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We experimentally study the coarsening of two-dimensional cellular domain patterns in an in-
creasing bias field. As in soap froths and polycrystalline materials, the coarsening is driven by
effective cell surface energy. We find that the domain patterns are distinguished by a nonmonotonic
change in the total cell surface energy and by topological evolution that proceeds almost exclusively
by cell elimination. Aboav’s law describing topological correlations between neighboring cells is
found to hold over a wide range of bias and cell density. We have also evaluated the distribution
P(n) of n-sided cells over three decades in cell density. The patterns show a form of partial scaling:
over a two-decade drop in cell density, the fraction of all cells that are pentagonal bubble traps (five-
fold symmetric domain structures containing trapped magnetic bubbles) remains nearly constant at
[5s=~0.2 while P(n) changes rapidly. The partial scaling may be related to a novel topological struc-
ture in which the bubble traps act as stable fivefold vertices.

I. INTRODUCTION

Two-dimensional cellular patterns exhibit an intriguing
competition between order and disorder, wherein an ap-
pearance of randomness arising from a variety of cell
shapes and sizes is balanced by underlying topological
constraints.! In evolving cellular systems such as soap
froths and polycrystalline grain growth, this competition
combines with the relatively simple dynamics of individu-
al cells? to produce very subtle overall structure and evo-
lution. On account of its experimental accessibility and
relative simplicity, the two-dimensional soap froth has
traditionally served as the prototype for grain growth and
other evolving cellular structures. Several recent experi-
mental>* and theoretical’™® treatments and computer
simulations'®~ 12 of soap froths have attempted to charac-
terize the rate of coarsening, topological correlations and
disorder, and correlations between cell size and shape.

Cellular domain patterns in magnetic garnet films
stand as a cellular system with a diverse but little-
explored phenomenology. In response to a spatially uni-
form magnetic bias field Hy, cells with fewer than six
sides contract and vanish, and the patterns coarsen in a
manner comparable to soap froths. We described in Ref.
13 how magnetic field and domain wall energies give rise
to effective tension in the stripe domains that comprise
the cell boundaries. The stripe tension drives the pattern
evolution, and provides a link between the domain pat-
terns and the surface-energy driven soap froths and
granular structures.

In this paper we pursue the experimental characteriza-
tion of cellular domain patterns coarsened by a monoton-
ically increasing bias field. Specifically, we study patterns
evolved at room temperature from an initial, Hy =0 state
consisting of a disordered sea of magnetic bubbles. As
shown in Fig. 1, aligning the bias field with the bubble
magnetization and increasing its magnitude produces a
sequence of cellular configurations whose average cell
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density decreases smoothly and monotonically. (This
frothlike evolution contrasts with the two-phase “melt-
ing” transitions that result from ordered lattices of mag-
netic bubbles.!) The observations described here con-
cern energetic and topological aspects of the domain pat-
terns as a function of bias field.

One goal of this paper is to clarify the nature of the
domain pattern energetics. The patterns are governed by
three energy components: the domain wall energy, the
energy contained in the demagnetization fields that origi-
nate in the magnetization, and the energy of interaction
between the magnetization and the external bias field Hp.
We present measurements of the area densities of the
domain wall and bias-magnetization interaction energies
obtained by computer analysis of digitized pattern im-
ages. These components add to the demagnetization en-
ergy to produce tension in the stripe domains that
comprise the cell boundaries. !> By combining an analytic
approximation for stripe tension with measurements of
the domain wall length, we estimate the total cell surface
energy that effectively drives the pattern evolution. The
bias dependence of the stripe tension leads to nonmono-
tonic change in the total cell surface energy concurrent
with the monotonic decrease in cell density.

We have also evaluated statistical quantities conven-
tionally used to describe the topological structure of cel-
lular patterns. In particular, we studied the evolution of
the distribution P(n) of cells with n sides, and its second
moment u,, over a nearly three-decade drop in cell densi-
ty. Following Aboav,'>!® Weaire,'” and others, we also
examined topological correlations between neighboring
cells by way of the quantity m (n), the average number of
sides of neighbors of n-sided cells.

Much of the energetic and topological character of the
domain patterns is dominated by pentagonal bubble
traps, fivefold symmetric domain structures that contain
trapped magnetic bubbles. Bubble traps are described in
detail in Refs. 13 and 18; many can be seen in frames (d)
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and (e) of Fig. 1. Bubble traps are formed by the contrac-
tion of five-sided cells, and resist the complete collapse
favored by stripe tension. This obstruction to the topo-
logical evolution prevents the patterns from maintaining
a cell density that minimizes the total pattern energy as
Hp is increased.'® As a result, the patterns remain far
from equilibrium throughout the high-tension bias regime
Hgy <Hp <Hs, where Hy; is the run-in field of stripe
domains,!® and Hs is the maximum bias field in which
isolated bubble traps can survive. In this regime, all
stripe segments are under tension, and fixing the bias al-
lows the patterns to settle into stationary configurations
characterized by tension balanced at the vertices and
bubble traps where the stripe segments join. While bub-
ble traps do not survive to Hp > H, patterns of finite cell
density persist because coercive friction hinders coarsen-
ing.
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FIG. 1. Cell density vs bias field, and corresponding digitized
photographs of patterns at selected bias field, described in the
text. White (black) areas correspond to magnetization aligned
with (against) Hz. Dashed lines bound the high-tension regime,
where Hy; is the run-in field of stripe domains, and H is the
collapse field of isolated bubble traps.
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We devote particular attention to the two-decade drop
in cell density that occurs in the high-tension regime.
The measured average cell density obeys a power law in
the bias field n, < (Hs—Hpg)* with a=2.9, where the ex-
ponent a is strongly influenced by nonlocal domain in-
teractions and bunching in the local cell density.
Throughout the high-tension interval, the bubble traps
are much smaller than the average cell size, and they act
as stable fivefold vertices. This contrasts with previously
studied experimental cellular systems, which are all froths
comprised exclusively of threefold vertices. It is well
known that froths are subject to the topological
constraint!(n ) =6. This constraint is altered in a more
complex structure containing both threefold and fivefold
vertices, and we discuss the implications of Euler’s rela-
tion in the case of the domain patterns. The central role
of the bubble traps is underscored by our observation
that the fraction of all cells that are bubble traps remains
nearly constant over a significant drop in cell density, a
phenomenon reminiscent of the dynamic scaling that has
excited recent interest in soap froths. *

