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A new modified hypernetted-chain integral equation for highly supercooled soft-sphere fluids
(MHNCS) is introduced. In the MHNCS approximation, the bridge function is approximated by an
appropriate interpolation of the bridge function of the Percus-Yevick hard-sphere model and the
leading term of the elementary diagrams, which was first successfully applied to classical one-
component plasmas. We have obtained solutions of the MHNCS equation for highly supercooled
fluids with sixth- and twelfth-inverse-power potentials. These results are compared with those of
molecular-dynamics or Monte Carlo simulations and the solutions of two well-known thermo-
dynamically consistent integral equations, i.e., the Rogers-Young (RY) equation and the reference
hypernetted-chain (RHNC) equation. Below the freezing temperature, the solution of the MHNCS
equation is found to show a splitting of the second peak of the pair distribution function (PDF)
compatible with the computer simulations, while the RY or RHNC equation shows no such a split-
ting. Using the PDF thus obtained, thermodynamic and structural properties of the highly super-
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cooled soft-sphere fluids are investigated.

I. INTRODUCTION

The pair distribution function (PDF) of a liquid in
which particles interact through a spherically symmetric
pair potential u (r) is uniquely determined from the solu-
tion of the integral equation, i.e., the simultaneous solu-
tion of the Ornstein-Zernike relation'

h(r)=c(r)+pfdr’h(r’)c(\r—r'|) (1.1

and the closure relation
g(r):_.e‘Bu(r)+y1r)+B(r) , (1.2)

where g (r) is the PDF, h(r)=g(r)—1 the pair correla-
tion function, y(r)—h (r)—c(r) the so-called sum of the
nodal diagrams, p the number density, and B the inverse
temperature 1/kgT. The resultant PDF allows the cal-
culation of the internal energy U, equation of state P3/p,
and the compressibility y ; as follows:!

B =3 +2mpp [g(rurirar (1.3)
Pp_ . sdul(r)

L =1—26p [g(rr - dr (1.4)
pkgTxr=1+4mp [[g(r)—11r%dr , (1.5)

where N is the total number of particles. In calculations
of the PDF using the integral equation, one needs the
bridge function B(r) in Eq. (1.2). It is well known that
B(r) can be expanded in terms of highly connected h-
bond elementary diagrams as’

B(r)= 3 {e,(n}, (1.6)
n=4

where {g,(r)} represents a set of n-point elementary dia-
grams. However, the convergence of Eq. (1.6) is general-
ly too slow to be applicable to practical calculations for a
highly dense liquid state. For such a difficulty in the cal-
culation of B (r), various approximations for the integral
equation have been proposed. For example, well-known
classical hypernetted-chain (HNC) and Percus-Yevick
(PY) approximations are equivalent to substituting in Eq.
(1.6) B (r)=0and —y(r)+In[1+y(r)], respectively. '

The reliability of such approximate integral equations
can be tested by comparing their solutions with the “ex-
act” results obtained by computer simulations for a wide
range of density. It has been shown that both the HNC
and PY approximations break down when the density or
temperature approach the freezing point.! Since the
properties of approximations involved in the integral
equation are directly related to the approximation for
B(r), a more reliable approximation could be obtained by
modifying B (r) in some manner.

Recently proposed thermodynamically consistent ap-
proximations with some parametrized bridge function
have been found to yield a better approximation up to the
freezing point over the HNC or PY approximation.?
Among these approximations, the Rogers-Young® (RY)
and reference HNC (RHNC) (Ref. 4) equations have most
extensively been studied for various potentials, including
one-component plasmas (OCP), hard-sphere, soft-sphere,
and 12-6 Lennard-Jones fluids. In our previous paper, it
has been shown that even in an equilibrium supercooled
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liquid regime, the thermodynamic properties predicted
by the RY integral equation agree well with the computer
simulation data for soft-sphere fluids.” However, the
PDF’s obtained by these integral equations do not repro-
duce a correct behavior at both intermediate- and long-
range distances. It has been shown that the PDF’s calcu-
lated by computer simulations yield a clear splitting of
the second peak near and below the glass transition tem-
perature and a broader second peak in an equilibrium su-
percooled regime.® The PDF’s calculated from the RY
and RHNC equations for soft-sphere fluids, however,
yield no broadening of the second peak in an equilibrium
supercooled state, nor splitting below the glass transition
temperature, in disagreement with the computer simula-
tions.

