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In the stability analysis of wide-gap axisymmetric Taylor vortex flow, a new instability is found to
supersede the Eckhaus instability for sufficiently high Reynolds numbers. Like the Eckhaus insta-

bility it is axisymmetric, but it represents a short-wavelength rather than a long-wavelength modula-

tion of the pattern: It tends to eliminate every other vortex pair. In experiments it is therefore ex-

pected to change the wave number of the periodic solution more efficiently than the Eckhaus insta-
bility. Its origin is traced back to the resonant interaction of modes with wave numbers q and 2q.
The essential features of the bifurcation diagrams connected with this mode interaction can be ob-

tained by considering a degenerate codimension-2 bifurcation.

I. INTRODUCTION

Pattern selection is a problem that appears quite gen-
erally in pattern-forming systems such as Rayleigh-
Benard convection, ' Taylor vortex flow, and directional
solidification. For quasi-one-dimensional patterns such
as roll convection, this involves in particular the question
of the width of the band of stable wave numbers. Close
to threshold this band is—for stationary patterns—
limited by the universal Eckhaus instability, which in-
volves a one-dimensional modulation of the pattern on a.
very long length scale. This instability can, however, be
superseded by higher-dimensional instabilities; for exam-
ple, cross rolls or the oscillatory instability in Rayleigh-
Benard convection or wavy vortices in Taylor vortex
flow. The question arises whether in these systems the
Eckhaus instability is the only quasi-one-dimensional in-
stability restricting the wave-number band and, in partic-
ular, whether there is also a quasi-one-dimensional
short-wavelength instability.

Close to threshold stationary patterns are described by
an amplitude equation with real coefficients. In the one-
dimensional case this equation exhibits only the Eckhaus
instability. Therefore, to address the question of the ex-
istence of a short-wavelength instability one has to go
further into the nonlinear regime and choose a system
that allows one to exclude higher-dimensional instabili-
ties. This is made possible for Taylor vortex flow by tak-
ing a system with a radius ratio g= R2/R, well below l.
In addition, the Taylor system offers the possibility of
precise measurements of the stability boundaries, as
shown in previous experimental and theoretical investi-
gations for the radius ratio g=0.75. In these studies it
has been found that already rather close to threshold the
band found experimentally deviates substantially from
that given by the Eckhaus instability, as determined by

amplitude expansions around the critical Reynolds num-
ber A, . In contrast to some expectations it has turned
out that this is not due to the appearance of another in-
stability, which according to the experimental observa-
tions also would have had to be axisymmetric. Instead,
already very close to threshold, Ett = (%—%, ) /A,
=0.15, the periodic solutions themselves change their
character drastically. Their instability, however, is still
governed by the same Eckhaus instability even up to
ez =1, where the transition to wavy vortices occurs. To
investigate axisymmetric vortices for larger values of ez,
the radius ratio has to be decreased further. This is done
in the present work. It is shown that in fact, for g=0.5,
which shifts the onset for wavy vortices to values above

ez =3, one finds a transition to a short-wavelength insta-
bility which, instead of modulating the vortices over a
long length scale, tends to pair adjacent vortices.

The organization of the paper is as follows. In Sec. II
the results of the numerical linear stability analysis of ax-
isymmetric Taylor vortex flow are discussed. These re-
sults have been presented previously. ' In Sec. III it is
shown that the new instability found in Sec. II is connect-
ed with the bifurcations that arise from the interaction of
modes with resonating wave numbers. In Sec. IV a bifur-
cation analysis is performed which captures all qualita-
tive features of the numerically obtained bifurcation dia-
grams.

II. STABILITY ANALYSIS

Here we investigate the stability of axisymmetric Tay-
lor vortex flow with respect to general axisymmetric dis-
turbances. In order to be able to go to large Reynolds
numbers a small radius ratio of g =0.5 is used
throughout this paper. The basic equations as well as the
notation are the same as in Ref. 5, which hereafter will be
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referred to as RP. Thus we use the dimensionless vari-
ables t=2vt/d, x =zq/d and u=u/Q&R& for time, axi-
al coordinate, and velocity, respectively. Here d denotes
the gap width R2 —R &, v the kinematic viscosity, q the
dimensionless wave number, and 0, the rotation rate of
the inner cylinder. The torque 6 exerted on the cylinders
is made dimensionless via

6 =27TR
&
vp'0

&
/d

with p' denoting the density of the fluid (6 corresponds to
6/6 in RP). As in RP both the calculation of the solu-
tions as well as their stability analysis are performed nu-
merically using a Galerkin expansion in axial Fourier
modes and in radial Chebyshev modes.