Cellular domain patterns in garnet films are well suited
for experimental examination. The accessibility of the
domain patterns rivals that of soap froths: their
magneto-optical properties allow direct, room tempera-
ture observation using standard optical techniques, and
the bias field affords precise control of the pattern evolu-
tion. Fixing the bias allows the patterns to settle into sta-
tionary configurations that can be studied at leisure. The
patterns contain enough cells (several million in the
zero-bias configuration) that boundary effects, which
often plague experiments and simulations of cellular sys-
tems, are negligible. High-contrast domain images allow
digitization and automated compilation of statistical
data, thus minimizing tedious manual counting of large
numbers of cells.

The remainder of the paper is divided into six sections.
Section II describes the garnet film used for our observa-
tions and the techniques used to nucleate, control,
record, and analyze the domain patterns. An overview of
the pattern coarsening and energetic bias regimes is pro-
vided in Sec. III. Section IV presents measurements of
energy components of the patterns, and describes a com-
plementary estimate of the total, effective cell surface en-
ergy. Section V considers topological aspects of the evo-
lution, including the distribution P(n) of n-sided cells and
its second moment, and Aboav’s law of topological corre-
lations between neighboring cells. Sec. VI discusses the
coarsening and topological structure of the nonequilibri-
um patterns that populate the high-tension bias regime
Hy; <Hpy <Hj, with particular attention devoted to the
role of the pentagonal bubble traps. Finally, Sec. VII
summarizes our observations.

II. MATERIAL PROPERTIES AND PROCEDURE

Our observations focused on a garnet film formulated
at the Airtron Division of Litton Industries for magneto-
optic device applications; this film is described in detail
elsewhere.'>'®20 Briefly, the film has material composi-
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tion Fej g, Y 20Bi; 09Gdg 95Gag 76Tmg 09012, bulk magne-
tization 4mM =190 G, thickness ¢t =7.8 um, and Curie
point T, =170°C. Typical of device-oriented garnets,
the film has strong uniaxial magnetic anisotropy with
easy axis perpendicular to the film plane. The anisotropy
supports vertical domain walls that separate ‘“up” and
“down” domains (those comprised of magnetization
aligned with and opposite to Hp, respectively). The
domain walls are narrow (~0.1 um) compared to the
domain sizes (~ 10 um), and have an effective surface en-
ergy o =0.23 erg/cm?. The patterns are essentially two
dimensional, and evolve by the lateral translation of the
domain walls. The material properties and domain struc-
ture of garnet films are discussed extensively in the litera-
ture. 19:21,22

Although this paper concerns observations of the Air-
tron garnet, we expect the general results to also apply to
other device-oriented films. Garnet films with similar
values of the ratio o, /47M?t (=0.104 in the Airtron
garnet) possess similar domain configurations when
lengths are scaled to units of film thickness ¢ and fields in
units of 47M.'>?? Indeed, we have observed frothlike
coarsening qualitatively identical to that described here
in each of four additional films with ratios 0.09 <o, /
47rM?* <0.13. Most device-oriented garnet films lay in
or near this range.

The domain patterns were observed via standard opti-
cal microscopy by utilizing the Faraday rotation of
transmitted polarized light with an analyzer oriented to
give contrast between the up and down domains. The
Airtron garnet film was designed to accommodate a large
amount of bismuth,? yielding an unusually large figure
of merit (ratio of magneto-optic rotation to absorption)
and exceptionally bright, high-contrast domain images.
The images were recorded as high-contrast Polaroid pho-
tographs, which were then digitized on a flatbed scanner
at a resolution of 300 dots per photograph inch,
equivalent to ~1-10 dots per 1 um of garnet film de-
pending on microscope magnification. The fidelity of the
digitized images was limited primarily by the clarity of
the photographs, and not by the digitizing resolution. In
all digitized photographs shown in the figures, the white
(black) areas correspond to up (down) magnetization.

Many of the measurements were performed by com-
puter analysis of 1 bit (black and white) digitized pattern
images. Programs were written to exploit the graphics-
oriented design of the Macintosh II. We designed algo-
rithms to accurately determine the domain wall length
per unit area Ly, the fraction of area f; occupied by
down magnetization, and the area and number of sides of
individual cells.!® Evaluations of the side distribution
P(n) and the neighbor distribution m (n) were partially
automated so as to count thousands of cells. The error
rate of the side-counting algorithm became unacceptable
at large bias fields, where irregular cells shapes and low
cell densities made suitable digitized images difficult to
produce. Fortunately, the manual counting required to
complete the analysis was a manageable task.

