oil concentrations, this phase is
believed to consist of small droplets of oil separated from
the surrounding water by surfactant layers. When the
water concentration is small, there are small droplets of
water surrounded by surfactant in oil. When the water
and oil concentrations are comparable as in the present
model, the water and oil regions are rather complex
bicontinuous structures where surfactant collects along
the vast water-oil interface. In lattice models, it is the
general consensus that the microemulsion corresponds to
the disordered phase or at least a portion of this
phase. ' ' '

An experimental signature of a microemulsion is the
existence of a maximum in the water-water structure fac-
tor at a small nonzero value of the wave number

q,„.' ' ' Gompper and Schick ' have proposed that
a convenient theoretical boundary between microemul-
sion and "ordinary" disordered Quid is the line at which

q,„(p„T)~0. This does not represent a real phase
boundary, as one expects the free energy to be
analytic on crossing this line. Here we locate this bound-
ary by calculating the structure factor generated by the
present model, that is, we evaluate the Fourier transform
of the water-water correlation function. Generally, the
correlation functions are defined in terms of the one-site

TABLE III. Coordinates of six points along phase boun-
daries in the phase diagram for the ternary mixture.

Mean-field approximation
Point p, /J k& T/J

Bethe

p, /J
approximation

kq T/J

0

FIG. 4. Same diagram as in Fig. 2, but obtained by the Bethe
approximation.

2.7903
2.8048
3.1376
2.7726

1.7704
1.7748
1.7250

2.0
6.0

2.1667

2.1439
2.2128
2.5873
2.1908

1.4411
1.4664
1.4190
1.6635
4.9326
1.8073
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and two-site probability distribution functions

P, .(x,x'}—=p,,(x,x')( I —5;, ) —p;(x)p (x')+p;(x)5;/5„„,
Expanding the structure factor for small q

—= ~q~ as

S (q)=S +Bq +0(q ) (25)

(21)

where x =
I o, sI denotes the state of a lattice site. (The

water-water correlation function corresponds to the case
o =0 ' = 1.} Note that if the two-site probabilities
p;.(x,x') described in Sec. III are used in (21), the result-
ing correlation function p,j(x,x') is strictly of finite range
in both mean-field and Bethe approximations, and thus
does not exhibit the characteristic long-range structure of
interest. Therefore, we calculate p; (x,x') by an alternate
method, equivalent to an Ornstein-Zernike approxima-
tion, as was done in Refs. 8 and 10.

The most straightforward way of obtaining p;J(x, x') is
based on the exact functional relation

5p;(x)
p;, (x,x') = —k//T

X
(22)

that is, considering the response of p;(x) to small varia-
tions in the one-particle potentials V (x'). Applying (22)
to the self-consistent relations for the one-site probabili-
ties described in Sec. III yields an equation for p; (x,x')
of Ornstein-Zernike form,

p;, (x,x') =p ';, '(x,x')

+y y p ';/, '(x, y }c//(y, z)p//(z, x'),
ky lz

where

p ';/'(x, x') =p;(x )[5„„—p/(x')]5, /

(23)

(23')

is the ideal-lattice-gas correlation function. In the mean-
field case, the "direct correlation function" c; (x,x') is

given by the expected form

c; (x,x')= —PV, (x,x')(1 —5; ) . (24)

The direct correlation function generated by the Bethe
approximation, not shown here, is more complicated, due
to the more elaborate self-consistency involved in that ap-
proximation, although as in (24) it is still found to vanish
for lattice separations greater than the NN distance.

A Fourier transformation conveniently simplifies Eq.
(23) for the translational-invariant disordered phase,
where the one-site probability is independent of both the
site position and the orientational variable s. Denoting
the Fourier transform of P, (x,x') by P (x,x'), where q is
the wave vector, the resulting matrix equation for
pq (x,x ') in the finite x-variable space is straightforwardly
solved. In particular, we obtain the water-water struc-
ture factor S „(q)~P (x,x') for /r =o'=1. The dotted
lines in the phase diagrams of Figs. 2 —5 represent the
loci where the q,„displayed by this structure factor van-
ishes continuously. In each diagram, the microemulsion
characterized by nonzero q,„exists to the right (at
higher p, or p, ) of the dotted line. We shall call the latter
the "disorder line, " although this term really refers to a
somewhat less restrictive and less experimentally useful
criterion for the existence of a microemulsion. '

the disorder line corresponds to the locus where B=0.
We note that the water-water structure factor when ex-
panded to order q is independent of q's orientation, even
though the model uses a lattice which is not invariant un-
der arbitrary rotations. In the mean-field approximation,
the disorder line is found to be given by (for parameters
E =0)