The result of this stability analysis is shown in Fig. 1.
There the stability limit is given by the solid line. The
dash-dotted line denotes the neutral curve and the dashed
line gives the (Eckhaus) stability limit as determined in a
third-order amplitude expansion. ' For q & q,
(q, =—3. 16) the limit is always given by the Eckhaus insta-
bility and as in RP the strong deviations from the ampli-
tude expansion's result are due to a gap in the existence
region of the stationary solutions (see also Sec. III). For
q )q„however, a transition to a short-wavelength insta-
bility is found for values of ez above the horizontal bar
across the stability limit. The difference between the two
instabilities manifests itself in the behavior of the growth
rates of the perturbations, which we now discuss.

The linear stability analysis of the (nonlinear) periodic
pattern leads to differential equations with coefficients
which are periodic in the axial direction. Any axisym-
metric perturbation can therefore be written in Floquet
form uz(qx)exp(ipqx) where u~ is 2m. periodic and p is the
normalized Floquet exponent. These perturbations imply
a modulation of the pattern over a length I. =2m/pq.
This is illustrated in Fig. 3(a) (below) which shows a

Stability Boundaries

3 4
Wave Nurrrber q

FIG. 1. Stability boundaries for g=0.5. , full stability
anslysis; ———,third-order amplitude exapnsion;
neutral curve. The horizontal bar indicates the transition re-
gion between Eckhaus and short-wavelength instability.

periodic pattern (dashed line) and the same pattern with a
(Fioquet) perturbation added at some amplitude (solid
line, p =0.1). The analysis gives a dispersion relation for
the growth rate o =o(p). This dispersion relation de-
pends on %, q, and also on the radius ratio q W. ithin the
stable band o. is negative for all p. On the stability
boundary 0. goes through 0 at some value p„and the
character of the instability depends on this value.

The Eckhaus instability is characterized by p„~0. To
make this more clear it is useful to expand cr in p. Due to
the reAection symmetry in the axial direction o is quad-
ratic in p and one has

o =s2(%,q)p +s~(%,q)p +

The onset of the Eckhaus instability is given by a sign
change of s2. Therefore 0 becomes positive first for
infinitesimally small values of p and the relevant modula-
tions have an essentially infinite wavelength and can be
described by a phase diffusion equation. In fact, the
phase diffusion coefficient" '

a~I is given by

D~~
= —sz/q . A typical behavior of cr in this regime is

shown in Fig. 2(a) where cr(p) is given for three different
values of q for e~ =0.555. The growth rate o(p) has to
be symmetric with respect to p=0. 5 and periodic in p
with period 1, since for p ) 1 prefactors exp(iqx) can be
included in u . This implies that for larger p more
Fourier modes have to be retained to achieve the same
accuracy and deviations from periodicity are the effect of
the truncation in the number of Fourier modes. The
present results were obtained with up to 15 Fourier
modes and 14 Chebyshev modes which lead to full ma-
trices of the order 400X400. Note the positive values of
o. for q =0.555 for small values of p and also the shift of
the maximum of o (p) towards larger values of p with in-
creasing q. Thus further beyond the stability limit the
maximal growth rate occurs for p —=0.5.

For larger ez the dispersion relation behaves
differently. This is shown in Fig. 2(d) for erat

= 1.54. Now
o becomes positive first for p„=—,

' rather than p„~O and
the relevant perturbations modulate the pattern with a
wavelength which is twice the wavelength of the basic
pattern. We call this new instability short-uauelength in-
stability Figures . 2(b) and 2(c) show o(p) for the transi-
tion regime between the Eckhaus and the short-
wavelength instability. So far the analysis cannot tell
whether the short-wavelength instability leads to a new
stable solution with twice the original wavelength or not.
In Sec. III it will be shown that the bifurcation is in fact
backward. Therefore it is expected that, similar to the
Eckhaus instability, the instability will change the wave
number of the solution and lead back to the stable band.