For the data presented here, the initial (zero bias)
states were disordered bubble seas nucleated via satura-
tion and removal of an in-plane magnetic field. The
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properties of the bubble sea were reproducible and uni-
form throughout the film, with cell density 7900+80
bubbles/mm?. Several million bubbles populated the us-
able, low-defect area (~3 cm?) of the film at H, =0 and
~ 1000 cells remained when the bias passed through the
bubble trap collapse field Hs. Film boundaries and de-
fects had a negligible effect on the results. Bias was
raised monotonically in increments AH, <0.5 Oe. After
each increment, the patterns were allowed ample time to
settle into new stationary configurations which were pho-
tographed as required. Unless otherwise noted, descrip-
tions and analysis concern stationary patterns. Measure-
ments typically represent an average of the results of
multiple sweeps of bias field from the reproducible zero-
bias bubble seas. An ac field component (frequency 40
Hz, amplitude 7 Oe) was applied in addition to the dc
bias to minimize the effects of coercive friction and
smooth the domain wall motion; this technique and the
ac configuration are discussed in Refs. 13 and 18. Many
of the topological characteristics described in Secs. V
and VI rely on the presence of the ac field.

III. OVERVIEW OF COARSENING

Figure 1 shows the monotonic decrease in the average
cell density n. ad Hy is increased from zero through the
bubble trap collapse point H;=98.5 Oe. (We abbreviate
the more precise notation H5° of Ref. 13; the value given
is the largest bias to which bubble traps survive with the
ac field applied.) A description of the associated photo-
graphs will serve as a preview of later sections. Frame (a)
shows the initial disordered sea of magnetic bubbles. In
Fig. 1(b), the pattern retains the character of a bubble
sea, with the increased bias causing the bubbles to expand
and press on one another. From (a) to (b), n, decreases
by the collapse of bubbles with fewer than six nearest
neighbors as they are squeezed by the growth of the
larger bubbles. The mechanism of collapse is energetical-
ly similar to the destabilization of pentagonal bubble
traps.'® In Fig. 1(c), a cellular structure has formed with
well-defined stripe segments and vertices, and bubble
traps have begun to appear. Frame (d) is near the cross-
over to the high-tension regime at the stripe run-in field
Hy;. Spatial inhomogeneity (bunching) in the cell densi-
ty is marked. (The bunching is intrinsic to the pattern
structure, and is not caused by film nonuniformity.) The
bubble traps begin to inhibit the topological evolution,
and the patterns can no longer maintain a cell density
that minimizes the total energy. Some stripe segments
are under tension, while other regions of the pattern are
relaxed, as indicated by the stable, regular (pentagonal)
five-sided cells. Configuration (e) is near the center of the
high-tension regime, described in detail in Ref. 13. All
stripe segments are under tensions that are balanced at
the bubble traps and threefold vertices. The bubble traps
are much smaller than the average cell size, and act as
stable fivefold vertices. Bunching in the cell density is at
a maximum; note the knots of high cell density held to-
gether by the bubble traps. Increments in Hy destabilize
these traps, triggering ‘‘avalanches” of cell eliminations
that propagate through the pattern and release tension.
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In the stationary patterns in this regime, five-sided cells
other than the bubble traps are irregularly shaped (i.e.,
not pentagonal), and three-sided cells are absent. Four-
sided cells are observed only in the upper half of the re-
gime. In Fig. 1(f), Hp > Hs, all bubble traps have van-
ished, and the patterns appear similar to soap froths. Re-
versed magnetization remains only because of coercive
friction that hinders the lateral motion of the long stripe
segments. Further increase in Hy destabilizes cells of in-
creasing size as the combination of bias and ac field
tolerate progressively less curvature in the stripe seg-
ments.'*'® The rate of cell elimination dn./3Hj is very
low, and the patterns survive to Hz =H, =151 Oe, where
H is the bias field at which the remaining vertices are
pinched off and the cellular structure is destroyed. '*

As shown in Fig. 1, the cell density n.(Hp) is divided
into two regions: concave down at low bias, and concave
up at higher bias, with inflection at Hz =75 Oe. As dis-
cussed in Ref. 13, the spacing d; in minimum energy
stripe patterns?> near Hpy, obeys a power law
s, <(Hgy—Hg)™#, with exponent B=~1l. Using the
correspondence 1/d2—n,, similar arguments would pre-
dict power-law behavior for minimum energy cellular pa-
terns of the form n, < (Hg;—Hp)% with a=1. The ex-
perimental observation of an inflection point in n_ instead
of a linear approach to zero cell density suggests that the
patterns begin to be pushed away from equilibrium near
this point. This conjecture is supported by the onset of
bunching of the cell density near the inflection point. Be-
cause stripe tension increases with the amount of stray
field generated by down magnetization, which in turn in-
creases with cell density, ! the stripe segments in regions
of high cell density are probably under tension for Hp
greater than the inflection point.

Thus we slightly refine our previous outline'* of the
bias regimes. For Hyz $75 Oe, the patterns remain close
to equilibrium, characterized by small or zero stripe ten-
sion. In the interval 75 Oe < Hy < Hyy, some stripe seg-
ments are under tension, bunching in the cell density be-
comes noticeable, and the patterns begin leaving equilib-
rium. The high-tension regime Hy; <Hg <Hs is dis-
tinguished by nonequilibrium patterns in which all stripe
segments are under tension. The bias dependence of the
cell density in this regime is discussed in Sec. VI.

IV. ENERGETICS

This section examines the bias dependence of individu-
al energy components, and uses measurements of the to-
tal domain wall length to estimate the total energy con-
tained as stripe tension, the analog of the surface free en-
ergy of soap froths.