On the other hand, for the OCP fluids, Iyetomi and
Ichimaru’ have shown that an approximated B (r) based
on the leading term of Eq. (1.6), i.e.,

efr)="1p? [dr'dr"h (r)h (r")h (|’ —1"|)

Xh(lr—=r')h(r—1"]), (1.7)

together with a rescaling assumption,® could be in a good
agreement with computer simulations, leading to a split-
ting of the second peak of the PDF in a highly super-
cooled state. Similar results have successfully been ob-
tained for two-component plasmas by Ballone, Pastore,
and Tosi.’

Noting the difference of the potentials between OCP
and soft-sphere fluids, it is our intention to study a better
approximation for the integral equation in highly super-
cooled soft-sphere fluids. We first present the results of
the RY and RHNC approximations for one-component
soft-sphere supercooled liquids, interacting through
sixth- or twelfth-inverse-power potentials. With these re-
sults we proceed to propose a better approximation for
the integral equation whose solution will be found to
agree well with that of computer simulations in both
stable and supercooled fluids.

II. THE MODEL

We consider the soft-sphere model in which constitu-
ent particles interact through a purely repulsive inverse
power potential,

n

) 2.

g
r

u(r)=e¢

where n (= 3) is the softness parameter of the potential.
The limit of n =« corresponds to a hard-sphere poten-
tial with core diameter o. The advantage of inverse
power potentials is due to their scaling property. Ac-
cording to this property, all reduced equilibrium proper-
ties in excess of their ideal-gas counterparts depend only
on one coupling parameter, not on the temperature and
the number density of the system separately. We take the
following I' as this coupling parameter:

T=po(eB)" . 2.2)

The freezing points of the inverse power potentials for
n =4, 6,9, and 12 were calculated by Hoover et al. with
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Monte Carlo (MC) simulations, and found to be I'=5.54,
2.18, 1.33, and 1.15 for n =4, 6, 9, and 12, respectively. 1°
This model has been found to work well for various real
liquids, in which short-range repulsive forces are dom-
inant, by choosing a suitable softness parameter n; for ex-
ample, n =15 reproduces the properties of liquidified in-
ert gases and n =5 those of liquid alkali metals.!! In the
present work, the softness parameter n is taken to be
n =6 and 12.

The pure repulsive nature of the soft-sphere potential
leads to an unphysically high pressure of the system.
However, thermodynamic properties in more realistic
conditions can be obtained by adding the Kac potential,
i.e.,, by the generalized van der Waals model.>!! The
Kac potential, however, exerts no influence on the prop-
erties of the structures. Therefore we take only pure
soft-sphere potentials in the present work, where we
focus our attention to the structural properties of liquids.

III. THERMODYNAMICALLY CONSISTENT
APPROXIMATIONS

Adjustable parameters contained in thermodynamical-
ly consistent approximations are usually determined from
a consistency between the virial and compressibility equa-
tions of state or a criterion with which the free energy of
the system is minimized.? For example, the RY and
RHNC approximations use, respectively, the following
bridge functions:>*

=_ explf(ry(r]—1 |
B(r)=—y(r)+In |1+ e <0,

B(r)=B,(r,d) ,

where f(r)=1—exp(—ar) is a mixing function with a
mixing parameter a, and B(r,d) the bridge function of a
reference hard-sphere fluid with an adjustable core diam-
eter d. The parameter « in the RY approximation is ad-
justed by requiring a self consistency between the equai-
tons of state obtained separately from Egs. (1.4) and (1.5),
while the parameter d in the RHNC is determined so that
the free energy of the reference hard-sphere fluid becomes
self consistent:*

0=p [ drlg(r)—go(r18By(r,d)

where g,(r) is the PDF of the reference system. Usually,
for go(r) and By(r) the Verlet and Weis (VW)
parametrized functions'? are used, which yield the equa-
tion of state for the hard-sg)here model consistent to the
Carnahan-Starlig formula. !