J3 J4
J 3 J J J P'' (26)

For the parameter values used here [Eq. (2}], this be-
comes

k, T
2ps . (26'}

A simple analytical expression for the disorder line in the
Bethe approximation has not been obtained, although its
behavior is found by numerical methods to be similar to
that of (26). As seen in Figs. 2 —5, in both approxima-
tions the disorder line lies just above the first-order lines
separating the disordered phase from the lamellar and
surfactant-rich phases. By our criterion, the microemul-
sion exists only in the narrow strip between these first-
order lines and the disorder line. In particular, the mi-
croemulsion does not exist up to arbitrarily high temper-
atures. This behavior contrasts with that found in Ref. 8,
which implies that the structured disordered fiuid (with

q,„AO) is maintained at all temperatures. The latter
feature reflects the fact that the arnphiphilic interactions
in Ref. 8 are associated with a temperature-independent
three-particle potential. In practice, such an effective in-
teraction should be temperature-dependent due to entro-
pic effects associated with the underlying orientational
degrees of freedom.

The proximity of the disorder line to the phase bound-
ary between disordered and layered phases is not acciden-
tal. By a Landau expansion of the free energy, ' it can
be shown that the locus q,„~O coincides with a neces-
sary, though generally insufficient, condition for stability
of an ordered phase characterized by a nonzero wave vec-
tor. This connection between microemulsions and the or-
dered lyotropic phases provides quantitative support for
arguments discussed in Ref. 12.

In Figs. 2 —5, the disorder line intersects the first-order
boundary between disordered and lamellar (L, ) phases.
Thus, with the present choice of microscopic parameters,
there is no region where the microemulsion coexists with
the uniform water-rich and oil-rich phases, contrary to
the usual experimental situation. However, (26a) indi-
cates that a slight change in model parameters will shift
the disorder line to higher temperatures and may possibly
result in water-oil-rnicroemulsion coexistence. We note
also that the region of the disordered phase to the right of
the disorder line does not extend below about 68 vol%
surfactant concentration, whereas in real microemulsions
the surfactant concentration can be as low as a few per-
cent (by volume). A similar unphysical result was found
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in Ref. 4, where it was pointed out that some mitigation
could be achieved by a rescaling of the concentrations to
reflect difFerent sizes of the surfactant and water mole-
cules (see Sec. 1}.

3

P

VI. PHASE DIAGRAM
FOR THE BINARY MIXTURE

FD-——3(J, +Ki) kzzT ln(—6) . (27)

Again, for the present choice of bonding energies, we find

that there are only two lamellar phases L, and Lz. For
this binary, mixture the phase L„consists of surfactant bi-
layers separated by n layers of water. At low tempera-
tures, the free energy per site is approximately

L„EW lla~( + }+Fw+ 0

where

(28)

E„,a =7(J)+K( ) —2(Jz+Kz) —(J3+K3)
—4(J&+K4}+2k&T ln(6) —2jtz, . (28')

Schematic diagrams of the two new lamellar phases at
T=O are shown in Fig. 6.

As for the ternary mixture, the binary mixture has a
nonuniform surfactant-rich phase (S), due to orientation-
al interactions between the surfactant molecules. Again
at low temperatures, the free energy per site is approxi-
mately

Repeating the calculations done for the ternary mix-
ture, but restricting e; to only take on the values 0 or 1,
gives results for a binary mixture of water and surfactant.
The results for this mixture are similar to those for the
ternary mixture, but this binary mixture exhibits only
four phases.

What was previously the water-rich phase and the
disordered phase has now become one phase denoted by
D. This phase changes continuously from a phase of high
water concentration at low temperatures to a phase simi-
lar to the previous disordered phase at high tempera
tures. The free energy per site to first order in tempera-
ture is

0

FIG. 7. Phase diagram of the binary mixture calculated by
the mean-field approximation and plotted in the temperature
and surfactant-chemical-potential plane. All lines denote first-

order transitions.

jtz, = kzz T ln(6) +—
z7 (J, +K, ) —(Jz +Kz )

—
—,'(Jz+Kz) —2(J~+K4) . (30)

The line separating L
&

and S is found by solving

FL =Fs, which at low temperatures is approximately
l

p,, =k&Tin(6)+2(J&+K& )+2(Jz+Kz)
—2(J z+K)z2(J~+K4) . — (31)

phase point where D, L„and Lz coexist (1). Also
marked by a dot is the multiphase point where D, L „and
S coexist (2). One other point of interest is the limiting
temperature for the first-order line between S and D as

p, —++oo(3}. The locations of these three points are
given in Table IV.