We measured two components of the total energy by
computer analysis of digitized pattern images. The frac-
tion of down magnetization f; (determined by the area of
the dark regions in the figures) and the length of domain
wall per unit area of the garnet L, are plotted in Fig.
2(a) versus bias field. The fraction f; decreases monoton-
ically. The domain wall length L, at first shows a (bare-
ly visible) increase because the expansion of the bubble
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FIG. 2. (a) Fraction of down magnetization and domain wall
length per unit area of garnet film vs bias field. (b) Interaction
and domain wall energies per unit area and their sum, relative
to saturation. Solid curves are guides.

radii initially dominates the decrease in f,. The interac-
tion and wall energy densities are then given by
e;=2MHtf, and e, =0 ytLy (erg/cm?); these energies
and their sum are shown in Fig. 2(b). (Energy density
here refers to the energy per unit area of garnet, averaged
over a large region of the pattern.) Following conven-
tion, all energies are measured as the difference from sat-
uration, i.e., a single-domain state with all magnetization
aligned with Hy. Both e; and ey remain positive until
all cells are destroyed at H, =151 Oe.

The remaining ingredient of the total energy is the
demagnetization energy density e, =Hp2 /87, where H,,
is the demagnetization field, i.e., the field that originates
in the magnetization. More precisely, field lines of H/,
originate at the film surface, where V-M+0. Relative to
saturation, e, is negative so long as cells, and hence
down magnetization, remain. Measurement of e, is
difficult because H, strays outside of the garnet, and cal-
culations of the total demagnetization energy are ham-
pered by its nonlocal form.!*?* The total energy is thus
difficult to determine experimentally.

However, in the high-tension regime we can use the
data plotted in Fig. 2 to estimate the total energy by util-
izing the connection between the energy components and
the stripe tension.!* This connection underlies the well-
known analytic form for the tension, equivalent to the en-
ergy per unit length E (Hjp), calculated for an isolated
stripe domain relative to saturation.'*?* The function
E (Hp) increases nonmotonically with bias, crossing zero
at the stripe run-in field Hyy, and reaching a maximum at
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Hy=4nwM equal to the energy contained in the two
domain walls. The total energy per unit area of the cellu-
lar  patterns can be estimated as e, (Hp)
~E(Hp)[Ly(Hg)/2). Here Ly, /2 is a measure of the
stripe length per unit area, where L, is the experimental-
ly determined domain wall length per unit area shown in
Fig. 2(a); the factor of } accounts for the two domain
walls bounding each stripe. This measure is fairly accu-
rate for the sparse patterns in the high-tension regime.
The result for e, is shown by the data markers in Fig. 3.
(The solid curve is a schematic representation of the ener-
gy in excess of equilibrium e,,, described below.) The en-
ergy e, rises to a peak near Hy =90 Oe as the increasing
stripe tension dominates the product, and then falls away
as the froth coarsens and the cell boundary length is re-
duced. Note that, because the negative demagnetization
energy balances the positive domain wall and interaction
energies, the stripe energy E,, and hence the maximum
value of e, are only a small fraction of the magnitude of
the individual components. The energy barriers between
domain configurations are nonetheless much greater than
kT ,oom»">'® and the patterns observed in the high-tension
regime are nonequilibrium, metastable states.

The use of the isolated stripe energy E; in the above es-
timate of e, ignores the effect of domain interactions in
the real pattern. The total energy is thus underestimated
because, for given Hp, stripe tension increases with cell
density.'* The zero crossing of e,,, is artificially imposed
at Hy; by the crossing of E,, whereas some stripes in the
actual patterns have positive tension below Hy;, as men-
tioned in Sec. III. However, incorporating interactions
does not change the magnitude of e, drastically,'’ and
the general form of e, as shown in Fig. 3 is certainly
correct.

The expression e, =E (Ly, /2) mimics the form (sur-
face tension) X (cell boundary length) that gives the total
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FIG. 3. Data markers indicate the “surface” energy estimate
e =E(Ly /2), where E; is the calculated tension of an isolat-
ed stripe domain, and Ly is the experimental value for the
domain wall length per unit area from Fig. 2(a). The solid curve
is the schematic form of the energy in excess of equilibrium,
with a peak near the center of the high-tension regime (bounded
by the dashed lines).

energy of surface-energy driven systems such as soap
froths and polycrystalline materials. However, to be pre-
cise, we should compare the total pattern energy in excess
of equilibrium e,, sketched as the solid curve in Fig. 3, as
opposed to the estimate e,,, which used the saturated
state as an energy reference. Because for Hp > Hg;
saturation is the equilibrium state,'’ the energy e,
~Eg¢(Ly, /2) provides an adequate estimate of e, in the
high-tension regime Hy; <Hp <Hs, and the curve was
simply drawn through the data markers. The form of e,
near to and below Hpy; was sketched so as to take into ac-
count the departure of the patterns from equilibrium near
Hy =75 Oe. The energy e, remains close to, but slightly
greater than, the equilibrium energy until a few oersteds
below Hpy;. It then rises as the bubble traps inhibit the
evolution and stripe tension appears, deviating farthest
from equilibrium near the midpoint of the high-tension
regime, and finally decays slowly at large bias Hy > H ;.

