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Stability of temporally periodic states of classical many-body systems
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%'e study the stability of spatially coherent, time-periodic states in noisy, classical, discrete-time,
many-body systems with short-range interactions. Generic stability of periodic k cycles with k & 2

can be achieved only by rules carefully constructed to exploit lattice anisotropy and so suppress
droplet growth. For ordinary rules which do not utilize spatial anisotropy in this way, periodic k

cycles with periods k & 2 are metastable rather than stable under generic conditions, losing spatial
coherence through nucleation and growth of droplets. The unusual dynamical properties of the
periodic states stabilized by anisotropy are described.

Physical systems not driven by time-dependent exter-
nal forces are typically described by dynamical equations
invariant under time translation. However, dissipative
many-body systems often break this time-translation
symmetry spontaneously, their macroscopic properties
varying periodically or even chaotically in time. The
temporal oscillations of certain spatially averaged quanti-
ties (e.g., temperature fiuctuations) in small-aspect-ratio
Benard convection cells are a familiar example. '

Theoretical treatment of such broken-symmetry, macro-
scopically time-dependent states has been limited largely
to mean-field-like approximations. In these schemes,
only a finite (typically small) number of Fourier modes of
the many-body system are retained, rendering the prob-
lem tractable, either analytically or numerically. Period-
ic or chaotic time variation of the Fourier amplitudes re-
tained is a common result of this truncation (the Lorenz
equations, a three-mode approximant to convection, be-
ing an example), and is typically taken to imply the ex-
istence of stable nonstationary states in the full untrun-
cated model.

In a previous paper, several of us studied the stability,
with respect to fluctuations, of the macroscopically
chaotic states predicted by mean-field theories. We ar-
gued that these fluctuations can restrict the growth of
spatial correlations and so prevent the amplitudes of ex-
tended (e.g., Fourier) modes from varying chaotically in
the thermodynamic limit, i.e., that they can destabilize
the macroscopically chaotic states found in mean-field
approximations. In this paper, we investigate the stabili-
ty of temporally periodic states of many-body systems
with respect to the nucleation and growth of droplet fluc-
tuations. We restrict ourselves to discrete-time, synchro-

nously updated, noisy systems with short-range interac-
tions (e.g., cellular automata " (CA) and coupled
maps4 5"). Such models are often used ' ' as prototypes
for the analysis of spatially extended systems such as
chemical reaction-diffusion experiments. Our main re-
sults follow. (i) Periodic k-cycle states with periods k
greater than 2 are typically metastable rather than stable
under generic conditions; they can be stable only in the
presence of special symmetries which force droplets to
shrink under surface tension. (ii) There do exist dynami-
cal rules which exploit lattice anisotropy to suppress
droplet fluctuations and so stabilize periodic states of ar-
bitrarily high period under generic conditions. (iii)
Periodic states stabilized by anisotropy have unusual
dynamical properties (e.g., in two dimensions (2D), auto-
correlations that decay with anomalous rapidity), which
may serve to distinguish them from long-lived metastable
states.

Let us first discuss the main impediment to producing
generically stable, temporally periodic states which spon-
taneously break a discrete time-translation invariance.
Consider for concreteness a simple three-state CA, i.e., a
regular lattice in d-space dimensions, on each site i on
which sits a discrete variable 0,.(n) that takes on one of
three values, 0, 1, or 2, say, and evolves in discrete-time
steps n, according to some local stochastic rule; 8, (n + 1 )

depends probabilistically on the variables 0 (n) on sites j
in some neighborhood of i. Suppose one has constructed
a CA rule which exhibits a stable 3-cycle. We imagine
for convenience that the rule favors spatially uniform
states, so that the spatial average M of all the variables 0,
assumes, in the thermodynamic limit, three distinct
values, Mo„M&, and M2, in regular periodic fashion at

1932



41 STABILITY OF TEMPORALLY PERIODIC STATES OF. . . 1933

consecutive time steps. Because the rule is noisy, most,
rather than all, of the variables take on a common value
at any given time. No single variable experiences regular
periodic evolution. To simplify the terminology, we shall
ignore this fact and speak of the three states as if they
consisted of all 0's, all 1's, and all 2's, respectively, i.e., as
if M -j for j =0, 1, or 2; this is close to the truth if the
noise is small.