The narrow L2 region in the chemical-potential phase
diagram, which separates D and L

&
at low temperatures,

is approximately given by the line E„,~&
=0,

Fs-——(Jq+K3) —2(J4+K4) —
jtz, . (29)

For the two approximations to the chemical-potential
phase diagram (Figs. 7 and 9) for the binary mixtures, the
L2 phase is an extremely narrow region between the D
and L& phases, from T=O to the first dot at the multi-

2- 0+L
I

L2

0 ~~ 0 + W 0 +--+ 0 +-W 0
0 +--+ 0 +--+ 0 +--+ 0 +--+ 0

+--+ 0 +--+ 0 +--+ 0 +-H 0
0 +--+ 0 +--+ 0 +--+ 0 +-H 0
0 +--+ 0 +--+ 0 +--+ 0 0--+ 0
0 +-~ 0 +-~ 0 +-~ 0 +--+ 0
0 +--+ 0 +-~ 0 +-~ 0 +--+ 0
0+-~ 0+--+ 0+-~ 0+-~ 0

0+-~ 0
0 ~~ 0
0+-~0
0~~0
Q+~0
0+-~ 0
0+--+ 0

0+-~ 0
0+-~0
0+-~ 0
0+-~ 0
0+ ~0
0+-~ 0
0+-~ 0
Q 4-~ Q

0+~00
0+"~ 0 0
0+-~0 0
0+-~ 0 0
0+-~O 0
0+-~ 0 00+~00
0+"~ 0 0

0+L,

0 I I

Q.Q 0.2 0.4

L2+L,

Q.e

S+L,

0.8 1.0

L2

FIG. 6. Schematic diagrams of the two lamellar phases of the
binary mixture at T=O.

FIG. 8. Phase diagram of the binary mixture calculated by
the mean-field approximation and plotted in the temperature
and surfactant-density plane. All lines denote first-order transi-
tions.
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3 S TABLE IV. Coordinates of three points along the phase
boundaries in the phase diagram for the binary mixture.

Mean-field approximation
Point p, /J kz T/J

Bethe approximation

p, /J k T/J

2.5033
3.4164
+ ao

1.5612
1.7986

1.7997
2.8191

2.1667 + oo

1.2019
1.5109
1.8073

0 model and the Dawson-Kurtovic model lead us to expect
that the latter will exhibit similar behavior to that found
here.

FIG. 9. Same diagram as in Fig. 7, but obtained by the Bethe
approximation.

The width, along the p, axis in the phase diagram, of the
L

&
phase for the water and surfactant mixture is found by

subtracting Eqs. (30) and (31),

br = —
—,'(J, +E, ) —3(J~+K~)——', (J3+K3) . (32)

3

2-
D+L,

I

0+L~ S+L„

0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 10. Same diagram as in Fig. 8, but obtained by the
Bethe approximation.

This width of L
&

for the binary mixture is three-quarters
the width of the similar lamellar phase for the ternary
mixture of water, oil, and surfactant. More importantly,
this width is positive if and only if the similar width of
the ternary mixture is positive. This means that the con-
dition required for the existence of a lamellar phase is the
same for both mixtures.

In passing, let us note that the extreme narrowness of
the Lz region in the chemical-potential phase diagram,
and the absence of the lamellar phases L„ for n &2 at
nonzero temperatures disagrees with speculations made
by Dawson and Kurtovic. ' However, the coexistence of
water-rich and surfactant-rich uniform phases speculated
by Dawson and Kurtovic, replacing our single D phase,
can be exhibited by our model with the proper choice of
bonding energies. The similarities between the present

VII. DISCUSSION

The existence of lamellar phases in the water-oil-
surfactant mixture agrees with experiment. An interest-
ing feature of the present model is the existence of long-
period lamellar phases. Although one may not consider
the L z phase to have a "long" period, it is possible to ob-
tain phases with longer periods by simply adjusting the
J 's and E 's. ' Long-period layered phases have been
obtained with the model of Widom and co-workers '
and with the spin-1 model of a microemulsion of Schick
and Shih. The notable feature of the present model is
that these phases are obtained with only NN interactions.
This suggests that short-range forces may be one of the
mechanisms that produce long-period lamellar phases.
Other mechanisms known to do this are long-range elec-
trostatic forces in the case of charged surfactant layers,
and fluctuations in the case of flexible surfactant lay-
ers 1, 17

