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Stochastic manifestation of chaos
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We use Floquet theory to study the dynamical properties of a Fokker-Planck equation with time-

dependent coefficients describing a nonlinear Brownian rotor driven by a time-periodic angle-

dependent external force consisting of two traveling sine waves with amplitudes e& and e2. For the
case F2=0, the Fokker-Planck equation is separable (in the sense that it has two well-defined eigen-

numbers), and the nearest-neighbor spacing distribution appears to be Poisson random for large e&.

For both E'&%0 and @2%0, we find evidence of nonlinear resonance and level repulsion in the Floquet
spectrum and first-passage time, and the spectrum exhibits level repulsion and universal random

matrix-type behavior. The long-time state is quasiperiodic in time and angle and is affected by an

increasing number of modes of the system as the external field amplitude is increased.

I. INTRODUCTION

The transition to chaos in nonlinear conservative
classical-mechanical systems has been found to manifest
itself in the corresponding quantum systems as a transi-
tion in the energy (or quasienergy for periodically driven
systems) spectral statistics as a parameter of the system is
varied. ' For bound quantum systems with discrete
spectrum this transition is not accompanied by the onset
of chaos (sensitive dependence on initial conditions) as it
is in the corresponding classical system. It does, howev-
er, appear to be accompanied by a loss of the possibility
to assign a complete set of quantum numbers to some of
the eigenstates and therefore a loss of information about
the dynamics of the system. For systems which have a
full set of quantum numbers the nearest-neighbor spac-
ings between spectral lines is random and satisfies a Pois-
son distribution. As the transition to chaos occurs, the
nearest-neighbor spacing distribution changes from Pois-
son to a random matrix-type distribution characterized
by resonance and level repulsion. This transition is also
accompanied by extension of the energy (or quasienergy)
eigenstates of the system and can lead to a change in the
dynamical behavior of the system.

This transition in the spectral spacing statistics has
also been observed by Grobe, Haake, and Sommers in
weakly dissipative quantum systems (the quantum delta
kicked rotor with dissipation) whose classical frictionless
counterpart undergoes a transition to chaos. The system
studied by Grobe, Haake, and Sommers has a complex
spectrum and also exhibits a transition in its nearest-
neighbor spacing statistics from Poisson to random ma-
trix type. However, since the spectrum is complex, the
Poisson distribution is that of nearest neighbors in a
plane rather than on a line, and the random matrix
nearest-neighbor spacing distribution corresponds to that
of an asymmetric matrix rather than that of a Hermitian
matrix as is the case for nondissipative quantum systems.

In this paper, we consider the case of a driven rotor
undergoing Brownian motion in a highly viscous Quid.
The frictionless classical-mechanical and quantum-

mechanical versions of this system undergo a transition
to chaos (in the quantum case there is a transition in the
spectral statistics) as the amplitude of the driving force is
increased. In the limit of large viscosity we can write a
Fokker-Planck equation (the Smoluchowsky equation)
with periodic time-dependent coe5cients for the proba-
bility density P(8, t) to find the rotor in the interval 8 to
8+d8 at time t. We can use Floquet theory to reduce
the solution of the Fokker-Planck equation to an eigen-
value problem. The matrix that determines the time evo-
lution of the Fokker-Planck equation is asymmetric and
has complex eigenvalues.

We shall consider the driven Brownian rotor for two
different cases. In one case the Fokker-Planck equation
is separable and in the second it is not. We shall show
that in the first case, the Floquet spectrum is Poissonian
for large driving field amplitude, while for the second
case we observe nonlinear resonance and level repulsion
in the Floquet spectrum for large driving field amplitude.
We begin in Sec. II by describing the Brownian rotor
model and we explicitly write the difference equations of
the mode amplitudes for the two cases considered. In
Sec. III, we derive explicit expressions for the Floquet
matrices which determine the time evolution and in Sec.
IV we describe the general properties of the spectrum in
the two cases. In Sec. V, we plot the first-passage time as
a function of both external field frequency and amplitude.
We see evidence in the first-passage time of resonance
phenomena and the transition in the spectrum. In Sec.
VI, we plot histograms which indicate quite different
spectral spacing distributions for the two cases. For the
separab1e case we find Poisson-like behavior and for the
nonseparable case we find a transition to random matrix-
like behavior. In Sec. VII, we study the behavior of one
of the Floquet eigenvectors which govern the long-time
behavior of the system as a function of driving field am-
plitude. We find that, although the eigenvalues that
govern the long-time behavior do not depend on driving
field amplitude, the eigenvectors do. For this system the
long-time states are quasiperiodic in time and angle. For
low external driving field amplitude, they contain only a
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few modes, but for larger external driving 6eld amplitude,
they contain many Fourier components. Finally, in Sec.
VIII, we make some concluding remarks.