Take an initial state consisting of all 1's. The system is
periodic only if the subsequent time evolution, monitored
after every three time steps, appears stationary: the 1's,
e.g., should occur at every third step. Since there is
noise, however, droplets of 0's and 2's of arbitrarily large
size will nucleate in the infinite sea of 1's. We now argue
that suSciently big droplets of either 0's or 2's will grow
with time under generic conditions, eventually supplant-
ing the 1's and so destabilizing the assumed periodic
structure.

To see this, we write the phenomenological
equation "'@ ' for a large, roughly spherical droplet (ra-
dius R ), of 0's immersed in the sea of 1's, say,

R 0.———+h .
t R

Equation (1) is familiarly used to study nucleation and
growth in Ising-like models of equilibrium statistical
mechanics. " ' In that context, it describes the evolution
of a droplet, radius R, of up spins, immersed in a sea of
down spins, in the Ising model in a magnetic field h, at
low temperature T, with surface tension o. The first
term, proportional to the droplet's curvature, 1/R,
expresses the tendency of finite droplets to shrink under
the action of surface tension. The second term represents
the system's preference for the state favored by the field.
As R~~ the domain wall becomes flat; the resulting
equation, dR /dt —h, implies the uniform translation
with velocity h of a flat wall between the two states. A
similar interpretation holds in the locally periodic none-
quilibrium situation considered here: e/R represents the
system's preference for spatially uniform states, while h
represents the net translation velocity, averaged over the
3-cycle, of a flat domain wall between any two of the
states. Note that Eq. (1) assumes that the sign of h is in-
dependent of domain wall orientation, as is the case, for
example, in isotropic systems. We shall return to this
point later. Recall that in equilibrium systems, even an-
isotropic ones where a flat wall's translational speed may
depend on orientation, the sign of the velocity h is always
independent of orientation, since it must produce growth
of the phase of lower thermodynamic potential.

Equation (1) with h )0 describes the growth (shrink-
ing) of droplets of radius R greater (less) than a critical
size R, =cr/h. If our CA rule fav—ors 0's over 1's (h & 0),
the noise wi11 eventually nucleate a finite density of drop-
lets of 0 with R &R„'these will expand linearly with t,
supplanting the sea of 1's and destroying the system's as-
sumed temporal periodicity. A similar breakdown of
periodicity occurs if h (0, so that 1's are favored over
0's.

Only if h is strictly zero in (1) do droplets of arbitrary
size and type shrink and so fail to undermine the system's

periodicity. One can construct rules for which h =0, and
the 3-cycle therefore stable, either by symmetry or by
clever choice of parameters. Under generic conditions,
however, h is always nonzero: The set of parameters for
which the periodic state can be stable has zero measure in
the total parameter space of the rules [just as the Ising
model's coexistence curve has zero measure in the (h-T)
phase diagram]. Thus the overwhelmingly probable situ-
ation is the one without special symmetries to stabilize
cycles.

Under generic conditions, then, the 3-cycle we have
tried to create is at best metastable, rather than stable.
The stable state of the system is actually stationary. To
see this, suppose that our initial state of 1 s is destabi-
lized, after many 3-step cycles, by the growth of droplets
of 0's. Since 0~1~2~0 under the rule, the instability
of 1's with respect to 0's implies the instability of 0's with
respect to 2's, and of 2's with respect to 1's. Thus even as
the initial sea of 1 s is being undermined by large, grow-
ing droplets of 0's, the 0 droplets themselves are being
supplanted by droplets of 2's, which in turn are supplant-
ed by 1's, etc. As t ~ ~, therefore, one expects the sys-
tem to consist, at any instant, of an incoherent mixture of
states 0, 1, and 2, i.e., to be stationary in time. Numerical
simulations in two dimensions indicate that this steady
state contains a stationary density of phase dislocations
(places where all three phases meet) each surrounded by a
Zhabotinsky-type spiral wave containing all three phases.
We cannot rule out the possibility of the system setting
into a stable periodic state with an irrational period,
though we have seen no numerical evidence for such an
occurrence.

