
PHYSICAL REVIEW A VOLUME 41, NUMBER 1 1 JANUARY 1990

Relativistic cross sections for excitation of highly charged ions
to specific magnetic sublevels by an electron beam
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A program has been developed for making calculations of fully relativistic distorted-wave cross
sections for excitation of highly charged ions to specific magnetic sublevels Mf by a beam of elec-
trons. The approach uses the same Dirac-Fock-Slater potential for all electrons and is expected to
be accurate for nuclear charge number Z R2.5N, where N is the number of bound electrons per
ions. To our knowledge there is at present no other fully relativistic program available with which
we could compare results for this type of cross section. However, the present results for He-like,
Li-like, and ¹likeiron and for Ne-like molybdenum are compared with other partially relativistic
results, and generally good agreement is obtained for these ions. It is expected that the present pro-
gram will be useful for comparison with and interpretation of experimental results for very highly
charged ions, such as those obtained in electron-beam ion-trap experiments at Livermore [R. E.
Marrs et al. , Phys. Rev. Lett. 60, 1715 (1988)].

I. INTRODUCTION

There has been considerable interest in the cross sec-
tions for excitation of very highly charged ions by elec-
tron impact for the purpose of determining the popula-
tions of the energy levels of such ions and predicting the
emergent spectra from both laboratory and astrophysical
high-temperature plasmas. For such purposes, at least if
the electron distribution function is isotropic, it is only
necessary to know the total excitation cross sections.
However, for comparisons with experiment, more de-
tailed cross sections are often required. For example, if
the measurements involve the detection of the Auores-
cence radiation produced by ions excited by a directive
electron beam, the results depend on the cross sections
for excitation to the specific magnetic sublevels of the tar-
get ions. ' These cross sections are also needed in
studying the emission from plasmas with an anisotropic
electron distribution function, as noted by Inal and Du-
bau. '

Recently several authors have made calculations of the
cross sections for excitation to specific magnetic sublevels
of the target ion. ' Mitroy and Mitroy and Norcross
have done so using a nonrelativistic LS-coupling ap-
proach. Inal and Dubau' have considered the more high-
ly charged ions Fe + and Fe + and have also used non-
relativistic radial functions, but they included
intermediate-coupling effects though a perturbative treat-
ment of relativistic interactions in the atomic structure
calculations. Specifically, they have made distorted-wave
calculations using the well-known programs of Eissner
and co-workers and Seraph modified to give cross sec-
tions for excitation to specific magnetic sublevels. In the

present work we have developed a fully relativistic
distorted-wave program for calculating cross sections for
excitation to specific magnetic sublevels of highly
charged ions with moderate to very high values for the
nuclear charge number Z. Our work was motivated by
the recent electron-beam ion-trap (EBIT}experiments at
Livermore. In these experiments cross sections for
Ba + were measured and it is anticipated that results for
ions with even considerably higher values of Z will be ob-
tained in future EBIT experiments. ' For such high-Z
ions a fully relativistic approach is necessary for accurate
calculations of the cross sections.

To our knowledge no other fully relativistic code for
calculating cross sections for excitation to the magnetic
sublevels of the target ion exists with which we could
compare results. However, after outlining the theory of
the present approach in the next section, in Sec. III we
give a sample of our results and make comparisons of
them with the results for moderate values of Z by other
largely nonrelativistic or semirelativistic approaches.

II. THEORY

Cross sections with any degree of detail can be deter-
mined if the scattering amplitude is given. Following
Rose, ' Carse and Walker, " and Walker, '2 we can define
a relativistic amplitude 8 ' for scattering an electron

sf
with spin m„, wave number k;, and direction k; into
direction kf with wave number kf and final spin m,f ac-
companied by change in the state of the target ion from
p;J,M; to pf JfMf,
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sf
(i)' exp[i(5„;+5„f)]Y& ' (k, )Yt

' (kf)C(1; ,'m—r,m„;j,m, )C(lf ,'m—jfm,f jf'mf)T(a;, af) .