II. MODEL

We will consider a Brownian rotor that consists of a
spherical mass m with radius a attached to a massless rig-
id rod of length L and zero radius immersed in a fluid
with shear viscosity rt. The motion of the rotor is con-
strained to lie in the x-y plane. The Langevin equation
describing the Brownian motion of this rotor is

I = —yn+7'„„d(r)+5e„(e', r),dQ
d7

(2.1)

ap= a a
a ae'""'+ an

yQ ex p + aP
an' '

(2.2)

where D =kt) T/y.
In the present paper, we shall consider this system in

the limit of a very large Stokes friction, so that the angu-
lar velocity of the rotor relaxes to equilibrium on a time
scale that is short compared to the time scales associated
with the external torque V,„(e,r) T'hen in. ertial effects
may be neglected in Eq. (2.1) and the Langevin equation
becomes

yn='T;, „d(r)+T,„(8,~) . (2.3)

In this limit, the equation of motion for the reduced dis-
tribution P(e, r) is given by the Smoluchowski equation

where n ( =8) and 8 are the angular velocity and angle,
respectively, of the rotor at time ~, I =mL is the mo-
ment of inertia, 7;,„d(r) is the 5-function-correlated
Langevin torque due to the fluid, y =6+ay is the Stokes
friction, and T,„(8,~) is the torque due to any externally
applied fields. The random torque has the property that
the correlation function

('T„„,(r)'t„„,(r') ) =q5(~ —r'),
where q =2ykz T, T is the temperature, and k~ is
Boltzmann's constant. The Fokker-Planck equation for
the probability density P(n, e, t) of the Brownian rotor
can then be written

frequency a)0. The probability density P(e, t) satisfies the
boundary condition P(e, t)=P(8+2m, t). Thus we can
expand P(8, t) in a Fourier series in the angle 8. We will
consider the behavior of this system for two different
cases.

Case I: (e, =e,F2=0). In this case the Smoluchowski
equation is separable and can be reduced to that of a sim-
ple pendulum in a viscous medium. It is interesting to
note that in the absence of friction and noise the mechan-
ical system is integrable. In order to obtain the Floquet
spectrum for this system, we must first write the Smolu-
chowski equation in terms of its Fourier components.
For Case I, we expand P ( 8, t) in the Fourier series

P (8, t ) = g c„(t)e'"' . (2.7)

The equation of motion for the coefficients c„(t) is then
given by

Cm
(2.8)

+ g [a„(t)P(„')(8)+b„(t)(I)(„0)(8)] .
n=1

If we introduce the scalar product

y(()( g )y(g)( g )

0 ()8

(2.9)

(2.10)

then $0(8)= 1/2m, the even mode P(„"(8)= (1/
v 2m)cos(n8), and the odd mode (t(„'(8)=(1/
~2m)sin(ne). Using these expressions, we find that the
equations for the coefficients a (t) and b (t) decouple.
We then obtain the following equation for the coefficients
a (t}:

As we shall show, for this case the Fokker-Planck equa-
tion is separable.

Case II: (e)=f2=a). In this case the Smoluchowski
equation appears not to be separable and its spectrum ex-
hibits evidence of resonance and level repulsion. In the
absence of viscosity and noise, this mechanical system ex-
hibits a transition to chaos. ' For case II, we expand
P (8, t) in the Fourier series

P(e, t)=a (t)y'"

~+D
a yae '" '

ag
(2.4) aa. «) = —m a (t) F. sin(coot) g V —„a„(t),at n=0

(2.11)

We shall study the behavior of the Smoluchowski equa-
tion for the case of an applied torque of the form

7;„(8,r) = 'T, sin(8 —a)~)+ 5'&sin(8+ co~) . (2.5)

It is convenient to change to dimensionless parameters.
Let t =D~, coo= a) /D, and E; = V; /yD. Then we obtain

aP(er) a, ,
a'P

Qg gg2
(2.6)

where f (e, t)=e sin)( etx)or}+@&sin(8+coo~) Thus the.
behavior of the system is entirely determined in terms of
three dimensionless parameters, the amplitudes e, , and

ab (t) = —m b (t)—csin(a)ot) g V „b„(t),
n=1

(2.12)

for 1 ~m and n ~ ~. We call this case IIb. Thus, for
case II the even and odd inodes (I)(„'(8) and P'„'(8) are
completely uncoupled. Furthermore, the coefficient ao is
determined completely by the initial conditions and can-

where Vo =0 for 0&m & ee, Vi o=1/&2, and
V „=(m/2)(5„+,—5„,) for 1 ~m ~ ~. We shall
call this case IIa. Similarly, the equations for the
coefficients b„(t) can be written
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not change in time.
We have used different Fourier expansions for case I

and case II to facilitate the decomposition of the Floquet
matrix (to be derived in the next section) into block diag-
onal form. In the next section, we show how to use the
Floquet theory to study the time evolution of this dynam-
ically driven stochastic system.