We have solved both the RY and RHNC integral equa-
tions for stable and supercooled soft-sphere liquids.
These results are found to be in excellent agreement with
those of computer simulations in a stable liquid, as shown
in Tables I and II. It is found that the adjusted parame-
ter d in the RHNC equation fits a simple relation to the
soft-sphere coupling constant T, as plotted in Fig. 1, that
is,

n=n;+A4(C—T,), (3.1
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TABLE I. Thermodynamic properties calculated from various integral equations and the MC simu-
lation for the sixth-inverse-power potential. The first line of each I" shows the equation of state PB/p
and the second line the reduced inverse compressibility xF~'. The values in parentheses are the hard-
sphere parameter d /I for the MHNCS integral equation. The MC data were taken from a numerical

interpolation of the simulation data in Ref. 10.

r MC MHNCS dsh RY RHNC
14 18.368 18.772 (0.904 02) 18.639 18.600
42.698 49.523 48.520
1.8 24.144 28.680 (0.93725) 28.577 28.422
66.265 78.152 76.812
2.6 55.198 (0.978 10) 55.147 54.559
128.56 155.91 154.58
3.0 71.778 (0.993 61) 71.789 70.684
167.80 204.86 210.10
3.4 90.574 (1.0068) 90.668
212.37 260.51
3.6 101.01 (1.0068) 100.95
233.03 290.86

where p=(7/6)pd* is the packing fraction of the refer-
ence system, A4 is a constant depending on softness pa-
rameter n, 7, indicates the freezing point of the hard-
sphere system, and I, that of the soft-sphere system. We
obtained 4 =0.148 and 0.291 for »n =6 and 12, respec-
tively. Equation (3.1) means that the freezing point of the
soft-sphere system coincides with that of the reference
hard-sphere system, and thus the VW hard-sphere refer-
ence system fulfills its mission as a “‘reference” system.

In a highly supercooled regime, however, the RHNC
approximation with the VW bridge function has been
found to yield an unphysical solution leading to a too
small first peak of the PDF and too large inverse
compressibility. This shortcoming is partly caused by the
Carnahan-Starling formula, which has no theoretical evi-
dence in highly supercooled hard-sphere fluids. Both the
RHNC and RY approximations are found to be
insufficient to predict a correct g (r) in the range of super-
cooled soft-sphere fluids, as shown in Fig.2 and Tables I
and II. The PDF’s obtained yield no broadening of the

second peak in the range of moderately supercooled
fluids, nor splitting of the second peak below the glass
transition temperature, in disagreement with the comput-
er simulations.

IV. THE MHNCS APPROXIMATION

As we have seen above, neither the RY nor RHNC ap-
proximations works well in the range of supercooled
liquids. There are considerable discrepancies of the PDF
between, in both intermediate and long distances, these
approximations and the computer simulations. For this
reason, below, we will attempt to propose a better bridge
function.

The property of the short-range-distance part of B(r)
was extensively studied by Rosenfeld and Ashcroft for
various pair potentials.? According to their work, it has
been shown that the form of B(r) at short interparticle
distances has a universality whose form can be expressed
in terms of the PY bridge function of the hard-sphere sys-

TABLE II. Thermodynamic properties calculated from various integral equaitons and the MD
simulation (Ref. 25) for the twelfth-inverse-power potential. The values in parentheses are the hard-
sphere parameter d /I for the MHNCS integral equation. The first line of each I" shows the equation of

state P3/p and the second line the reduced inverse compressibility Y7

*—1

r MD MHNCS dsh RY RHNC
0.8 8.414 8.343 (0.907 36) 8.315 8.410
22.5%0.5 22.034 24.940 24.897
1.0 13.770 13.791 (0.948 76) 13.604 13.768
38.441 45.936 45.670
1.2 21.940 22.179 (0.98163) 21.687 21.863
64.014 80.257 79.305
1.4 34.105 34.561 (1.0087) 33.674 33.146
102.16 133.70 139.18
1.5 42.499 42.598 (1.0207) 41.538
127.05 169.57
1.6 52.753 52.099 (1.0314) 50.887
156.01 212.67