If p mif yjf y mf

Here T(a, , af ) is an element of the relativistic T matrix
with

Also we express the T matrix in terms of the reactance
matrix R,

a; =k, l j;m;p; J;M;, af =kflfjfmfpf JfMf (2)
—2iRT= . = —2iR,
1 —iR

in which P, designates all quantum numbers required to
specify the initial state of the target ion in addition to the
quantum numbers J,. and M, corresponding to the total
angular momentum of the ion and its z component, re-
spectively. The quantity pf has similar meaning for the
final state. The Ps and C's are spherical harmonics and
Clebsch-Gordan coe5cients, respectively. The phase fac-
tors 5„and 5„, which contain the so-called Coulomb

l f
phase factor plus the modification of it due to the depar-
ture of the potential from a pure Coulomb potential for
small r, are discussed in the Appendix. The ~, and ~f are
initial and final values for the relativistic quantum num-
ber ~, which is related to the orbital and total angular
momentum quantum numbers l and j for the free electron
by the well-known relations

where the final approximation, which we use, gives unun-
itarized cross sections. As is well known, this is a very
good approximation in treating highly charged ions, for
which the elements of the R matrix are much less than
unity. In addition, we use the reactance matrix elements

R(y, , yf) in the totally coupled representation because
we want to use the values calculated with the relativistic
distorted-wave program of Zhang, Sampson, and Mohan-
ty, ' which uses the completely coupled representation.
The relation between these is

R(a, ,af)= g C(Jj;M;m;;JM)C(JfjfMfmf ,JM)'
J,M

XR(y;, yf ),

a= —l —1, j=l+1/2,
~=l, j =/ —1/2 . (4)

where

y, =k, l,j,13,J,JM, yf =kf lfjfpf JfJM,

It is convenient to choose the z axis to be in the direc-
tion k; of the impact electron. Then mI; =0 and

' 1/2
21;+1

YI "(k;)~
t 4m

in which J and M are the quantum numbers correspond-
ing to the total angular momentum of the complete sys-
tern, target ion plus free electron, and its z component,
respectively. It turns out that the R (y;, yf ) are indepen-
dent of M. Now applying all this to Eq. (1) we obtain

I /2
~ =2"

k, g (i) ' f(2l, +1)' exp[i(5„+5„)]Y& 'f(kf)C(l; ,'Om„;j;m,—)

I, ,j, , m,. J M

Ifymlf y Jfymf

XC(lfr'm/fm, f'jfmf)C(J j M;m;;JM)C(JfjfMfmf', JM)R(y;, yf), (9)

where, of course, m, must equal m„because mI; =0.
For unpolarized electrons, for which one can average over initial spins and sum over final spins, the differential cross

section is given by

'm, m

(10)

and the total cross section for the transition a, J;M, ~afJfMf is given by

g(P, J,M, PfJfMf)= ,' y f ~B "~'-dkf .
si' sf

When Eq. (9) is substituted into Eq. (11)some simplification occurs because

mf Y, '"(kf)Y& (kf)dkf 5. ~ rn

Then after performing the summation over mI f and lf one can use
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C(lf ,'m—ffm,f,jfmf )C(lf ,'m—&fm,f ,j'fmf ) =5, 5
JfJf mf mf

m f, m(f

so the dependence of Eq. (11) on the final phase factor 5„drops out. The detailed result isf

(13)

Q(p, J,M; ~pf JfMf )
=2~

I

I

(i) ' ' [(2l, + 1)(2! + 1)]' exp[i(5„—5, )]
J,J'M

m, lf, Jf, mf

XC(1, ,'Om—„;j,m, )C(1 ,'Om—„;j m;)C(Jj;M;m;;JM)

X C(Jj,'M, m, ;J'M )C (JfjfMf mf, JM )C (JfjfMfm f J'M )

XR ( y„yf )R (y,', yf ), (14)

where yf differs from yf only in that J' replaces J, and

y,
' differs from y; only in that J', (,' and j replace J, (, ,

and j, , respectively.
For initially randomly orientated target ions, the case

of interest here, one can average over initial magnetic
sublevels M; of the target ion and obtain the result for the
cross section for excitation to a specific final magnetic
sublevel Mf,

potential is the relativistic Hartree-Fock-Slater, or so-
called Dirac-Fock-Slater potential given in rydbergs by

' 1/3

V(r)= — + V, (r)—2Z
T

p(r ) (17)

where the term ( 2Z—lr) is the contribution due to the
nuclear charge. The V, (r) term is the spherically aver-
aged classical potential due to the bound electrons

1
Q(p; J;~pfJfMf ) = g Q(a, J;M;~afJfMf )

2J, +1 M
I

V, (r)= g w„,
oo

[P„„.(rz )+Q„„.(rz )]dr&,2

n'v' 0
(18)