III. FLOQUET THEORY

Let us write Eqs. (2.8), (2.11), and (2.12) in the abstract
form

a&mlC, )(t))
=y(mlV( )(t)ln)(nle( )(t)),

Bt
(3.1)

A(a) T
(nl)II' '(t+T. ))=e ' (nlII' '(t)&, (3.2)

with a=a, b, and c, respectively. Thus Eq. (3.1) reduces
to Eqs. (2.8), (2.11), and (2.12) when c„(t)=(nit(, )(t) ),
a„(t)= (nlC(, )(t)), and b„(t)=(nlC(b)(t)), respectively.
The matrices &m lV( )(t)ln ), for a=a, b, and c, are
given in the Appendix.

Since V(~)(t) is periodic in time, V(~)(t)=V(~)(t+P
where T =2m/coo. Thus we can assume that Eq. (3.1) has
Floquet-type solutions ( nl 4("(t)) (where i = 1, . . . , 00 )

such that

&m, ql&( )In, q'&= f" «e'" '"(ml&(.)«)ln ),1

l

~(a) ) —A(a)
l

~(a) ) (3.7)

The Floquet transition matrix ( m, q l lV( ) l n, q' ) is
infinite dimensional, complex, and not self-adjoint under
Hermitian conjugation. Thus its eigenvalues may be
complex and its orthonormal right and left eigenvectors
ln'; ') and (a'; 'l, respectively, will not be the same. The
vector ln', ') is the right eigenvector with eigenvalue
A'; '. We obtain the left eigenvector from the equa-
tion (m'; 'le( )=(m'; 'lA'; '. Thus the coefficients

(nit( )(t)) may be expanded in terms of Floquet states
as

(3.6)

and the range of the integers I and n depends on wheth-
er we consider case I or case II. The quantity "lV(

) is the
Floquet transition operator for this stochastic process. It
is the stochastic analog of the quasienergy Hamiltonian
in driven quantum systems. Expressions for the Floquet
transition matrices (m, ql%'( )ln, q') for the cases a=a,
b, and c, are given in the Appendix.

Thus we have reduced the solution of the Smolu-
chowski equation to the solution of the eigenvalue prob-
lem

and

~(a)r
(nlrb( (t)) =e ' (n ill '(t)) (3.3)

(nlC( )(t)) = g g A; 'e ' (nqln'; ')e ', (38)
i=1 q= —oo

In Eq. (3.3), (nl11", (t)) is a periodic function of time,
(nlII,"(t+T))=(nlII', '(t)). Since (nlII,' '(t)) is
periodic in time, we can expand it in a Fourier series.
Then Eq. (3.13) takes the form

(nl )';Il'(t))= g (n, qlm'; ')e 'e ' (3.4)

where (n, qlm' ) is the Fourier amplitude in the Fourier
transform of (n lII', '(t)).

If we substitute Eq. (3.4) into (3.1), we obtain the fol-
lowing matrix equation for the Fourier coefficients
(n, qlm' ,

') and Floquet paraineters A,' ':

A'; '& m, ql~; '& =g g (m, ql'lV( )ln, q') & n, q'lm, ),
n q'= —oo

where A,.'
' is determined from the initial conditions on

(nit( )(0)). It is clear from Eq. (3.5) and (A5) that in

the limit e, ~0, A", ~A; = —m +iqcoo. Thus, for small

coupling, the Floquet spectrum is indexed by two
"eigen-numbers" m and q, which characterize the unper-
turbed rotor and the degree of excitation of the external
field, respectively. For small e, , the external field, which
is harmonic, adds a strong rigidity to the imaginary part
of the spectrum. However, as the coupling increases this
rigidity relaxes somewhat.