41 IMPROVED INTEGRAL EQUATION FOR HIGHLY ...

s 2
30 15
25+

+4f f+
20 1.0
1.5
1.0 f 05

T T T
03 04 05 06

n

FIG. 1. Hard-sphere packing fraction 7 calculated with the
RHNC approximation for the soft-sphere system (n =6 and 12).
Points marked by O and @ are those of the sixth- and twelfth-
inverse-power potentials, respectively. I', indicates the cou-
pling constant of the softness parameter n. f indicates the freez-
ing point for the respective system.

tem B}Y(r,d), irrespective of the choice of potentials for
repulsive cores. On the other hand, there have been two
different approaches proposed to approximate the form
of the bridge function at intermediate and long distances,
namely, the mean spherical approximation! (MSA) and
improved HNC (IHNC) approximations for OCP fluids.’
The MSA assumes c¢(r)=—pBu(r) for r >0, where o is
the size of the potential core, and the bridge function of
the form

BMSA()=1—g(r)+In[g(N]<0 (r>0).

0.0+

T T T

1.0 20 30
X

FIG. 2. Pair distribution functions ot computer simulation
(solid curve), the RY equation (dotted curve), and the RHNC
equation (dashed curve) for the twelfth-inverse-power potential
atI'=14.
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The form of BMSA(r) is similar to that of the PY or RY
approximation, and consequently the MSA will not be
useful for a highly supercooled liquid regime, as we have
seen in Sec. III. On the other hand, the IHNC approxi-
mation uses B (7) based on the leading term of Eq. (1.6),
g,4(r), together with a rescaling assumption, and could be
in a good agreement with computer simulations, leading
to a splitting of the second peak of the PDF in a highly
supercooled OCP fluid state.” The form of g,(r) is
significantly different from that of the PY or RY approxi-
mation; the former can have both positive and negative
values (oscillation around zero value), which will turn out
to be responsible to the splitting of the second peak of
PDF’s.

From the above considerations, a better empirical
bridge function may be assumed as the linear combina-
tion of the universal short-range-distance part B5Y(r) and
the long-range-distance part e,(r).° Therefore we assume
that

B(r,d)=[1—f(r,d)1BFY(r,d)+ f (r,d)e,(r) , 4.1)

where d is an adjustable hard-sphere diameter and
0= f(r,d)=<1 a continuous mixing function. The mixing
function is conveniently taken to be of the form!4~1°

r—d

f(r,d)=% | +tanh , 4.2)

where W is a dumping parameter which may be deter-
mined from the magnitude of the thermal vibration of
particles (root-mean-square amplitude) or the width of
the first peak of the PDF. We call our approximation
MHNCS.

The adjustable parameter d in Eq. (4.1) is determined
by using the property of the screening potential
H(r)=—y(r)—B(r) at r =0: H(0) is related to a ther-
mod)zfnamic function of the excess free energy of the sys-
tem,

H(0)=B[F(O0,N)—F**(1,N —2)], (4.3)

where F®(n,m) is the excess free energy of the system
with n coupled particles and m single particles. Assum-
ing that the entropy difference between two terms in Eq.
(4.3) is negligible, H(0) can be evaluated by the respec-
tive internal energy U(O,N) and U(1,N —2). In soft-
sphere supercooled fluid states the excess internal energy
per particle 4 ** can be written simply as

Buex=%+brn/3 , (4.4)
where b is a “Madelung” constant!” which has been
found to be b =3.689 and 1.655 for n =6 and 12, respec-
tively, by using the RY approximation.® For the present
purpose of calculations of Eq. (4.3), we assume
g(r)=£8(r —a) for the thermodynamic states to which
Eq. (4.4) is applicable. We obtain

Bue"=%+2ﬂ',3pfu(r)§8(r——a)r2dr
=3+42mfa” "I, 4.4)

and b =27&a "%, where £ is a scaling constant and a
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is the distance between a specific particle and nearest-
neighbor particles surrounding it (first shell). On the oth-
er hand, u®°d containing two particles (a coupled
particle) within the shell can easily be estimated from Eq.
(4.4) by replacing a with 2!'3a for the requirement of
constant density inside the shell, then we obtain

Buex,coupled::;_}_(z)zw(n—-2)/3br~n/3 . 4.5)
Using Egs. (4.4) and (4.5), Eq. (4.3) is written as
H(O)___zbrn/3(1_2~(n—2)/3) . (4.3

A set of Egs. (1.1), (1.2), (4.1), and (4.3’) constructs the
MHNCS approximation, which will be solved self con-
sistently. We should note that the MHNCS approxima-
tion differs from the usual thermodynamically consistent
methods, for we do not use the thermodynamic self-
consistency condition.