(15)

where the cross section on the right-hand side is given by
Eq. (14). As a partial check on Eq. (14) one can see if it
leads to the correct total cross section Q(p;J;~pf Jf ) ob-
tained by summing Eq. (15) over Mf. When this is done
the summation over Mf and mf eliminates the last two
Clebsch-Gordan coefficients in Eq. (14) by the analog of
Eq. (13). Next one can remove the middle two by per-
forming the sum over M, and M, and finally one can
eliminate the first two by performing the summation over
m„=m;. The result obtained is indeed the correct well-
known expression

in which w„., is the occupation number of subshell
n'a'=n'('j', the summation is over all occupied sub-
shells, r & is the greater of r and rz, and P„„and Q„„are
the so-called large and small components of the radial
function of an electron in the n'~' subshell. The final
term in Eq. (17) is the exchange energy of an electron in a
free-electron gas of density p(r ) averaged over all possible
momenta of the electron and with the Kohn-Sham'
value for the numerical coefficient. Following Slater' we
use for p(r ) the number density of the bound electrons at
distance r from the nucleus. The spherically averaged
value for this is

Q(p; J;~pfJf )

g (2J+1)IR(y, , yf )I'
(2J;+ 1)k.

1p(r)= gw„„[P„.„.(r)+Q„,„,(r)] .
4m.r

(19)

Before proceeding to give some sample numerical re-
sults and to compare them with other work, we say a few
words about the method used to calculate the relativistic
reactance matrix elements R(y;, yf ). As noted previous-
ly, this is done using the approach and code of Zhang,
Sampson, and Mohanty, ' which uses the atomic struc-
ture data of Sarnpson, Zhang, Mohanty, and Clark. '

Specifically, the R (y;, yf! are equal to 2 times the matrix
element in Eq. (3) of Ref. 13, which is calculated using
the wave functions given by Eqs. (5) and (6) of Ref. 13.
These are constructed from orbitals for both the bound
and free electrons that are solutions of the Dirac equation
for the same central potential. Hence, all orbitals, bound
and free, are automatically orthogonal. Specifically, this

We note that in applying Eqs. (17)—(19) to determine the
radial function for the bound electrons in a particu1ar
subshell na the potential given by the first two terms on
the right-hand side of Eq. (17) would be the relativistic
Hartree potential, if in Eq. (18) u„, were replaced with
w„—1 when n'x'=n~. The undesirable feature that
V, (r ) given by Eq. (18) contains self-interaction is at least
partially canceled out by the fact that with the use of Eq.
(19) self-exchange energy is also included in Eq. (17).

In determining the potential with Eqs. (17)—(19) we
used a single mean configuration with noninteger occupa-
tion numbers for some subshells. For example, in the cal-
culations of excitation from the ground levels of He- and
Li-like ions to the levels of the 1s2p and 1s2s 2p
configurations, for which numerical results are given in
the next section, we used the mean configurations
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and

1.52 0.252 0.25
S P 1/2 P 3/2

1s' 2s' 2p 2p$ $ P1/2 P3/2

(20)

(21)

proach are essentially as accurate as those by the most
elaborate relativistic programs now available when
Z ~ 2.5X, where N is the number of bound electrons per
ion.

respectively, in determining the potential with Eqs.
(17)—(19). Similarly in calculating the results for the opti-
cally allowed transitions from the ground level to the
n =3 levels in neonlike ions also given in the next section
we used the mean configuration

1s»22S1/22p, /22p 3/23s, /23p, /23p 3/23d 3/23d 5/2
2 1.9 1.9 3.7 0. 1 0. 1 0. 1 0. 1 0. 1 (22)

In each of these cases the choice can be regarded as equal
splitting of the occupation of the active electron between
initial and final shells. Actually test cases' ' have indi-
cated that slight changes in the mean configuration used
in determining the potential have little effect on results.

It should be noted that the mean configuration is used
solely in determining the potential with Eqs. (17)—(19).
Generally we include at least all the mixing among the
states in a complex, i.e., having the same set of n values,
parity, and J value. The results given in the next section
include only the complete mixing among the states in
each complex.

Finally we note that comparisons made in Ref. 13 and
14 indicate that for such things as oscillator strengths
and total collision strengths results by the present ap-

III. NUMERICAL RESULTS AND DISCUSSION

To our knowledge there are no other fully relativistic
results, i.e., results based on the Dirac equation, available
for excitation to specific magnetic sublevels with which
we can make comparison. However, we can make com-
parison with the results of Inal and Dubau' for excitation
from the ground levels of He- and Li-like iron to the lev-
els of the 1s2p and 1s2s2p configurations. This is done in
Tables I and II. Also we could include comparison with
the results obtained with the program of Clark et al., '

which is based on the distorted-wave method of Mann. '

This uses the atomic structure data generated with the
program of Abdallah, Clark, and Cowan, ' which in turn
is based on Cowan's Hartree-Fock approach. The
physics involved in their method is similar to that of Inal
and Dubau' (briefly discussed in Sec. I) except that the
Hartree-Fock potential is used in place of a scaled
Thomas-Fermi-Dirac potential and the relativistic mass-
velocity and Darwin terms are included in the Hamiltoni-
an determining the bound orbitals. Then the only relativ-
istic interaction they treat perturbatively is the spin-orbit
interaction.