We can now write the spectral decomposition of the
probability P(e, t) in terms of Floquet states. For case I,
we find

oo oo oo +(c)
P((), t)= y y y A 'e ' (n, qlm", )

n= —co q= —oo i=1

where
(3.5)

For case II, we find

0 ein8 (3.9)

oo oo oo ~(b)f
P(8, t)= g pe ' A "e ' (O, qlm'")Po("+ g [AI"e ' (n, qlm( )P")+A( 'e ' (n, qlm' ))(I)"] (3.10)

q= —ooi =1 n=1

We shall discuss the nature of these solutions in the fol-
lowing sections.

IV. FLOQUET SPECTRUM

The Floquet matrices for cases I and II have quite
different structure and spectral properties and therefore it
is useful to discuss their properties separately.

A. Floquet spectrum —case I

The Floquet matrix for case I (e)XO, e2=0) can be
written in block diagonal form with an infinite number of
infinite-dimensional blocks along its diagonal. We label
the different blocks by the integer index P where
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—ao «P& 00. The Pth block only connects those states

l m, q ) whose eigen-numbers satisfy the condition
m +q =P. Thus the spectrum A; for the case
(e,&0,@2=0) is a mixed sequence. That is, it is the super-
position of an in6nite number of pure sequences, one pure
sequence coming from each block. In Fig. 1, we show the
Floquet spectrum for the block P=O taken from the full

Floquet matrix with lml «23 and Iql 23 and to=1.0
and @=9.0 and 18.0. For the smaller value of e the spec-
trum forms a line in the complex plane, while for the
larger value of e it appears to break into two lines. The
complete spectrum for this S29XS29 Floquet matrix is
shown in Fig. 2 for the case co=1.0 and a= 18.0. It is the
superposition 4S such blocks of sizes varying from 1 X 1

to 46X46. The Fokker-Planck equation for this case is
separable because even for strong coupling there are two
we11-de6ned eigen-numbers which label the eigenvalues
A';". One labels the block from which A';" comes, and
the other labels its position in the sequence of eigenvalues
coming from that block.

B. Floquet spectrum —case II

For case II (eiAO, @2&0), there is no such infinite
decomposition of the spectrum. There are two sym-
metries which allow us to break the Floquet matrix into
block diagonal form with four blocks. We have found
that the equations of motion for a„(t) and b„(t}complete-

ly decouple due to the fact that 'T,„(8,r }= —7;„(—g, r),
yielding a two block Floquet matrix. Each of these two
blocks, which we call sine and cosine blocks, further
decomposes into two blocks, one in which the states with
n +q odd are coupled and the other in which the states
with n +q even are coupled. All information about the
long-time behavior is contained in the cosine block.

The Floquet eigenvalues A,'-' and A,'- ' can be found by
computing eigenvalues of the matrices ( m, ql lV~, ~ l n, q

' )
and ( m, q l%'~ s~ l n, q' ), respectively. The matrix
(m, ql'i@i, lln, q')(m, n ~0; —ao &q, q'« ~} has complex
eigenvalues. Some of these eigenvalues have zero real
parts and determine the long-time behavior of the proba-
bility. The remaining eigenvalues have negative real
parts and influence the behavior of the system for shorter
times and describe contributions which eventually de-
cay to zero. The eigen values of the matrix,
(m, ql "lV~ bllnq')(m, n ~ 1; —~ «q, q'«00) all have nega-
tive real parts and therefore only give contributions to
the time dependence which eventually decay to zero. The
matrices (m, ql'N~, ~ln, q'& and (m, ql'N~slln, q') each
decompose into two independent submatrices. On one
submatrix, the states for which the combination m +q is
odd are coupled and in the other the states for which
m +q is even are coupled. Thus each of the two matrices
&m, ql'lV~, ~ln, q'& and &m, ql Vlslln, q'& gives rise to two
independent sequences of eigenva1ues.

As we noted above, the matrix (m, ql'N~, lln, q') con-
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FIG. l. Eigenvalues for the block P= n +q =0. The matrix contains 23 eigenvalues and the eigenvalues exhibit a line distribution
rather than being randomly scattered in a plane. (a) ruo= 1.0, el =9.0, and F2=0. (b) coo= 1.0, el = 18.0, and e&=0.
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the real part of the Floquet eigenvalue observed in Ref.
8.) This shifting of eigenvalues causes a fairly abrupt
drop in the first-passage time for this system as we shall
show in the next section.