A clear comparison of the energetics of the domain
patterns and other cellular systems is now possible. The
domain pattern energetics are generally more complex
than that of soap froths due to the bias and configuration
dependence of the multiple energy components and of the
stripe tension. For Hj sufficiently below the run-in field,
the patterns adjust to keep the stripe tension, and hence
the total effective surface energy e.,, small or negligible.
Thus, unlike soap froths, the domain patterns at low bias
are not a manifestly nonequilibrium system. However,
the nonequilibrium domain patterns in the high-tension
regime are characterized by tension in the cell boundaries
that is statically balanced at the vertices and bubble
traps; see Fig. 1(e). Soap froths share this general feature,
but the stable fivefold vertices in the form of bubble
traps are unique to the domain patterns. The increasing
stripe tension in the high-tension regime competes with
the decreasing cell density, and the total, effective surface
energy changes nonmonotonically as the patterns coar-
sen. In contrast, the uniform and time-invariant surface
tension of soap froths implies a total surface energy pro-
portional to the total cell boundary length, and both the
cell density and energy monotonically decrease in time.

V. TOPOLOGICAL DISORDER AND CORRELATIONS

This section describes the local topological mecha-
nisms by which cellular domain patterns evolve, and
presents experimental evaluations of statistical distribu-
tions conventionally used to describe topological struc-
ture in cellular patterns.

Typical of systems driven by cell surface energy, the lo-
cal topological evolution of the domain patterns follows
the rule? that cells with fewer than six sides tends to con-
tract. However, we find two constraints to apply that are
unusual among cellular systems. (i) Over the entire range
of bias field 0 < Hy < Hy, we observe no neighbor switch-
ing, i.e., processes in which local cell neighborhoods are
rearranged but the total numbers of sides, cells, and ver-
tices are conserved. (Such topological changes are often
referred to as “T'1” processes in the literature.!) Instead,
we find that the vanishing of cells (“72” processes) is the
essential mechanism of topological change. Exceptions
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occur only for bias fields at or above the center of the
high-tension regime, and then only rarely, when cell walls
are severed as the size of a contracting four-sided cell ap-
proaches zero. The lack of neighbor switching is
significant in that this process provides a mechanism for
strain relief.?> (ii) Cells with fewer than five sides are ex-
tremely rare in the stationary patterns, except near the
upper end of the high-tension regime. Cells with n <35
are often formed during the course of the evolution when,
for example, the vanishing of a cell removes a side from a
neighboring five-sided cell. However, these cells tend to
be unstable and collapse immediately, and are observed
only rarely in the stationary patterns.?® Except near the
upper end of the high-tension regime, five-sided cells thus
provide the sole topological balance required to satisfy
{n ) =6, a constraint imposed on all two-dimensional cel-
lular patterns with vertices of threefold coordination.'
(Throughout this section, pentagonal bubble traps are
considered as five-sided cells.) The largest n increases
from n_,, =8 in the initial bubble sea to n,, =11 or 12
in the high-tension regime. Cells with n >12 are ex-
tremely rare. These observations rely on the presence of
the ac field. For example, in its absence, the breaking of
cell walls is common,'® and can result in cells with n as
large as 30.

Topological disorder in cellular patterns is convention-
ally measured by the second moment

w= S P(n)n—6>={((n—(n)?), (1)

where P(n) is the fraction of cells with n sides. The bias
dependence of u, is shown in Fig. 4(a). For bias fields up
into the high-tension regime, p, was determined by com-
puter analysis of the digitized pattern images as described
in Sec. II. At larger bias fields, the low cell density and
irregular cell shapes necessitated counting by hand. In
all but the sparsest patterns, a minimum of several hun-
dred cells, and often thousands, were sampled to deter-
mine P(n) at each bias value. Enough cells were includ-
ed to ensure that [{n)—6|<0.1 for all samples. (The
tolerance was, in fact, much better in most cases.) The
second moment pu, remains smaller than unity for more
than a two-decade drop in the cell density n,, during
which the nature of the patterns changes from a bubble
sea to a nonequilibrium, minimal surface pattern. The
second moment plateaus and dips slightly over Hp
~75-85 Oe as the patterns begin to move away from
equilibrium. Only when Hj reaches the upper half of the
high-tension regime does u, increase rapidly. However,
1, does not diverge as Hz — H 5, and, in fact, does not ap-
pear to become much larger than the maximum value
w,~3 shown in Fig. 4(a).?” Low cell density and lack of
reproducibility due to coercivity make pu, difficult to
determine above Hj. Occasional severing of the stripe
segments in the high basis regime Hp > Hs sometimes
produces cells of large n that inflate y,.

Over nearly a three-decade drop in cell density, the
toplogical disorder as measured by pu, remains
significantly smaller than the value u,=~1.4 observed in
mature soap froths.* The near absence of three- and
four-sided cells in the stationary domain patterns slows

1957

the generation of topological disorder and suppresses the
tails of P(n). The appearance of four-sided cells and an
increase in P(5) contributes to the rise in y, in the upper
half of the high-tension regime.

The side distributions P(n) are shown in Fig. 4(b) for
patterns roughly a decade apart in cell density. The aver-
age topological structure changes only slightly from
Hy=0 to Hyg,, as indicated by side distributions (1)-(3),
and the change in y, is correspondingly small. The cell
density drops by a factor of ~20 over this bias range as
the patterns transform from bubble seas to fully
developed cellular patterns containing bubble traps. The
near invariance of P(n) is reminiscent of the dynamic
scaling of soap froths.* However, it is unclear how to
compare the time evolution of the soap froth, in which
the surface tension does not change, with the evolution of
the transforming domain patterns governed by bias-
dependent stripe tension. The side distributions P (n) of
the domain patterns change most rapidly through the
high-tension regime, as indicated by curves (3)-(5) in Fig.
4(b), and reflected by the rapid rise in y,.
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FIG. 4. (a) Second moment of the side distribution P(n) vs
bias field. Cell densities at selected bias values are indicated.
Representative standard deviations for three bias sweeps are
shown for the closed circles. The dashed lines bound the high-
tension regime. (b) Side distribution at selected bias fields. Cell

densities and second moments correspond to points (1)—(5) la-
beled in (a).
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We examined topological correlations by means of the
quantity m (n), the average number of sides of neighbors
of n-sided cells. The primary aim was to test Aboav’s law

6a +
m(n)=6—a +~——~—'li2—

) ()
which has been found to hold for a number of cellular
systems. "* The free parameter a has been conjectured to
reflect the processes that drive the coarsening. Equation
(2) can be derived'® by assuming the form
m(n)= A +B/n, which describes many (but not all)
two-dimensional cellular structures, and using the
rigorous topological sum rule!’