TABLE I. Comparison of results for the collision strengths for excitation from the ground level to the magnetic sublevels Mf of
various 1s2p levels in He-like iron. In each case upper entries are present fully relativistic values, second entries are from the code of
Ref. 17, and third entries are from Ref. 1. Numbers in the square brackets are powers of 10 by which adjacent entries should be mul-
tiplied. All transition energies hE were approximated by the same value 493 Ry in Ref. 1. Also, as is discussed in the text, for most
transitions the present results were calculated for slightly different values for the impact electron energy E, (Ry) than those listed.

Excited
level

1s2p P I

or
(1s jr2»p3r2) j

aE (Ry)

493.2
493.0

550

1.69[—3]
1.69[—3]
1.69[—3]

2.37[—3]
2.39[—3]
2.38[—3]

E, (Ry)
900

3.09[—3]
3.07[—3]
3.06[—3]

1200

3.85[—3]
3.76[—3]
3.76[—3]

4.99[—3]
4.68[—3]
4.69[—3]

493.2
493.0

4.19[—4]
4.18[—4]
4.06[—4]

6.12[—4]
6.20[—4]
5.84[—4]

8.84[—4]
8.98[—4]
8.87[—4]

1.30[—3]
1.31[—3]
1.35[—3]

2.32[—3]
2.30[—3]
2.39[—3]

1$2p P j

or
(1s

]ran»p

]r2) j

1s2p 'P2
or

(1s j r22p3r2 )

490.7
490.6

490.7
490.6

491.9
491.7

491.9
491.7

2.08[—4]
2.19[—4]

2.65[—4]
2.66[—4]

2.91[—4]
3.08[—4]

2.37[—4]
2.50[—4]
2.45[—4]

2.42[—4]
2.55[—4]

2.09[—4]
2.09[—4]

1.98[—4]
2.10[—4]

1.61[—4]
1.70[—4]
1.65[—4]

2.85[—4]
2.99[—4]

1.76[—4]
1.78[—4]

1.27[—4]
1.35[—4]

1.04[—4]
1.10[—4]
1.05[—4]

3.37[—4]
3.47[—4]

1.69[—4]
1.72[—4]

7.35[—5]
7.76[—5]

6.04[—5]
6.36[—5]
6.05[—5]

4.20[—4]
4.16[—4]

2.16[—4]
2.20[—4]

2.50[—5]
2.63[—5]

2.12[—5]
2.23[—5]
2.10[—5]

491.9
491.7

7.46[—5]
7.63[—5]
7.55[—5]

5.00[—5]
5.13[—5]
4.96[—5]

3.32[—5]
3.42[—5]
3.28[—5]

2.11[—5]
2.19[—5]
2.09[—5]

9.70[—6]
1.02[—5]
9.74[—6]
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TABLE II. Comparison of results for the collision strengths for inner-shell excitation from the ground level to the magnetic sub-

levels Mf of various levels of the 1s2s2p configuration in Li-like iron. In each case upper entries are present fully relativistic results,
second entries are from the code of Ref. 17, and third entires are from Ref. 1. Numbers in the square brackets designate powers of 10
by which adjacent entries should be multiplied. The transition energy hE was approximated by 493 Ry in Ref. 1. Also, as discussed
in the text, for most transitions the present results were calculated for slightly di6'erent values for the impact electron energy E, (Ry)
than those listed.

Excited
level

(1s2p P)2s P3/2
or

[(1s,/~2s, /2 ), 2p &/2]3/2

1/2

3/2

hE (Ry)

487. 1

487.0

487.1

487.0

550

1.36[—4]
1.40[—4]

2.84[—4]
2.88[—4]

1.20[—4]
1.25[—4]

2.04[—4]
2.06[—4]

E, (Ky)
900

1.15[—4]
1.22[—4]

1.47[—4]
1.49[—4]

1200

1.19[—4]
1.25[—4]

1.11[—4]
1.13[—4]

1.38[—4]
1.42[—4]

9.78[—5]
1.01[—4]

(1s2p 'P)2s P3/2
or

I/2 I /2 )12p /

1/2 490.4
490.2

1.27[—3]
1.29[—3]
1.29[—3]

1.82[—3]
1.83[—3]
1.77[—3]

2.40[—3]
2.39[—3]
2.28[—3]

3.07[—3]
3.01[—3]
2.87[—3]