In the phase diagrams plotted in terms of surfactant
density, one can observe coexistence regions for the two
lamellar phases L, +Lz. The occurrence of such a region
is a consequence of the lattice model. The analogous re-
gion for a similar continuous model would presumably be
a single phase where the surfactant layer separation
changed continuously, decreasing as the surfactant con-
centration increased.

In real water-oil-surfactant mixtures, one also finds
hexagonal and cubic phases. These phases are similar to
the lamellar phase in that they exhibit a well-defined
geometry of water and oil regions separated by surfac-
tant, the notable difference being that they have an in-
creasingly elaborate geometry. There have been attempts
to include these phases in lattice theories. ' A problem
with doing this is that the lattice does not realistically al-
low for the continuous bends characterizing the water-oil
interfaces and surfactant layers of the hexagonal and cu-
bic phases. It is likely that a proper description of these
phases will require, at least, generalizing the present
model to allow for continuous surfactant orientations and
generalizing the Hamiltonian. Nevertheless, since the
hexagonal and cubic phases are similar in nature to the
lamellar phases except for their geometry, it is desirable
to retain a model which is simplified due to their absence.

In this paper, we chose the parameters K in the Ham-
iltonian [Eq. (I)] to be zero because we considered them
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to be less crucial than the J 's. We suspect that if we
used nonzero K 's, with magnitudes of order J, then the
topology of the phase diagrams would not be significantly
altered. However, the K 's do seem to have an impor-
tant quantitative effect on the phase diagrams. For in-
stance, when we considered reasonable bonding energies
for all the 11 distinct bonds (Table II) and found the cor-
responding J 's and K 's, the tricritical point moved to
(ksTlJ, p, )=(2.89,0.36) from the present (1.66,0.60) as
calculated by the Bethe approximation. This shift of the
tricritical point to lower surfactant concentration sug-
gests that the region of the disordered phase to the right
of the disorder line (Figs. 2 —5), which we have associated
with a microemulsion, could be moved to significantly
lower surfactant concentrations, as it should. We hope to
consider this further, along with a more in-depth look at
the microemulsion region and its surface tensions with
the other phases.

Comments made above for the ternary mixtures in gen-
eral apply to the binary mixtures of water and surfactant.
These mixtures exhibit lamellar, hexagonal, and cubic
phases similar to those of the ternary mixture. The mi-
cellar phase is the analog of the microemulsion. Here, in-
stead of having regions of water an oil in various
geometries separated by surfactant monolayers, there are
regions of water separated by surfactant bilayers. The bi-
layers are arranged as to only expose the polar heads of
the surfactant molecules. The binary mixture also exhib-
its an analog to the disorder line. In fact, the equation
of this line is identical to that for the ternary mixture
[Eq. (26)] when using the mean-field approximation. We
speculate that this line may be related to the experimen-

tally observed critical micelle concentration (CMC) line. 27

We also note, however, that the present model does not
produce a lower critical point, which is found experimen-
tally for mixtures of water and nonionic surfactants.

The results for the water-surfactant mixtures were ob-
tained by restricting the 0. s to 0 and 1. Similar results
could also be obtained for oil-surfactant mixtures by re-
stricting the o. s to 0 and —1. The phase diagrams for
these oil-surfactant mixtures would be the same as those
for the water-surfactant mixtures, due to the symmetry of
the Hamiltonian. The structure of the phases themselves
would differ by symmetry. For instance, the lamellar
phases would consist of surfactant bilayers, arranged so
as to only expose the tails of the surfactant molecules,
separated by oil layers. To obtain results for unequal and
nonzero concentrations of water and oil, one could in-
clude in the Hamiltonian [Eq. (1)] chemical-potential
terms for the water and oil molecules.

In summary, the present lattice model exhibits global
phase behavior characteristic of both ternary and binary
surfactant mixtures. These features depend crucially on
the orientational degrees of freedom allowed for the sur-
factant molecules, which in the most successful of the
previous models ' are mimicked by effective many-body
interactions. Further studies are in progress to explore
several specific applications of this model.
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