Similar arguments can clearly be applied to rule out
generically stable k cycles for any k greater than 2 in any
spatial dimension d. Period-2 systems are an exception
because in these systems the domains separated by a flat
wall exchange identities with each time step. Any
translation of the wall in the first time step is therefore
balanced by an equal and opposite translation in the
second. Thus there is no net translation in a full cycle, so
droplets in period-2 systems are generically described by
Eq. (1) with h =0. They therefore shrink in time regard-
less of their initial size, and so do not destabilize the
periodic state.

The foregoing arguments implicitly assume that the
sign of h is independent of domain-wall orientation. This
need not be the case: Generic conditions guarantee only
that a flat, infinite wall separating two states translates
with nonzero velocity; under certain generic rules "' the
direction of the translation can vary with the wall s orien-
tation with respect to special (e.g. , lattice axis) directions.
Droplets evolve rather remarkably under such rules,
shrinking in certain directions while growing in others.
In the sample 2D rule given below, e.g. , walls oriented
along (at 45 to) the lattice axes move to favor 0's over 1's
(1's over 0's). In consequence, a large droplet of 0's in a
sea of 1's, viewed at three-step intervals, expands (con-
tracts) along those portions of its boundary oriented
parallel (at 45') to the lattice axes. Thus it distorts into a
diamond shape and shrinks away [Fig. 1(a)]. Similarly, a
droplet of 1's in a sea of 0's distorts into a square oriented



1934 BENNETT, GRINSTEIN, HE, JAYAPRAKASH, AND MUKAMEL 41

(b)

FIG. 1. Droplet of (a) 0's in a sea of 1's, (b) 1's in a sea of 0's,
seen at three-step intervals. Droplet distorts into a square
oriented (a) at 45' to the lattice axes and (b) with the lattice axes,
and then shrinks.

parallel to the axes, thereupon likewise shrinking away
[Fig. 1(b)]. The system thus eliminates droplets of any
type and size; i.e., R, = ~. This anisotropy-driven elim-
ination is described by dR /dt ——h, where h ( )0)
represents the velocity of Hat domain walls. It therefore
proceeds very swiftly, the lifetime of a large droplet being
linear in its original radius rather than quadratic, as it is
in the more familiar case where h =0 and elimination is
driven by surface tension. Note that this rapid annealing
mechanism requires not only anisotropy, but also
irreversibility. +' For reversible dynamics (i.e., governed
by an underlying Hamiltonian), the sign of domain-wall
motion is determined by the thermodynamic potentials of
the two phases, and so is independent of orientation. Of
course the speed of the motion can still be orientation
dependent.

One concludes that anisotropy-driven annealing can
stabilize periodic states at generic points in the parameter
space of the transition probabilities. Though we have ar-
gued this only for 3-cycles in 2D, the extension to 3D and
to cycles of arbitrary period is straightforward. While
isotropic systems such as Auids' cannot directly make
use of this stabilization mechanism, they can undergo
phase transitions (e.g., solidification) which spontaneous-
ly break the rotational invariance, and then exploit the
resulting anisotropy to stabilize periodic states.

The time [~, -exp(R, ')] required for the nucleation
of a droplet of critical size and the consequent disruption
of periodic states which are metastable rather than stable

can be astronomical if R, is large. In such cases, meta-
stable states can readily masquerade as stable ones. " At
least in 2D, however, long-lived metastable periodic
states can be distinguished from periodic states which
achieve stability by using anisotropy, since the unusual
efficiency with which droplets are eliminated in truly
stable states gives rise to autocorrelations [i.e., the corre-
lation function C (t) = (8;(t)8;(0)) —(8; (r) ) (8;(0)), in
our CA terminology], which decay with anomalous rapi-
dity. To see this, note that in order to contribute to C(t)
at large t, a given variable must be part of a droplet
whose radius R (r) is so large that the droplet persists'
for time t. The probability of this occurring is roughly
the probability of nucleating a droplet of radius R (t), i.e.,