4.20[—3]
3.97[—3]
3.84[—3]

3/2 490.4
490.2

4.14[—4]
4.16[—4]
3.99[—4]

6.16[—4]
6.21[—4]
5.85[—4]

8.99[—4]
9.08[—4]
8.47[—4]

1.33[—3]
1.34[—3]
1.25[—3]

2.38[—3]
2.35[—3]
2.19[—3]

(1s2p 'P)2s P3/2
or

[(1si /22$ l /2 )02p3/2]3/2

1/2

3/2

491.7
491.4

491.7
491.4

2.99[—4]
3.19[—4]

7.88[—5]
8.16[—5]

2.13[—4]
2.27[—4]

5.62[—5]
5.85[—5]

1.50[—4]
1.59[—4]

4.23[—5]
4.45[—5]

1.05[—4]
1.10[—4]

3.48[—5]
3.71[—5]

6.94[—5]
7.12[—5]

3.49[—5]
3.70[—5]

The comparisons are made between results for the col-
lision strengths 0 rather than the cross section Q because
Inal and Dubau' gave their results in terms of Q. The re-
lationship between these is

~ao2 0,
k, g,

(23)

where ao is the Bohr radius and g; is the statistical weight
of the initial level, which is 2J;+1 in the present case.
The relativistic value for the square of the wave number
k; to be used in Eq. (23) is

a +2
2 2

k, = =E;(Ry) 1+ E;(Ry) (24)

where E;(Ry) is the kinetic energy of the impact electron
in rydbergs and a is the fine-structure constant e /(Pic).
These units for k, differ from those in Eq. (14) by the ao
factor in Eq. (24). Thus, if the k; in Eq. (14) were ex-
pressed in these units mao would replace the m in Eq. (14).
Hence, from Eqs. (14), (15), and (23) one sees that our ex-
pression for O(P, J, ~Pf JfMf ) is given by 2 times the

summation part of Eq. (14) after it has also been summed
over M, . In the approaches of Refs. 1 and 17 Eq. (23)
also applies, but of course, their partially relativistic rna-
trix elements replace our fully relativistic ones in 0 and
in place of Eq. (24) k, =E,(Ry). For the energies con-
sidered here the latter has little effect.

One sees from inspection of Tables I and II that the
three sets of results are in very good agreement. This
should be expected because the relativistic effects on the

radial functions and phase factors 5„are small for Z =26
and the differences in treatment of the potential due to
the electrons has small effect because the nuclear poten-
tial dominates.

It should be mentioned that the results by the program
of Clark et al. ' were calculated using the values of E;
listed in the tables and the corresponding values of Ef
determined with the equation

E; =Ef+AE (25)

and the transition energies AE given in the tables. How-
ever, Inal and Dubau' used the approximation that the
same transition energy bE=493 Ry was used for all
transitions. Hence, except for excitation to the 1s2p 'P&

level in He-like iron, the values they used for the final
electron energy Ef determined with Eq. (25) are too
small. On the other hand, as discussed in Sec. IIC of
Ref. 13, in order to obtain improved efficiency in treating
groups of transitions in a given kind of ion, our program
calculates results for all the transitions in a group for the
same fixed set of Anal electron energies. In considering
He-like iron this set was chosen so that it led to the
values for E, listed in Table I in the case of the
1s 'So —1s2p 'P, transitions, but then this corresponds
to slightly lower values for E; for the other transitions,
which have smaller AE. For Li-like iron, the set of Ef
used led to the exact values for E, listed in Table II only
for the ls 2s S, /z —(ls2p 'P&)2s P3/g transitions. Since
there is little difference in the transition energies, neither
this procedure nor the approximation of Inal and Dubau'
of using the same value for AE for all transitions has
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significant effect on the results for the collision strengths.
We have also compared present results with those ob-

tained with the program of Ref. 17 for excitation from
the ground level to the excited, odd-parity levels with
n =3 and Jf =1 in neonlike iron and molybdenum in

Tables III and IV, respectively. In doing this we have
used the following abbreviations in indicating the LS-
coupled or jj-coupled state making the dominant contri-
bution to each of the excited energy levels:

and

(2s, /z3l, i )q =(1s,/z2s, /z2p, /z2pz/z3l, j )I2 2 4 (30)

2s31 +'L =1s 2s2p 31 +'L (27)a Jf a J

(2pz/z31, J )J =(1s,/z2s, /z2p, /z2p3/23lgj )I, (28)

(2pi/z3laj )J (1 f/z2si/z2p|/z2p3/231, J. )~, (29)

2p31 +'L =1$2$2p 3I +'L
a Jf a Jf (26) One sees that the agreement between the two sets of re-

TABLE III. Comparison of results for the collision strengths for excitation from the ground level to the magnetic sublevels Mf of
the excited odd-parity levels with n =3 and Jf = 1 in neonlike iron. In each case upper entries are the present fully relativistic results
and the second entries are from the code of Ref. 17. Numbers in square brackets designate powers of 10 by which adjacent entries
should be multiplied. Here results are given as a function of 6nal or scattered electron energy E~(Ry).