V. RESULTS

A. Numerical procedures

The method used here to solve the MHNCS integral
equation is essentially the same as an iterative procedure
proposed by Ng'® but with some modifications. A num-
ber of iterations were made so that the following self-
consistent measure A is minimized:

A=( [ le(r)—=c®(r)|22dr)' /2 . (5.1)
The superscripts in and out denote the input and output
functions, respectively. We used e “Bu"'—1 ag an initial
input function of ¢™(r). It took about 50 iterations for A
to be less than 5X 107 '°, which is considered to be small
enough, for the present purpose, to ensure the validity of
the solutions. BEY(r) in Eq. (4.1) has been calculated
with the analytical solution of the PY approximation for
the hard-sphere model given by Wertheim and Thiele'®
and Smith and Henderson. 2

To solve the integral equation, we used dimensionless
length x =r/I, where | =p~ '3, The number of grid
points and step size used in numerical integrations were
chosen to be 2048 points and Ax =0.01, respectively, and
the fast-Fourier-transform routine was used in each itera-
tion step. Iterations have been carried out on a FACOM
M-780 scalar processor.

The numerical integration of Eq. (4.10) has been car-
ried out on a FACOM VP-100 vector processor, using
the Legendre expansion of /4 (r) obtained from the HNC
equation, which was discussed in detail in Ref. 7 original-
ly used for the calculation of the virial coefficients by
Barker and Monaghan.?! In our calculation we have tak-
en the first 11 terms of this expansion, which confirms an
expansion error to be smaller than about 1%. A dump-
ing parameter W in Eq. (3.12) is taken to be 0.2/ for all
present calculations, because the magnitude of the root-
mean-square amplitude of particles is not significantly
changed over a wide range of I'’s in supercooled
liquids. >®
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B. Solutions

Calculations of the MHNCS integral equation have
been made for six different I'’s for both » =6 and 12. For
the study of thermodynamical and structural properties
of these systems, we examined the equation of state
PB/p, the reduced inverse compressibility y% !
=B(px7)” !, the so-called Wendt-Abraham ratio R (the
ratio of the first minimum to the first maximum of the
PDF),?? and the coordination number N, as defined by

"m 2
N, 4‘n'pf0 g(r)ridr , (5.2)
where r,,is the position of the first minimum of the PDF.
Our results are summarized in Tables I and II and Figs. 3
and 4, together with comparison with computer simula-
tions, '2% the RY approximation,*¢ and the RHNC ap-
proximation. From Tables I and II it is clearly seen that
the equation of state obtained from the MNCS equation
agrees very well with the computer simulation results up
to a highly supercooled regime. y% ! obtained from the
MHNCS equation is systematically smaller than that of
the RY or RHNC equation for all I'’s in both cases of #,

>0 (a)
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20 30 40

>0 (b)

aix),Bx)
o

0 10 20 30 40
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FIG. 3. Pair distribution (solid curve) and bridge (dashed
curve) functions of the MHNCS integral equation in highly su-
percooled regime. (a) n =6 and I'=3.6; (b) n =12 and '=1.5.
The MD result of the PDF is shown by the dotted curve (Ref.
25).
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FIG. 4. T dependence of (a) the Wendt-Abraham ratio R and
(b) coordination number N,. Points marked by /\, @, and O are
those obtained from computer simulation (Refs. 25 and 27), the
RY equation (Ref. 5), and the MHNCS equation, respectively.
', indicates the coupling constant for the softness parameter n.

which we have studied here. For further tests of the
MHNCS approximation, it would be most preferable to
compare x4 ' with that of computer simulations, but it
is difficult to determine )7, using Eq. (1.5), directly from
the computer simulation data of the PDF because of the
truncation of the data at a distance corresponding to the
length of the basic cell of the simulation. Because of such
a restriction, we calculated a reliable y% ! value with the
MD simulation data only for n =12 at [ =0.8.