Despite the fact that both instabi. lities are axisym-
metric they should be fairly distinguishable in experi-
ments. This is illustrated in Figs. 3(a) and 3(b) where the
destabilizing linear modes for ez =1.0 (Eckhaus with

p =0.1) and for e„=1.54 (p =
—,') have been added with

some amplitude to the corresponding periodic solutions.
As expected the Eckhaus mode rnodulates the solution on
a long length scale, which compresses and expands the
vortices on that scale (arrows) Due to th. e wave-number
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FIG. 2. Growth rate of perturbations as a function of the Floquet exponent. (a) e& =0.555, (b) e„=1.0, (c) e& =1.2, and (d)
eg =1.54.

dependence of the phase difFusion coefficie the
compression (for q )q, ) grows without bound and even-
tually eliminates a vortex pair. For q & q, the expansion
dominates and leads to the creation of a vortex pair.
Thus, in the limit p ~0, only a single vortex pair is elim-
inated (or created) in the whole system. In a long system
the wave number therefore changes only slightly. The
short-wavelength instability, however, weakens and
compresses every second vortex pair and tends to elimi-
nate them (arrows). To describe the destabilizing mode
close to the onset of the instability one can derive an am-
plitude equation which allows also for modulations of
this mode on a long length scale. This scale diverges at
the instability limit. Close to this limit the destabilizing
mode will therefore be extended throughout the whole
system and is expected to eliminate half of the vortex
pairs. This would reduce the wave number to q/2; a
wave number for which the pattern again will be unstable
for ez &2. This instability can therefore be expected to

change the wave number quite drastically. In actual ex-
periments (and numerical simulations) one has to take
into account that one obtains an approximation of the
unstable state starting from a given stable state. There-
fore the unstable state is perturbed in a definite way. If
this perturbation has a much larger component for small

p than close to p =
—,
' the Eckhaus instability could outrun

the short-wavelength instability despite its smaller
growth rate. To avoid this one has to cross the stability
boundary very slowly so as to obtain a state for which the
growth rate is still negative for small p but already posi-
tive for p -=0. 5 [compare q =4.625 with q =4.63 in Fig.
2(d)].

III. BIFURCATION DIAGRAMS
AND SHORT-WAVELENGTH INSTABILITY

The origin of the short-wavelength instability can be
traced back to the same bifurcation structure that leads
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to the strong and sudden deviation from the result of the
amplitude expansion for q &q, and ez ~0. 15. As dis-
cussed in RP this structure arises from the interaction of
modes with resonating wave numbers. The first such res-
onance occurs for the modes q and 2q. This has been dis-
cussed by various authors, both numerically' ' ' ' as
well as analytically. ' '

To demonstrate that the short-wavelength instability is
in fact connected with this resonance and to illustrate the
resulting bifurcations in detail, we show a succession of
bifurcation diagrams for increasing values of the Rey-
nolds number. We consider a system of length L with
periodic boundary conditions. In Figs. 4(a) —4(e) the di-
mensionless torque exerted on the outer cylinder is exhib-
ited as a function of 2~/L for the various solutions that
exist for given values of ez and L. We choose the nota-

Axial Direction x
FIG. 3. Destabilizing mode for (a) Eckhaus and (b) short-

wavelength instability. ———, periodic solution;
periodic solution with perturbation added at some amplitude.
Note that the Eckhaus instability weakens only the middle vor-
tices, whereas the short-wavelength instability tends to elimi-
nate every second pair.

tion 2m. /L rather than q because the figures display also
solutions with periodicity length L/2 and L/3 which
have wave numbers 4m. /L and 6m/L. For all Reynolds
numbers there exists the Couette flow which is purely az-
imuthal and yields a torque which is independent of L.
At A and C a solution with one pair of Taylor vortices
branches off the Couette flow. This solution, which is
denoted by S+, is given by the solid line and has wave
number q =2m/L. For sufficiently large L, i.e., small
2~/L, an additional solution with two equal vortex pairs
(S2, dashed) becomes possible which is equivalent to a
solution at L/2 with one vortex pair. Its wave number is
therefore twice that of S+. These are all the solutions
possible close to threshold (ett ~0). Close to the
codimension-2 point (e„«=0.087, q« =2.2), however,
where the solution with two vortex pairs branches off the
Couette flow simultaneously with that with one pair, ad-
ditional solutions appear. This was first shown by An-
dreichikov' and is demonstrated in Fig. 4(a); already
below ett«a mixed mode solution (S, solid) branches off