Excited
level

2p 3$ P1
or

(2p3/23$1/2 )1

Mf ~E (Ry)

53.49
53.41

53.49
53.41

9.50[—4]
1.09[—3]

3.68[—4]
3.96[—4]

15

1.31[—3]
1.52[—3]

4.14[—4]
4.61[—4]

Ef (Ry)
60

2.59[—3]
2.97[—3]

6.87[—4]
7.93[—4]

150

4.21[—3]
4.75[—3]

1.43[—3]
1.64[—3]

3000

5.55[—3]
6.09[—3]

2.59[—3]
2.95[—3]

2p 3$ P1
or

(2p1/23$1/2 )1

2p3d 'P,
or

(2p)/23 s/2)1

2p3d D1
or

(2p3/23d 5/2)1

2p3d 'P1
or

(2p1/23d3/2 )1

54.37
54.30

54.37
54.30

59.02
58.98

59.02
58.98

59.78
59.70

59.78
59.70

60.82
60.72

60.82
60.72

8.11[—4]
9.35[—4]

3.59[—4]
3.91[—4]

1.10[—3]
1.16[—3]

2.55[—3]
2.74[—3]

1.22[—2]
1.33[—2]

5.58[—3]
6.04[—3]

4.65[—2]
4.69[—2]

2.14[—2]
2.15[—2]

1.10[—3]
1.29[—3]

3.88[—4]
4.37[—4]

9.54[—4]
9.96[—4]

2.05[—3]
2.19[—3]

1.46[—2]
1.58[—2]

6.10[—3]
6.63[—3]

5.66[—2]
5.71[—2]

2.39[—2]
2.40[—2]

2.13[—3]
2.48[—3]

5.90[—4]
6.88[—4]

7.17[—4]
7.35[—4]

1.09[—3]
1.15[—3]

2.15[—2]
2.32[—2]

8.28[—3]
9.03[—3]

8.64[—2]
8.66[—2]

3.30[—2]
3.34[—2]

3.47[—3]
3.96[—3]

1.18[—3]
1.36[—3]

6.43[—4]
6.44[—4)

5.68[—4]
5.88[—4]

2.92[—2]
3.11[—2]

1.28[—2]
1.41[—2]

1.19[—1]
1.18[—1]

5.16[—2]
5.26[—2]

4.60[—3]
5.10[—3]

2.12[—3]
2.45[—3]

6.47[—4]
6.35[—4]

4.49[—4]
4.58[—4]

3.48[—2]
3.66[—2]

1.96[—2]
2.14[—2]

1.42[—1]
1.39[—1]

7.90[—2]
8.06[—2]

2$ 3p P1
or

(2$1/23p1/2 )1

65.77
65.79

65.77
65.79

2.09[—4]
2.22[—4]

3.61[—4]
3.70[—4]

2.80[—4]
2.93[—4]

3.23[—4]
3.31[—4]

5.56[—4]
5.71[—4]

2.69[—4]
2.75[—4]

9.56[—4]
9.70[—4]

3.30[—4]
3.38[—4]

1.32[—3]
1.31[—3]

5.38[—4]
5.53[—4]

2$3p P1
or

(2$1/23p~/2 )1

66.08
66.08

66.08
66.08

1.24[—3]
1.53[—3]

3.32[—4]
3.96[—4]

1.84[—3]
2.19[—3]

4.28[—4]
5.15[—4]

4.03[—3]
4.62[—3]

8.96[—4]
1.04[—3]

7.27[—3]
8.04[—3]

2.05[—3]
2.33[—3]

1.03[—2]
1.10[—2]

3.99[—3]
4.48[—3]
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suits for neonlike ions is generally good, but is slightly
worse than for He- and Li-like iron. We think this is
principally due to the different treatments of the electron
contribution to the central potential used in calculating
the orbitals, which is more significant in the case of neon-
like ions. This affects the values for the mixing
coefficients, as well as the radial functions. Also for
neonlike molybdenum, Z=42 is sufficiently large that
relativistic effects on the radial functions and phase fac-
tors are probably contributing significantly to the
differences in the two sets of results.