> nm(n)P(n)=36+pu, (3)

to relate the parameters A and B via the independently
measured second moment p,. We determined m (n) for
the domain patterns at multiple bias values by means of
image analysis (again with some manual counting at low
cell densities), employing methodology similar to that
used to evaluate P(n). The results for two widely
separated bias values are shown by the data markers in
Fig. 5(a). The solid curves represent Aboav’s law using
experimental values for the second moments. The Hz =0
bubble sea is accurately described by Aboav’s law Eq. (2)
with the free parameter a =1.5, while at Hz =89 Oe, in
the heart of the high-tension regime, the data are best fit
by a =1.2. Figure 5(b) verifies that the linear relation be-
tween nm and n, as well as Aboav’s law, hold very well.

6.5 4 5 6 7 8 9 10 11

@ o Hy=89 O, 1,=0.83 |

| \

° Hg=00Oe, 1,=0.43 |

| — Aboav's law f

m(n) 6.0 - |

FIG. 5. (a) Average number of sides of neighbors of n-sided
cells, at two bias values. The solid curves are Aboav’s law with
a =1.5 for the zero-bias bubble sea, and a =1.2 for patterns in
the high tension regime. (b) Product of m (n) and n verifying
the linear relationship with n and agreement with Aboav’s law
(lines).

Patterns at intermediate bias also obey Aboav’s law, with
some a actually smaller than the values corresponding to
Fig. 5. For example, a =0.82 applies to patterns near
Hg =74 Oe.

The value @ =1.2 for the high-tension patterns agrees
well with the values a =1.2 and 1 found for soap
films,*!® and the value a =1 found to hold for certain
polycrystalline rpaterials. !> The similarity in @ is remark-
able given the different topological and geometrical struc-
tures of these systems. For example, correlations be-
tween cell areas and numbers of sides, an important con-
sideration in the filling of the plane by cells, are clearly
different for soap froths and domain patterns, given that
three- and four-sided cells are virtually absent in the
domain patterns, and that the bubble traps are much
smaller than the average domain size.

VI. COARSENING IN THE HIGH-TENSION REGIME

Pentagonal bubble traps govern much of the behavior
in the high-tension interval Hy; <Hp < Hs. This section
discusses the influence of bubble traps on the observed
form of the cell density n.(Hp), as well as their role as
fivefold vertices, an unusual topological structure that
distinguishes the domain patterns from other experimen-
tal cellular systems.

As shown in Fig. 6(a), the average cell density n, drops
by a factor of ~200 over the high-tension regime. The
concave-up shape of n.(Hpy) suggests coarsening of the
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FIG. 6. (a) Cell density in the high-density regime. Error
bars are standard deviations for three runs. The solid curve is
the power law fit nc =C(Hs—Hpg)% Hs;=98.5 Oe, and a=2.9.
(b) Average area per cell 4.=1/n. plotted on a logarithmic
scale vs bias. The data and power law (solid curve) show good
agreement for nearly two decades in A4,. The power law
A. = (Hs—Hp) *° diverges at Hy =H s, whereas the data tails
off near H5 due to coercive friction that hinders coarsening.



41 COARSENING OF CELLULAR DOMAIN PATTERNSIN . ..

form n, < (Hs—Hpg)® The choice of Hs as the limiting
field is motivated by the discussion in Ref. 13 showing
that the cell density in an idealized, coercivity-free garnet
would be expected to reach zero at Hs. A two-parameter
(leading coefficient and exponent) fit to the data with H
fixed at its measured value 98.5 Oe gives a=2.91+0.2;
this power law is shown as the solid curve in Fig. 6(a).
The average area per cell 4,=1/n, is plotted in Fig.
6(b) on a logarithmic scale. The corresponding power-
law fit A <(Hs—Hp) *° shown as the solid curve
agrees well with the data over two decades in area or cell
density. While the power law for the average cell area
diverges as Hy— H, the data tail off as coercive drag
hinders the coarsening, and a residual pattern with n, =2
cells/mm? remains above Hs [see Fig. 1(0]. To our
knowledge, the (coercivity-limited) divergence in the
average cell size at H is not observed in any other cellu-
lar system. (Infinite cell size in soap froths corresponds
to time— .)

In the high-tension regime, bias increments typically
destabilize stationary patterns by forcing the collapse of
the bubble traps that support them. (As discussed below,
bias increments often cause the contraction of cells adja-
cent to bubble traps, or the contraction of “knots” of
cells, but bubble trap collapse is almost always observed
to be the first topological change.) The form of n (Hp)
might therefore be expected to rely on the stability cri-
terion for the bubble traps. The approximate condition
for the collapse of a given bubble trap is Hg + HY™=H,,
where H3™ is the total demagnetization field originating
in reversed magnetization other than that comprising the
bubble trap.'® This additive condition states that H is
the total local field required to destabilize the trap. For
our purposes, we assume Hs is constant for the sparse
patterns in the high-tension regime. The simplest dimen-
sional argument suggests Hj™ ~Cn,, which would give
the linear dependence n,~Hs;—Hp, i.e.,, an exponent
a=1.