-exp[ —R(t) ']. In rnetastable periodic states, drop-
lets evolve "conventionally, " i.e., according to Eq. (1).
On time scales t «~„the nucleation time for a critical-
size droplet, h can be neglected in (1), whereupon
dR/dt-o/R, or R(t)-t' . Hence in 2D one recovers
the stretched exponential decay, C(t)-exp[ (t/r—)' ],
characteristic of equilibrium Ising systems. ' (Here w is
the correlation time. ) By contrast, droplets in systems
with rules which stabilize periodic states shrink accord-
ing to dR/dt- —h, and so persist only for times t pro-
portional to their size R. Thus R (t)-t, so rather than
stretched exponentials, large droplets give rise to the or-
dinary exponential decay, C(t)-exp( t/r), —expected to
arise from small droplets. For d) 3, C(t)-exp( t/r)—
both for stable and metastable periodic states.

We close by describing a CA rule which illustrates the
arguments in this paper. This prototype CA has three
states per site, and is defined on a square lattice. The
states represent three equally spaced points on the unit
circle, labeled by the angle 8, which assumes the values 0,
2n/3, or —2n. /3, or equivalently, by the complex num-
ber z =exp(i8). The value of the angle 8;(n+1) on the
ith site at time n+1 is determined by the argument
8;(n)—=arg[z;(n)] of the sum, z;(n)—= g z (n) (the sum
on j running over a neighborhood consisting of i and its
four nearest neighbors), according to the following algo-
rithm: Let 8;(n) =8;(n)+r), (n)—, where rl;(.n) is a random
noise variable chosen from some appropriate (e.g. , Gauss-
ian) distribution P(7)). Divide the unit circle into three
regions: (I) n/3+@, &8;(n) &m+@3', (Il) n/3+62—
& 8;(n) & n /3+et, and (III) n+e3 & 8—;(n.) & —

m /3
+@2, where —n/3&a, &m/3 for i=1,2,3, and the con-
vention ~+E3&—8&m+@3 is adopted. If 8;(n) falls in
region I, II, or III, then 8, (n +1) is 0, —2m/3, or 2m /3,
respectively.

Inspection of this rule yields the following conclusions.
(i) For spatially uniform initial conditions in the deter-
ministic limit, the system remains spatially uniform, exe-
cuting the clockwise 3-cycle 0~ —2m. /3~2m/3~0. (ii)
In the symmetric, "nongeneric" case where all the e s
are zero and P(r)) is even, so that the noise tends to ac-
celerate or retard the clockwise rotation with equal prob-
ability, Bat domain walls between any two of the states
are forbidden from translating. Stable 3-cycles can there-
fore occur if the noise is sufficiently small. (iii) In the
more generic situation where the e, 's are nonzero, this
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symmetry is gone, even when P(ri) is even, since positive
and negative e's, respectively, tend to accelerate and re-
tard the rotation. One can show by inspection, e.g. , that
for zero noise, —n /3 & e, & tan '(3' /7) —m/3, and
E'z =E3=0, flat walls of any orientation separating 0's
from 2n. /3's, translate by one lattice spacing to favor the
2m. /3's with each 3-step cycle (i.e., retardation of the ro-
tation is favored). Thus h in Eq. (1) is one lattice spacing
per cycle in the deterministic limit. Computer simula-
tions in this limit show that the critical radius R, re-
quired for the 2m/3's to supplant the 0's is only about 2
for e, = —0.9, ez=e3=0. Correspondingly, simulations
with very small noise show the system setting into a sta-
tionary state, demonstrating the expected inability of the
rule to stabilize a 3-cycle in this case. (iv) When, howev-
er, e, = —0.9, ez=e3=0. 5, and g=0, e.g., flat domain
walls separating 0's and 2m /3's, and oriented with (at 45'

to) the lattice axes move one lattice spacing to favor 2n /3
(to favor 0) in each 3-step cycle. We therefore anticipate
that R, = ao, i.e., that droplets of any size and type shrink
(linearly) with tiine. This expectation has been verified in
simulations of droplets in zero noise. Moreover, simula-
tions of the rule at reasonable noise levels show clear 3-
cycles consistent with the anisotropy-driven stabilization
of periodic states.
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