It is also of interest to look at the spectrum for
different values of ruo and e. In Fig. 4, we show the loca-
tion of eigenvalues for coo=1.0 and for a=1.0 and 9.0.
To obtain Fig. 4, we have diagonalized a 390X390 sub-
matrix for case IIa (n &20) and q &20). The spectrum
for @=1.0 [Fig. 4(a)] shows the rigidity and regularity
typical of the Floquet spectrum for small e (small means
a &coo). In this figure resonance is occurring, but is not
obvious from the figure. In Fig. 4(b), we see that where
e&&coo, the Floquet eigenvalues with a small real part
have become quite chaotic in appearance.

V. FIRST-PASSAGE TIME

O
0

0
0

i 0

0

O
O

I

-125.0 -100.0 -VS.O -50.0
Re A

-25.0 0.0

FIG. 2. Floquet spectrum for case I for coo=1.0, t.&=18.0,
and t.&=0. The spectrum is a superposition of 45 blocks of vari-

ous sizes ranging from 1 X 1 to 23 X 23.

tains information about both the long-time behavior and
intermediate-time dependence of the probability density
P (8, t). It is interesting that the structure of
(m, qIlV~„~n, q') is such that the eigenvalues

AIO )(e)=iqcoo regardless of the value of e. However, the
eigenstates of ( m, q~%~, ~ ~ n, q' ) with eigenvalues

AIO ~I( e }=iq coo do depend on the value of e We say.
more about this in Sec. VII.

In Ref. 9 we found that the real part of the lowest Flo-
quet eigenvalue undergoes an abrupt transition at coo=a.
The same behavior is observed in this system. This is ap-
parently the result of the fact that the dominant contribu-
tion from the external driving field in the square we11 sys-
tem (the system studied in Ref. 9) is of the form
cos(8 coot) as it is—for the system studied here.

For case II, we have observed evidence of nonlinear
resonance and level repulsion. In Fig. 3, we show the
Floquet spectrum A, for coo=10.0 and for a range of
values of e (a= 10.0, 10.2, 10.5, 12.0, 12.5, 13.0) which
show movement of a nonlinear resonance down the real
A axis. For these values of e the spectrum still contains a
large degree of rigidity as is evident in the figure. We see
that with increasing values of e, the real part of the spec-
trum (the nonlinear part) appears to resonant and repel.
This resonance region runs down the real axis until it
reaches the lowest excited state and shifts the real part to
larger negative values. (This is the origin of the shift in

The first-passage time is the average limit it takes for a
Brownian particle to reach some point on its path for the
first time. It can provide a means of quantifying qualita-
tive changes in the spectral properties provided the spec-
trum is unchanged in setting up the first-passage-time
equations. To obtain an expression for the first-passage
time let us assume that the Brownian rotor is located at
8=it/2 at time t =0 and that absorbing barriers are lo-
cated at L9=0 and at L9=m. With this initial condition,
P(8, t) is a conditional probability P(8, t) =P(8, t~n. /2, 0),
where P(8,0~m/2, 0)=5(8—m/2), and Eq. (2.6) may then
be thought to describe the evo1ution of this conditional
probability. With these absorbing barriers in place the
conditional probability satisfies the boundary conditions
P(0, t~n/2, 0)=P(m, t~m/2, 0)=0. Let S denote the inter-
val 0 & 0 ~ m. Then the probability to find the rotor in S
at time t is

Ps , t =f—P8, ti —,0 d8.
0

(5.1)

The first-passage time is the average time (t) that it
takes the rotor to reach the absorbing boundary for the
first time. Let F(n /2, t)dt denote the probability that the
rotor reaches the absorbing wall in the time interval
t ~t +dt. Then

P —t =F —r dt+P —t+dt7T iT 7T
(5.2}

Thus

de(vr/2, t)
F —,t2' dt

(5.3}

and the nth moment of the first-passage time is given by

where we have integrated by parts to obtain the last term.
Since the probability P (8, t ~a/2, 0) must be zero at the

walls, we can expand its angle dependence in a Fourier
sine series. Thus

(t )=f t F , t dt=n f t" —'Ps , t dt, (54)—
o 2 o 2
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FIG. 3. Local resonance and repulsion of Floquet eigenvalues for case II for coo=10. Neighboring lines of eigenvalues move to-
gether and repel as e is varied. The resonance occurs along the real axis (the nonlinear part of the spectrum) and moves to lower
values of n as e increases. (a) e= 10.0, (b) e= 10.2, (c) e= 10.5, (d) e = 12.0, (e) e= 12.5, (f) e= 13.0.