S2 and merges with it again. This solution consists of
two vortex pairs of different sizes. For all Reynolds num-
bers it bifurcates off S2 defining bifurcation point B. De-
pending on the Reynolds number, however, it merges
with different solutions. For ett =0.0808 [Fig. 4(a)] this
is Sz, whereas for ett =0.0927 [Fig. 4(b)] it is the Couette
flow (at C). In addition, the bifurcation at B has turned
backward yielding a saddle-node bifurcation on this
branch. Now S+ does not branch off the Couette flow

any more for large L; instead, it merges with Sz in a for-
ward bifurcation at B. This shows that S+ should, in

fact, also be considered a mixed mode solution since its
second harmonic, which is of course present for all L, be-
comes stronger with growing L and eventually is dom-
inant close to 8. Increasing ett [Fig. 4(c)] turns the bifur-
cation at C from backward to forward and that at B from
forward to backward creating a saddle-node bifurcation
at F. Note that for lengths L between F and B there ex-
ists no nonlinear time-independent solution with only one
vortex pair. This is true despite the fact that Couette
flow is unstable also with respect to such perturbation.
For ett =0.27 [Fig. 4(d)] S does not reach the Couette
flow any more; instead, it merges with an additional solu-
tion which has three equal vortex pairs (dash-dotted line).
Finally, for ett = 1.54 [Fig. 4(e)] S exhibits a new
saddle-node bifurcation and the bifurcation at B becomes
very strongly backward.

To see whether this bifurcation structure is at all
relevant for the experimental extended system and its sta-
bility boundaries as given in Fig. 1 one has to compare
the Eckhaus stability limits of S+ with the bifurcation
points 8 and 8. This shows that for small e& the bifurca-
tion points are far out in the Eckhaus-unstable region
[Fig. 4(d)] and therefore rather unimportant. However,
with increasing e„ the Eckhaus limit approaches B and
above ez =1.2 the solution is Eckhaus stable all the way
to 8 [Fig. 4(e)]. Therefore the short-wavelength instabili-
ty can be identified as the bifurcation of S off S2 at B,
since the latter solution is equivalent with S+ far away
from the codimension-2 point. In addition, this shows
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FIG. 4. Dependence of the bifurcation diagram on the Reynolds number. The heavy line indicates the region of stable axisym-
metric vortices. When this region reaches B the Eckhaus instability is superseded by the short-wavelength instability. For details see
text.
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FIG. 5. Location of the bifurcations B, B, and Fwith respect to the stability boundaries. Heavy lines as in Fig. 1. —.——,neu-

tral curve for S2 ( A in Fig. 4); ~ ~,B and B (for large q the same curve is shown by 5 to distinguish it from the stability boundary);
———,saddle-node bifurcation of S+ at F. The codimension-2 point (0) is given by the intersection of the two neutral curves.

that in the present case there is no additional stable
periodic solution beyond the stability limit. As indicated
above the short-wavelength instability is therefore ex-
pected to lead back to the stable band. '8'

These bifurcation diagrams are summarized in Fig. 5
where the locations of the bifurcations at 8 and 8 (dotted
lines) as well as that of the saddle-node bifurcation at F
(short dashes) are given together with the stability limits.
The codimension-2 point is given by the intersection of
the neutral curve for modes with one vortex pair per
length L (thick dash-dotted line) and that for modes with
two vortex pairs (thin dash-dotted lines). The triangles
give the location of 8 and 8 when they are interpreted as
bifurcations off S+ rather than S2. 8 gives the onset of
the short-wavelength instability. Below ez —= 1.2 (hor-
izontal bar) it is superseded by the Eckhaus instability
(thick line), whereas above ez —=1.2 it occurs just before
the Eckhaus instability [cf. Fig. 2(d)]. Figure 6 shows an
enlargement of Fig. 5 in the vicinity of the codimension-2
point with the saddle-node line of S added. The arrows
show the range of existence for the respective solutions.
Close to the saddle-node lines the arrows turn around to
indicate the existence of two such solutions.