The PDF’s of the MHNCS equation exhibit a clear
splitting of their second peak for a highly supercooled re-
gime, that is, when ' 1.4 for n =12 and '2 3.4 for
n =6 (Fig. 3). Splitting of the MHNCS PDF’s begins to
appear at somewhat smaller I'’s compared with the com-
puter simulations, which may be reasonably understood
by taking into consideration slow relaxation phenomena
near the glass transition.”> Computer generated samples
at the highly supercooled regime are not fully relaxed,
due to slow relaxations.?*2¢ Therefore, the feature of
the PDF may possibly be smeared by biased dynamical

fluctuations caused by the nonequilibrium nature of the
system. We also note the fact that the PDF calculated
from computer simulations with elimination of the
thermal vibrations of particles shows a clear splitting of
the second peak as well as a sharper first peak even in
moderately supercooled liquids. The results of the
MHNCS approximation shows a smaller value of R than
that of computer simulations for large I'’s, as shown in
Fig. 4, and the PDF yields a splitting of the second peak
even in an equilibrium supercooled regime. The depen-
dence of PDF’s on the softness parameter is significant:
Both the first peak and the splitting of the second peak
for n =12 are found to be sharper than those for n =6.

The splitting of the second peak of PDF is essentially
dominated by the form of the second term of Eq. (4.1).
We note that g,(r) is nearly equal to zero except for the
core region in stable liquids, while below the freezing
temperature it begins to oscillate around zero value in the
intermediate distances, where the second peak of PDF
appears (Fig. 3). On the other hand, the bridge function
for the RY or PY equation always has a nonpositive
value, thus resulting in no splitting of the second peak.

The coordination number calculated from Eq. (5.2),
i.e., the population number of the first shell (average
number of nearest-neighbor particles surrounding a parti-
cle), has a value between 12 and 14 below the freezing
temperature, as shown in Fig. 4, which is compatible to
that of computer glasses. Therefore, the packing order is
quite similar to all thermodynamic states below the freez-
ing temperature.

V1. DISCUSSION

We have proposed a new MHNCS integral equation
and obtained its solutions up to the highly supercooled
liquid regime of soft spheres. The MHNCS solution re-
sults in the same equation of state as that of the computer
simulations in both stable and supercooled liquids. The
PDF obtained shows a clear splitting of the second peak
at a highly supercooled regime, in excellent agreement
with the results of the molecular-dynamics simulations.
Glasses are nonequilibrium states in nature, in which the
structural relaxation time is many orders of magnitude
larger than that of an equilibrium liquid. Therefore,
structures of computer glasses simulated over too short a
time interval compared with the structural relaxation
time may depend on the quenching rates and their routes
as well as initial configurations. On the other hand, the
PDF calculated from the integral equation based on the
statistical theory of fluids is that for a fully relaxed
“fluid” state, which may be produced by quenching a
liquid at an infinitely slow cooling rate. Intermediate-
and long-range-distance parts of B (r) can be well approx-
imated by the leading elementary diagram g,(r), which is
responsible for the characteristic feature of the PDF at
intermediate distances for highly supercooled liquids.
Since g4(r) has almost no contribution for stable liquids,
the MHNCS integral equation is equivalent to the
RHNC and RY approximations above the freezing tem-
perature. On the other hand, for highly supercooled
liquids, €4(7), exhibiting a significant oscillatory behavior
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around zero value, reproduces not only the splitting of
the second peak but also a correct gross feature of the
PDF which is in excellent agreement with the results of
the computer simulations. Thus we conclude that the
MHNCS works very well over a wide range of the soft-
sphere fluid states, including supercooled liquids and
glasses.

Another conclusion of the present paper is the softness
(n) dependence of the structural properties in the super-
cooled regime. The splitting of the second peak of the
PDF has a tendency to be smeared for a softer potential.
This is reasonably understood by considering a weak-
distance-dependent character of a softer potential, which
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should tend to allow an increase of a number of possible
configurations of particles.

Finally, we mention that the MHNCS integral equa-
tion can be easily extended to binary mixtures. Calcula-
tions for the binary soft-sphere mixtures are being under-
taken.
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