In summary we have developed a fully relativistic pro-
gram for calculating the cross sections for excitation to
specific magnetic sublevels Mf of very highly charged
ions. The results agree well with those of partially rela-
tivistic programs for moderate values of Z. It is expected
that the present program gives accurate results for any
value of Z satisfying Z ~ 2.5N, where N is the number of
bound electrons per ion, and that it will be useful for
comparison with and interpretation of experimental re-
sults for very highly charged ions, such as the EBIT re-
sults obtained by Marrs and co-workers.

TABLE IV. Comparison of results for the collision strengths for excitation from the ground level to the magnetic sublevels Mf of
the excited odd-parity levels with n = 3 and Jf = 1 in neonlike molybdenum. In each case upper entries are the present fully relativis-
tic results and the second entries are from the code of Ref. 17. Numbers in square brackets designate powers of 10 by which adjacent
entries should be multiplied. Here results are given as a function of scattered electron energy Ef(Ry). Note that in LS-coupling no-
tation the fourth and fifth energy levels are nearly equal mixtures of 2p3d'P1 and 2p3d 'D1. In fact, according to the codes of Refs.
17—20 the LS-coupling labeling of these levels should be interchanged.

Excited
level

2p 3$ P1
or

(2p 3/23$1/2 ),

hE (Ry)

175.0
175.0

175.0
175.0

10

3.43[—4]
3.47[—4]

1.11[—4]
1.08[—4]

50

4.65[—4]
4.80[—4]

1.28[—4]
1.29[—4]

Ef (Ry)
200

8.99[—4]
9.20[—4]

2.30[—4]
2.36[—4]

1.48[—3]
1.46[—3]

4.85[—4]
5.03[—4]

2.00[—3]
1.87[—3]

8.85[—4]
9.13[—4]

2p 3$ Pj
or

(2p1/23$1/2 )1

2p3d 'P1
or

(2p3/23d 3/2 )1

2p3d 'P,
or

(2p3/23d 5/2 )1

2p3d 'D,
or

(2pj /23d

2$3p 'P
or

(2$1/23Pl/2 ) I

182.9
183.1

182.9
183.1

187.5
187.6

187.5
187.6

189.7
189.7

189.7
189.7

196.9
197.0

196.9
197.0

204.2
204.4

204.2
204.4

2.36[—4]
2.67[—4]

1.19[—4]
1.23[—4]

2.14[—4]
2.06[—4]

7.94[—4]
8.03[—4]

1.36[—2]
1.37[—2]

6.03[—3]
5.91[—3]

1.15[—2]
1.18[—2]

5.00[—3]
4.97[—3]

2.50[—4]
2.22[—4]

1.56[—4]
1.46[—4]

3.06[—4]
3.56[—4]

1.23[—4]
1.32[—4]

1.76[—4]
1.67[—4]

6.30[—4]
6.35[—4]

1.61[—2]
1.62[—2]

6.61[—3]
6.50[—3]

1.36[—2]
1.39[—2]

5.49[—3]
5.46[—3]

3.37[—4]
3.01[—4]

1.57[—4]
1.44[—4]

5.61[—4]
6.60[—4]

1.65[—4]
1.89[—4]

1.08[—4]
9.86[—5]

3.13[—4]
3.11[—4]

2.33[—2]
2.31[—2]

8.95[—3]
8.84[—3]

1.97[—2]
1.99[—2]

7.44[—3]
7.44[—3]

6.45[—4]
5.79[—4]

1.93[—4]
1.73[—4]

9.17[—4]
1.05[—3]

3.00[—4]
3.56[—4]

6.90[—5]
5.77[—5]

1.25[—4]
1.19[—4]

3.11[—2]
2.99[—2]

1.37[—2]
1.37[—2]

2.65[—2]
2.62[—2]

1.14[—2]
1.16[—2]

1.08[—3]
9.47[—4]

3.31[—4]
3.00[—4]

1.24[—3]
1.36[—3]

5.31[—4]
6.32[—4]

5.25[—5]
3.81[—5]

5.72[—5]
4.93[—5]

3.75[—2]
3.43[—2]

2.06[—2]
2.06[—2]

3.22[—2]
3.03[—2]

1.73[—2]
1.76[—2]

1.48[—3]
1.26[—3]

5.82[—4]
5.35[—4]

2p 3p P1
or

(2sj /2 3p 3/2 ),

206.4
206.6

206.4
206.6

6.30[—4]
7.75[—4]

1.93[—4]
2.32[—4]

8.78[—4]
1.05[—3]

2.33[—4]
2.80[—4]

1.74[—3]
2.00[—3]

4.17[—4]
4.89[—4]

2.97[—3]
3.25[—3]