The large deviation of the observed exponent a=2.9
from unity may be related to the notable bunching in the
local cell density prevalent in the high-tension interval;
see Fig. 1(e). The excess reversed magnetization
enhances the stray fields in the bunched regions. Bubble
traps in these regions are indeed observed to be the most
susceptible to collapse under bias increments. The stabil-
ity of the pattern is thus limited by the bubble traps that
experience the largest stray fields. A condition for pat-
tern  stability might thus be expressed as
Hy+max(H}™)=Hs, where max(H}™) is the largest
stray field experienced by any bubble trap in the pattern.
The inhomogeneities in local cell density imply that
max(H§™)> (Hi™ ), the average of the stray fields ex-
perienced by the bubble traps. In this picture, the ex-
ponent a is determined by the relationship between
max(H}™) and the average cell density n.. The power
law indicated by the data in Fig. 6 implies
max(H§™)=~Cn!’®, 1/a=0.34. This weaker-than-linear
dependence may be due to the observed, increasing
nonuniformity in the local density as the pattern coarsens
through the high-tension regime. However, we have

1959

found no compelling explanation for the measured value
a=2.9.

The photograph in Fig. 7(a) shows an irregularly
shaped five-sided cell neighboring a bubble trap, a com-
mon configuration throughout the high-tension regime;
see, for example, Fig. 1(e). Stripe tension would favor T1
switching of the asymmetric vertices at the narrow end of
an irregular cell, as shown schematically in Fig. 7(b).
However, T1 changes are thwarted by the mutual, ap-
proximately dipole-dipole repulsion of the vertices and
adjoining stripes, and this process is not observed. The
stability of the irregular cells, and of the stationary, non-
equilibrium patterns themselves, thus relies on mutual
domain repulsion. A sufficient increase in Hy will often
destabilize irregular cells so that they contract along their
length, as shown schematically in Fig. 7(c). The bubble
trap, and often the cell itself, are destroyed in the pro-
cess.?®

Figure 8 shows that the fraction f5 of all cells that are
bubble traps versus Hy remains close to f5~=~0.2 over the
interval Hg; < Hg < ~95 Oe, during which the average
cell density n. drops more than 100-fold. The photo-
graphs demonstrate the substantial coarsening over this
range. The fraction f5 drops to zero as Hy—H5 in an
interval of ~3 Oe as the remaining bubble traps become
unstable and coercive drag begins to affect the domain
motion.

This constancy in f5 strikingly emphasizes the role of
the bubble traps as regulators of the cell density and to-
pological evolution. This phenomenon is somewhat
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FIG. 7. (a) Photograph of a stable, irregular five-sided cell
adjacent to a bubble trap; Hz =87 Oe. (b) Sketch of the T'1 pro-
cess and subsequent collapse favored by stripe tension and ver-
tex asymmetry, but which is not observed because of mutual
domain repulsion. The stability of the configuration (a) thus re-
lies on domain repulsion. (c) Sketches of observed response to
sufficient bias increase. The irregular cell is destabilized and
contracts along its length. The bubble trap is destroyed, and in
most cases the remaining cell also collapses.
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FIG. 8. (a) Fraction of all cells that are pentagonal bubble
traps in the high-tension regime, and digitized photographs of
corresponding patterns. The fraction fs remains close to 0.2
over a nearly two-decade drop in cell density, evidence of par-
tial scaling. Error bars give the standard deviation for three
bias sweeps.

surprising in view of the influences of cell bunching and
domain repulsion on the pattern stability, the simultane-
ous rapid change in P(n) and p,, and the strong bias
dependence of the patterns energetics and effective cell
surface tension (Fig. 3) through the high-tension interval.
Note in particular that the probability P(5) that a given
cell has five sides (including bubble traps) grows
significantly over the same bias interval in which f
remains constant; compare Fig. 4(b). The constancy in
fs concurrent with evolution in P (n) might be appropri-
ately described as partial scaling to distinguish it from the
“complete” scaling observed in mature soap froths, in
which the entire distribution P(n) reaches an asymptotic
form* with p,~1.4.

Underlying the partial scaling may be the fact that,
throughout the high-tension regime, the bubble traps are
much smaller than the average cell size, and they act as
stable fivefold vertices. Viewed this way, the topological
structure of the domain patterns differs fundamentally
from that of soap films and other froths composed entire-
ly of threefold vertices. We can explore this novel struc-
ture by considering the pattern obtained by the mental
transformation bubble trap —s fivefold point vertex. Let
the subscript O refer to the original pattern, i.e., the to-
pology in which all vertices are threefold. (In the original
pattern, bubble traps are constructed of five threefold
vertices, a view held throughout Sec. V.) Let A refer to
the alternate pattern topology produced by the transfor-
mation. In terms of the fraction f5 of cells that are bub-

ble traps in the O pattern, it is straightforward to show
that the average numbers of sides of the cells in the A4
pattern is

6—10f5
l“fs ’

and that the ratio of the number of threefold vertices to
fivefold vertices is

Vi/Vi=2/fs—5. (5)

(n), = (4)

(Derivations are given below.) Note that {n) , <6 be-
cause neighbors of the bubble traps each lose a side in the
transformation. The rigorous topological limits of f5 < 2
and (n) 4> 2 correspond to an A pattern with all five-
fold vertices.