IV. BIFURCATION ANALYSIS

In the following we discuss how most of the qualitative
features of the bifurcation diagrams shown in Fig. 4 can
be understood through a bifurcation analysis of the in-

teraction of two modes with resonating wave numbers.
This extends the analysis of Dangelmayr' to a degen-
erate case which has been considered to some extent by
Busse for weakly non-Boussinesq Rayleigh-Benard con-
vection.

Phase Diag& ~xi

Wave Number q
FIG. 6. Phase diagram close to the codimension-2 point.

—.——,neutral curves for S2 and S+ (A in Fig. 4);,B
and B; ———,saddle-node bifurcation of S+ at E;
saddle-node bifurcation of S
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We consider Taylor vortex flow close to the point in
parameter space where both a mode with wave number q
as well as one with wave number 2q bifurcate from the
basic state simultaneously. In the vicinity of this
(codimension-2) point the dynamics of the system can be
reduced to that on the center manifold spanned by these
two unstable modes, ' and the flow field is given by

v(r, z)=pie'~"Pi(r)+g2e 'i'$2(r}+c.c.+. . . (2)

with P, (r) being the linear eigenvectors corresponding to
the mode with wave number q and 2q, respectively, and
the ellipsis representing higher-order terms. This yields
two ordinary differential equations for the complex am-
plitudes g, and (2. As in the numerical calculation we as-
sume periodic boundary conditions. Therefore the ampli-
tude equations have to be invariant under translations
Td.z ~z +d and reflections E:z~—z. These sym-
metries transform the amplitudes g, and (2 according to

T (g, , g )=(e'~"g„e"e"g ), K(g„g )=(g;,g') . (3)

As shown by Dangelmayr' this leads to the amplitude
equations

&,gi =(~+a ilail'+b i l(21'g'i+ci(2(i,

B,(2=(p+a2lg, l'+b21(21'g'2+C2(i .
(4)

The coefficients a;, b;, and c; as well as a and P are real.
The small parameters a and P are the unfolding parame-
ters and are related to ez and q via

a= A(erat equi„)—+ir(q —q„)+
P=A, '( ex —ex„) x''(q —q„)+—

with A, , A, ', i~, and x' being positive quantities of order 1.
The neutral curves for the modes g, and (2 are given by
a=0 and P=O, respectively. It is not our aim here to
calculate the coefficients A, , A. ', ~, N', a;, b;, and c; quanti-
tatively. Instead, we ask whether these equations allow
qualitatively the same bifurcation scenario as that found
in the numerical calculation.

Assuming c& and c2 to be nonzero, Dangelmayr per-
forms a nonlinear coordinate change which simplifies
these amplitude equations to the corresponding normal
form. ' The resulting equations describe the bifurcations
in Taylor vortex flow correctly very close to the
codimension-2 point including the subcritical bifurcation
of S between 8 and 8 [see Fig. 4(a)]. However, the
saddle-node bifurcations of S+ [see Fig. 4(c)] and S [see
Fig. 4(b)] cannot be obtained. As will be shown below,
this is achieved if one considers the degenerate bifurca-
tion where c, and c2 are sma11 and taken as additiona1
unfolding parameters. Note that for c, =c2=0 the sys-
tem has an additional reflection symmetry gi 2~ —g, 2.
This sign change of the velocity field corresponds to an
interchange of inflow and outflow, which is a symmetry
of Taylor vortex flow only in the limit g~ 1 and corotat-
ing cylinders (p~ 1 ). Thus by taking c, and c2 as (small)
unfolding parameters, we are considering Taylor vortex
flow close to that limit. It turns out, however, that the

qualitative features of the phase diagram are the same as
in the wide-gap system calculated numerically in Sec. III.
Therefore this degenerate codimension-2 bifurcation can
be regarded as an "organizing center" for Taylor vortex
flow which captures the bifurcation scenario over a wide
range of radius ratio and Reynolds number.

In the general case (allowing ci and c2 also to be small)
no additional coordinate transformation is possible. In-
troducing g, = He'r and (2=Be'i' the amplitude equa-
tions read in the static case

(a+ai A +b, B +ciB)A =0,

(p+a2A +b28 )8+C2A =0.
The first equation yields either A =0 or

A = (a+—biB +ciB)/a, ,

which gives an equation for B,
—C2a+(aiP a2a —c,c2)—B —(cia2+c2b, }8

+(a, b, a,b, )—8'=0 .