8.59[—4]
9.97[—4]

4.13[—3]
4.30[—3]

1.58[—3]
1.82[—3]
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arctan
2 /~[w

—arctan
r

K(0. (A10)

As a check on this we consider the nonrelativistic limit
a~O. In this limit one sees that Eqs. (A3), (A4), and
(A7) lead to w~l, y~z/k, and y~~~~ =I+1, where
use was also made of Eq. (3). Thus, in this limit q~O
and Eq. (A2) gives

lim 5„,=5&,
= —argl ( I + 1+iz /k )

a~O
APPENDIX

=argI (I+1 izl—k), (Al 1)

5„=5„,+b,5„, (A 1)

where 5„, is the so-called relativistic Coulomb phase fac-
tor and b,5„ is the correction to this due to the fact that
the potential at small r is not a pure Coulomb potential.
First we consider 5„,. It is given by Eq. (5.103) of Rose, '

which we repeat for convenience,

It is our purpose in this appendix to give the appropri-
ate expressions for determining the phase factor 5„enter-
ing Eqs. (1), (9), and (14). One can write

which agrees with the well-known nonrelativistic expres-
sion, e.g. , Eq. (20} of Ref. 21 or the paragraph containing
Eq. (1) of Ref. 1. The last form of Eq. (All) follows from
the fact that I (q')=I (q)'.

For the case that K) 0 one can use similar arithmetic
to find that Eq. (A8) leads to

arctan +arctan —+m, K) 0
2 Kl8

. y.
(A12)

5„,= rl —argl (y+iy ) ——y+ —(I + 1),

where

y=[~ —(az) ]'

y = 1+ E(Ry)
C z
2 k

'

and

(A2)

(A3)

(A4)

except that a factor —m/2 has been added to the right-
hand side. This is necessary in order that Eq. (A12) also
reduce to the correct result given by Eq. (A 1 1 } in the
nonrelativistic limit. That it does is readily verified using
the relation

argl ( I +iz /k ) +arctan —=argI ( I + 1+iz /k ) .
z
Ik

(A13)
z=Z —N . (A5)

where

(K ly/w)
P+ i(I

(A6)

Here k and E(Ry) are the wave number and kinetic ener-

gy (in rydbergs) of the free electron. They are related by
Eq. (24). Apart from a y ln(2kr) term, see Eq. (A14)
below, 5„ is actually the difference between the phase
factor for a pure Coulomb field and that for a zero field.
The quantity ri in Eq. (A2) is given by Eq. (5.71') of
Rose. ' Specifically,

One can add the factor vr/2 into Eq—. (A12) because Eq.
(8) determines ri only to within a multiple of m/2. We
note that Eqs. (A10) and (A12) agree with Walker's' Eqs.
(11) except that his analog of Eq. (A12) has the wrong
sign for the arctan(y /y ) term and hence is not consistent
with Eq. (A8) and does not lead to Eq. (All). It should
be mentioned that he later corrected his Eq. (10) by
adding a term n(1+ 1)/2, which then gives Eq. (A2).

Now we consider the factor b,5, in Eq. (Al). It is well
known that for very large r the large and small com-
ponents of the radial function of the free electron can be
written in the form

2

w = 1+ E(Ry)
2

This leads to

(A7)
and

PF,(r) =C~(E)sin[kr +y ln(2kr )+5,']

Qz„(r) =C&(E)cos[kr +y ln(2kr )+5„'] .

(A14)

(A15)
—y(x+y/w)tan 2' =

Kl y /w
(A8) The factor h5, which corrects for the fact that the actual

potential is not a pure Coulomb potential, is given by

Using
A5 =5,' —5', , (A16)

( & +& }
tan A +tanB

1+tanA tan8
(A9)

with A =arctan[y /(
~
~~ w ) ] and 8 =arctan(y /y ) one

where 5„' is the phase in Eqs. (A14) and (A15) when the
radial functions are determined for the actual potential
due to the ion [assumed to be the Dirac-Fock-Slater po-
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5„'=—kro —y ln(2kro ), (A17)

where ro is the value of r at which the last node occurs as

tential given by Eqs. (17)—(19) in our calculations] and 5„',
is the phase when the radial functions are determined us-
ing the pure Coulomb potential —2z/r for all r. The
value for 5' is determined numerically by using

PE„(r ) is passing from a negative to a positive value prior
to the final integration point determined as described in
Sec. II B of Ref. 13. 5„', is determined numerically by the
same procedure except that the Dirac-Fock-Slater poten-
tial is replaced with the pure Coulomb potential —2z/r
in solving the differential equation for the radial func-
tions.
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