It is tantalizing to note that the measured partial scal-
ing value fs=<i gives the integral values (n), =5
=V3/V5. However, there is no obvious topological
reason that these quantities must be integral. Given the
observed variation in P(5) with Hp in the high-tension
regime where f5 is constant, there seems to be no topo-
logical connection between f5 and P(5). An attempt to
understand the observed partial scaling must perhaps in-
corporate the complex influences of cell density nonuni-
formity and domain repulsion described above.

The above topological relations can be derived by a
straightforward application of Euler’s equation. The
transformation bubble trap— fivefold vertex of definition
gives V3 =fsC,, where C, is the original number of
cells, including bubble traps. The number of threefold
vertices after the transformation is then
V3 =V,—5fsCo, because five threefold vertices are
“lost” for each bubble trap. In the original pattern
Vo=2C,, leading to the result Eq. (5). To find
(n),=C;'S,nC (n), where C (n) is the number of
cells with n sides after the transformation, we can use
28,-3,nC ,(n), i.e.,, a segment divides two cells, and
2S5 =3V +5V3, because each segment connects two
vertices, and the right-hand side is the total number of
segments emanating from the vertices. We insert these
expressions into Euler’s equation for a plane!

C,—S,+V,=1, (6)

where V ,=V3 + V3, the total number of vertices in the
altered pattern. (Euler’s equation holds for cellular pat-
terns regardless of the coordination of the vertices.) Us-
ing C 4 =Cy(1— f5) gives

Cyi— 13 nC (n)+(Vi+V3)
n

(n) A 2—4f
=1=C, |1— + . (7
4 2 1—f£5 @
In the limit of large C ,, the quantity in large parentheses
must approach zero, giving Eq. (4).

VII. SUMMARY AND CONCLUSIONS

In this paper we have experimentally examined several
energetic and topological aspects of cellular domain pat-
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terns coarsened in an external bias field. Many of our ob-
servations demonstrate a strong connection with soap
froths and other surface-energy driven cellular systems,
while others represent phenomena unique to the domain
patterns.

In Sec. IV direct measurements of the domain wall and
bias-magnetization interaction energies of cellular pat-
terns were complemented by an estimate of the total en-
ergy contained as stripe tension. The nonequilibrium
patterns in the high-tension bias interval Hygy < Hp < H
differ from other surface-energy drive patterns in that the
bias dependence of the stripe tension leads to a nonmono-
tonic change in the total, effective surface energy.

Section V examined how the topological structure of
the domain patterns evolves over three decades in cell
density with increasing bias field Hz. The near absence
of three- and four-sided cells in the stationary patterns re-
sult in topological disorder that is typically smaller than
that of soap froths and other cellular systems. Excep-
tions occur only beyond the upper half of the high-
tension interval. The lack of T1 processes prevents five-
sided cells from gaining or losing sides, which may also
contribute to the relatively small measured value of the
second moment u, and to the buildup of strain. The side
distribution P (n) changes little from Hy =0 to Hy,, dur-
ing which the patterns evolve from bubble seas to fully
developed cellular patterns. Aboav’s law of correlations
of neighboring cells was found to hold over a range of
bias and cell density. The free-parameter value a =1.2
found to hold in the high-tension regime is close to that
found for soap froths and polycrystalline materials, and
suggests that @ near unity might hold generally for sys-
tems governed by surface energy, independent of details
of their evolution and structure.

The cell density variation with bias n.(Hpg) was found
to obey the empirical power law n, ~(Hs—Hp)*, a=2.9.
The exponent deviates significantly from the value of uni-
ty predicted by a simple dimensional argument, possibly
because of influences of bunching in the cell density on
the stability of the bubble traps that support the patterns.
This apparent sensitivity in the coarsening rate dn,/0Hp
is reminiscent of the large deviation in the observed rate
of soap froth coarsening from theoretical predic-
tions. >+ 16

The domain patterns exhibit partial scaling in the
high-tension regime in which the fraction of all cells that
are bubble traps remains nearly constant at f5=~0.2 over
a two decade drop in cell density. The invariance in f

holds while the total fraction of five-sided cells P(5)
changes markedly. The partial scaling differs from the
dynamic scaling recently observed in soap froths, in
which the entire distribution reached an asymptotic form
after sufficient maturation.*

Viewing the pentagonal bubble traps as fivefold ver-
tices gives rise to a novel topology that is not, to our
knowledge, found in any other experimental cellular sys-
tem. Relative to the usual threefold vertex structure, this
topology effectively adds a degree of freedom to Euler’s
equation, namely, Vf,/ Vj, the ratio of the number of
threefold to fivefold vertices. Aspects of this topology
may underlie the partial scaling in f5, and it remains a
challenge to theory to examine this topology and possibly
explain the observed values {n) ,~5=V3/V3.

One aspect of cellular domain patterns that we did not
explore is the correlation between cell size and shape.
Recent theories™” have examined such correlations ob-
served in soap froths, granular structures in metals, and
other systems.! The small size of the bubble traps pro-
duces an unusual configuration that these theories might
address. It would perhaps be appropriate to treat the
bubble traps as fivefold vertices, and examine correlations
in the alternate topology.

We have also not discussed the dynamics of pattern
rearrangement that ensue when bias increments destabi-
lize a stationary pattern. In the high-tension regime, the
patterns rearrange via “topological avalanches” that
propagate through the patterns and lead to long settling
times. The avalanches span nearly two decades in size
and duration, and may be of relevance to the scenario of
self-organized criticality?® proposed as a mechanism un-
derlying 1/f noise; this topic will be addressed in a forth-
coming paper.

In conclusion, we have found cellular domain patterns
in garnet films to have one of the richest phenomenolo-
gies of all cellular systems, with several novel features
that extend the conventional scope of cellular pattern
study.
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