P e, t~ , 0 = g—b„ t, —f„(8) .
n=1

(5.5) (t) =&2/tt I dt g b„—2 m
(5.8)

If we normalize f„(8) on the interval 0 to n, we find

g„(8)=&2/m sin(n 8). At time t =0,
We may also express the first-passage time in terms of
Floquet states. We first note that

p e, o~ ,o =s e———= y b„o,—tt„(e) . (5.6)
n=1

It is easy to show that b„(o,n. /2)=&2/m sin(nm/2) Let.
us now substitute Eq. (5.5) into the Fokker-Planck equa-
tion (2.6). We obtain

db (t, ~/2) = —mb t, —
dt '2

E'+—m sin(co t)0

A',-b't

b„ t, —=g g 8; —e

x(n, q~n',
b' )e" " (5.9)

where

(n, q~qI")ya, —
(A', '+iqcoo)

(5.10)

If we now combine Eqs. (5.8) and (5.9) and do the time in-

tegral in Eq. (5.8), we obtain

X b, t, ——b +) t, —'2 '2

(5.7) ga, —" (n~~', "(0))=.
i =1

&2/m sin
nm.

2
, for n odd

(5.1 1)

Thus the coefficients satisfy the same equations as (2.12)
and the behavior of the first-passage time for this case is
determined by the spectral properties of case IIb.

The average first-passage time may be written

0, for n even .

In Figs. 5 and 6 we plot the average first-passage time
as a function of external field frequency (Fig. 5) and exter-
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FIG. 4. Floquet spectrum for case IIa for cop=1.0 and for the odd submatrix of the cosine block and for a 390X390 matrix. (a)
For small external field amplitude (a=1.0) the spectrum exhibits rigid lattice structure. (b) For large external field amplitude
(@=9.0), the spectrum exhibits local level repulsion and has an irregular structure.

nal field amplitude (Fig. 6). The numerical results in
these figures were obtained by solving Eq. (5.7) numeri-
cally for the coefficient b„(t,n. l2) for 0 & n & 100 and then
using these results to perform the integration in Eq. (5.8).
The coefficients b„(t,tt/2) decay to zero after finite time
so that the integral in Eq. (5.8) is easily done. These
equations were run until all coefficients b„(t, n. l2)
«0.001.

In Fig. 5, the first-passage time decreases for a finite in-
terval of co and then increases again. The frequency
range in which this decrease occurs coincides with the re-
gion in which we observe resonance in the Floquet spec-
trum (cf. Fig. 3) and appears to be due to resonance be-
tween nonlinear rotor modes induced by the stochastic
field. Note that the harmonic part of the spectrum (the
imaginary part) is not significantly affected by this reso-
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FIG. 5. Plot of mean first-passage time vs cap fol
Curves for e = 1.0, 10.0, and 100.0 are shown. Here
( T ) =nl2 ( t ), where ( t ) is defi.ned in Eq. (5.8).

FIG. 6. Plot of mean first-passage time vs e for El=&2=E.
Curves for co~=1.0 and 10.0 are shown. Here ( T) =ttl2(t ),
where (t ) is defined in Eq. (5.8).
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nance. A similar resonance in the first-passage time has
been observed by Fletcher, Havlin, and Weiss. ' It is not
clear how the resonance observed here is related to the
"stochastic resonance" first observed by Benzi, Sutera,
and Vulpiani in a double-well model" (see also Refs. 12
and 13). However, it is likely that there is a relation. The
qualitative behavior of Fig. 5 can be understood as fol-
lows. For low frequency and small e the first-passage
time is determined primarily by the diffusion process. A
simple calculation gives (r ) ~4/n(m /32) for e~O and
co~0 in agreement with Fig. 5. For high frequency, the
field oscillates so rapidly that its effect is averaged out
and the first-passage time is again determined primarily
by the diffusion process. In between these two limits, res-
onance effects enhance the first-passage time. The max-
imum effect appears to occur when a=co.

Figure 6 shows a drop in the first-passage time as the
amplitude e increases. This drop in the first-passage time
appears to occur for e ~ co and appears to be related to
the shifting of the real parts of the Floquet eigenvalues to
larger negative values due to resonance.

VI. SPECTRAL STATISTICS

We have studied the spectral spacing statistics for the
Floquet spectrum of the Smoluchowski equation for both
cases I and II to determine if the separability of case I
and nonseparability of case II is reflected in the statistics
of the spacings between eigenvalues in the complex plane.