(7)

The qualitative features we want to obtain are the
saddle-node bifurcations of S+ and S [see Figs. 4(b} and

4(c)]. To this end it is sufficient to show that the bifurca-
tion of S from the Couette flow (A =0, 8 =0) at C as
well as that of S (at 8) and S+ (at 8} from S2 change
from backward to forward (or vice versa). In Fig. 6 these
locations are indicated by points a, b, and d, respective-
ly

22

At the saddle node there exist two real solutions to
Eqs. (7) and (8). At point a this saddle node occurs at the
neutral curve, which implies that Eq. (8) has a double
zero 8 =0 (and A =0). This yields

a, =O,

P, =C, C2/a, .
(9)

Equation (9) clearly shows that this point can only be ob-
tained in such a bifurcation analysis in the degenerate
case where c&c2 is small.

At points b and d, S+ and S bifurcate, respectively,
tricritically off S2. This solution is given by

A =0, Bo = p/b2, —

and the bifurcation line is given by

O=a+b&Bo+c&Bo .

(10)

+38o(aib2 a2bi)=0 . —(12)

Using (10) and (11) a and P can be eliminated from (12)
yielding

2(a, b2 a2b, )Bo—(a2c, +2—c2b, )Bo—C, c2=0

if Bo )0, (13a)

The points b and d therefore satisfy Eqs. (10) and (11)
combined with the condition for a double zero of (8},

ail3o a2ao C1C2 280(Cla2+C2bl )
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a, (0,
b, &0,

c(c2 &0,
a2b, &a]b2,

(14a)

(14b)

(14c)

(14d)

the scenario of Sec. III can be reproduced, provided
A &0 at two saddle nodes: S and S2 bifurcate from
Couette flow supercritically (S only for P&P, ), point a
lies above the neutral curve for S2, and both b and d ex-
ist. Suitable values of the coeScients are, for instance,
a] =b] = —1.5, c, = —0. 15, a2= —8, b2= —2, and

cz =0.81. Thus, after relaxing the nondegeneracy condi-
tion c,c2%0, this bifurcation analysis can capture the ob-
served behavior of wide-gap Taylor vortex flow over a
considerably larger range of Reynolds number. This
analysis applies also to directional solidification where
similar bifurcation diagrams are observed.

2(a, bz —azb, }Bo (3aze&+2c2bt }Bo c ice =0

if Bo & 0 . (13b)

If a, b2 —
ahab, and c,cz have the same sign the two roots

Bo"2' of (13a) [as well as those of (13b)] have opposite
signs. Thus one tricritical point occurs with Bo &0 [from
(13a)] and one with Bo & 0 [from 13(b)]. This corresponds
to the result found in Sec. III where both branches S+
and S exhibit a tricritical point. In the general case (13)
can have more than two solutions. This is related to the
fact that as a function of a (or P} Eq. (8) can have up to
three saddle nodes since its discriminant is a cubic poly-
nomial in a (and P}. Also, two saddle nodes can occur on
the same branch. A complete classification of the possi-
ble bifurcations is complicated by the fact that physically
acceptable solutions have to satisfy in addition A &0 [cf.
Eq. (7)]. Some more details are given in Ref. 23. Suffice

it here to state that for

V. CONCLUSION

In conclusion, it has been shown that in axisymmetric
Taylor vortex flow the Eckhaus instability is superseded
by another axisymmetric instability if the Reynolds num-
ber is increased beyond twice the critical value. This new
instability modulates the solution at half the wave num-
ber and is expected to change the number of vortices in
the system drastically. It originates from the interaction
of resonating modes. All qualitative features of the ob-
served bifurcation diagrams can be understood by an
analytical bifurcation analysis of this mode interaction if
one expands in the asymmetry between inflow and
outflow. Considering also the results of RP it is seen that
these resonating modes profoundly influence the limits of
the experimentally observable band width for both q & q,
as well as q &q, . It is interesting to note that for
suSciently large Reynolds numbers the bifurcation
analysis of strictly periodic solutions gives a rather good
account of the stable wave-number band of the extended
system, which also allows slow spatial modulations. This
is due to the fact that for q & q, the Eckhaus instability
occurs only very close to the saddle node and for q & q, it
is replaced by the short-wavelength instability. Similar
results may also be expected in directional solidification
and other quasi-one-dimensional systems which break the
reflection symmetry g~ —g.
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