For a Floquet spectrum which lies on a line, if the ei-
genvalues are placed randomly on the line, we expect the
spacings s between neighboring eigenvalues to satisfy a
Poisson distribution P~~(s), where

spectral spacing exhibits linear repulsion. On the other
hand, the spectral spacing distribution for asymmetric
random matrices with Gaussian distribution appear to
exhibit cubic repulsion and satisfy a distribution of the
form

3 —Bs(s) = Ws'e ', (6.3)

for a two-dimensional random matrix A =3 m 2 and4 2 —7

B =3 vr2 . For high-dimension random matrices
Grobe, Haake, and Sommers have shown numerically
that P„M(s) is similar to that for two dimensions but lies

slightly below the two-dimensional case for small s and
above it for large s. Since the dynamics of our Smolu-
chowski equation is governed by an asymmetric Floquet
matrix, we expect that the resonance phenomena we have
observed to be accompanied by a transition to random
matrix-type behavior characteristic of asymmetric ma-
trices. That is, we expect to see cubic repulsion.

In Figs. 7 and 8, we plot the histograms for the
nearest-neighbor spectral spacing for cases I and II, re-
spectively. Figure 7 is the histogram for the lowest 130
points in the spectrum shown in Fig. 2. Figure 8 is the
histogram for the lowest 110 points shown in Fig. 4(b).
We take only these lowest points in order to attempt to
avoid, as much as possible, effects due to the finite size of
the matrix. In Fig. 9, we have plotted the integrated
spacing distributions Ip;(s)= fods'Pz(s') (i =1,2) and

IRM(s)= J Dds'PaM(s') for both Figs. 7 and 8. We un-

folded the spectrum by multiplying the level spacings, ob-
tained from the eigenvalue spectrum of the Floquet ma-
trix, by the local average eigenvalue density. From Figs.
7-9, it can be seen that the spectral distribution obeys

Pp, (s) =e (6.1)

This has been observed in separable quantum systems of
two degrees of freedom which have real eigenvalues. '

For such quantum systems there are two good quantum
numbers (with discrete but infinite range) and the spec-
trum consists of a superposition of an infinite number of
independent pure sequences which therefore appear to be
randomly distributed on a line. For a separable system
with complex spectrum such as we are considering here,
we expect to find a spectral spacing distribution charac-
teristic of a random distribution of points in a plane

O

P (s)ds =—seP2 (6.2)

This is the probability distribution of nearest-neighbor
spectral spacings that we expect to observe for the super-
position of many independent pure spectral sequences
composed of complex numbers.

On the other hand, generic nonseparable systems ex-
hibit spectral repulsion and in the chaotic limit appear to
have spectra whose spectral spacing distribution is
characteristic of that given by random matrix theory.
For systems with real spectra, such as quantum systems
whose dynamics is governed by a real symmetric Hamil-
tonian, resonance and spectral repulsion is associated
with a transition to Gaussian-orthogonal-ensemble'
(GOE)-type spectral statistics. For such systems, the

CV

C)

I I I

0 0.2 0.4 O.S O.B 1 1.2 1.4 1.8 1.8 2
5

FIG. 7. Histogram of 130 nearest-neighbor spectral spacings
for case I for co0=1.0, @1=18.0, and e, =0. The histogram is
close to a Poisson distribution on a line. The hatched line
represents a Poisson distribution on a line, the dashed line
represents a Poisson distribution in a plane, and the solid
represents cubic repulsion characteristic of random matrix
theory for asymmetric matrices.
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0

0

different statistics for these two systems. For the case of
single resonance, the spectral spacing statistics follows
closely (except for distortions due to rigidity imposed by
the harmonic part of the spectrum) a Poisson random
process for eigenvalues lying on a line. We did not expect
this, but it appears to be due to the fact that the blocks
forming the Floquet matrix for case I each have spectra
which lie along lines in the complex plane and are not
scattered over a two-dimensional region of the complex
plane. For case II, on the other hand, the spectral statis-
tics approaches cubic repulsion for small spacings indi-

cating random matrix-type behavior and loss of informa-
tion about the underlying dynamics governing the sto-
chastic process.

I

I I I I I I I I I

0 0.8 0.4 0.6 0.8 1 12 1.4 1.8 1.8 8 VII. LONG-TIME S'FATE

FIG. 8. Histogram of 440 nearest-neighbor spectral spacings
for case II for coo=1.0 and a=9.0. The histogram is close to a
random matrix distribution for cubic level repulsion. The
hatched line represents a Poisson distribution on a line, the
dashed line represents a Poisson distribution in a plane, and the
solid represents cubic repulsion characteristic of random matrix
theory for asymmetric matrices.

O

CQ

O

Let us denote the eigenstates of the matrix
(m, q '1V~, ~~n, q') as ~mI' ~(e)~ ) so that ~mI" ~(e))
~~m, q) as e~0. We can expand ~mI'I ~(e)) in terms of
unperturbed eigenstates

~n~('q)(e)) = g g ~n, q')(n, q'~n'(", )(e)) .
n =Oq = —oo

(7.1)

VIII. CONCLUSIONS

The probability density of the Brownian rotor in the limit
t~ ao is determined by the Floquet states whose eigen-
values have zero parts, i.e., A(o' ~(e)=iqcoo The pr.oba-

bility density after a long time can be written

OQ 00

P(e t~~)= g g g A(o' )e
q= —oo q'= —oo n =0

X (n, q'~7r(' ))y'„(8) .

(7.2)

The dependence on e of the components (n, q'~n'Io'o}) of
the Floquet eigenstate ~mIo'o~) is shown in Fig. 10 for
co0=10. For e~m0 a slow spreading occurs in the num-

ber of space- and time-dependent Fourier components
which contribute to the long-time behavior of the system.

0.8 0.4 0.6 o.e

FIG. 9. Integrated spectral spacing distribution for case I
and case II. The spectral spacing distribution for case I
(squares) is close to that of a Poisson process on a line (hatched
line), while the spectral spacing distribution for case II (solid
circles) is close to that for cubic level repulsion (solid line). The
dashed line refers to a Poisson distribution in a plane. The
squares represent the measured spectrum for case I for no=1.0,
@1=18.0, and e, =0 and the lowest 130 eigenvalues from a
529X529 matrix. The solid circles represent the average spec-
trum for case II with coo=1.0 and a=8.5, 8.75, 9.0, and 9.25.
For each value of e 110 eigenvalues from a 390X390 matrix are
used to calculate the distribution.

We have studied the spectral properties of a driven
Brownian rotor in the presence of an angle and time-
dependent driving field. In the nonseparable case, the
Floquet spectrum shows evidence of nonlinear resonance
and spectral repulsion. Evidence of resonance phenome-
na in highly viscous media has also been observed by oth-
er authors. In Refs. 11—13, evidence of resonance like
behavior has been observed for a driven Brownian parti-
cle in a quartic potential, although none of the authors
studied the Floquet spectrum for that case. The effect of
resonance on the first-passage time for a particle in a
square well has been observed in Ref. 10. The onset of
resonance appears to precede the change in the spectral
statistics and a loss of "separability" of the corresponding
Fokker-Planck equation (we here call a partial differential
equation separable if it has a full set of eigen-numbers).
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, c,!

a
~O

FIG. 10. One of the ground-state eigenvectors for co=10.0 at different external field strengths. A ~ is the coefficient of the (m, q)
component of that eigenvector. (a) @=2.5, (b) @=5.0, (c) @=10.0, (d) a=15.0, (e) a=20.0, (f) a=100.0
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APPENDIX

The matrices &m!V( (t()!n & and &m, q!"1V( (!n,q'&, in-

troduced in Sec. III, are defined in this appendix for the
cases a =a, b and c.

We first consider &m! V( ((t)!n &. For a=c (case I),

& m! V(,)( t )!n &
= —m '5

I coot
nm+~e ),

with —~ (m and n ( oo. For a =a (case IIa),

& m!V(,((t)!n &
= —m 5 „—e sin(coot) & m! V!n &

(A1)

(A2)

&m! V(„)(t)!n&= —m'5 „—csin(co, r)&m! V!n & (A3)

for n ) 1 and m ~ 1, & 0!V(, (( t )!n & =0 for 0(n ( 00, and
& 1!V(, (!0 &

= I /&2. For a =b (case IIb),
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for n & 1 and m ~ 1.
The Floquet matrix (m, q~'N( (~n, q') can be obtained

as fo11ows. For a =c (case I),

( m, q~%'(, (~n, q') =( —m +iqcoo)5

where (O, q~ W(n, q') =0 for 0~n ~ ~, (1,ql WIO, q')
= 1/&2(5~. ~+, —5~. ~, ), and

& m, q ~
W)n, q')

m.
+( 5n, m —1)(5q', q+( 5q, q

—()

—5., +(5q,q+()I

with —0(( ~ m and n ~ ~. For a =a (case IIa),

&m ql~(, (ln q') =( —m +iquo)5„5

+(m, q ~
W(n, q'),

for 1 m and n oc. For a=b (case IIb),
(A4)

(m, qf lV(b)((n, q ) =( m +iqcoo)5„5q

+(m, q) W)n, q'),

(A5) for 1 ~ m and n ~ ((0.

(A7)
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