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Self-organized criticality in vector avalanche automata
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A new class of cellular automata is observed to evolve to a self-organized critical state. These
"vector automata" obey a threshold relaxation condition that depends on the gradient of a scalar
field, which is locally conserved except at the system boundaries. Both square and triangular lat-
tices are studied and lead to virtually identical statistics; however, a particular (and natural) choice
of boundary shape for the square lattice leads to trivial dynamics characteristic of a minimally
stable configuration.

I. INTRODUCTION

Recently, there has been interest in a class of cellular
automata that display "self-organized criticality, " in
which there are relaxation events of all sizes in the steady
state. ' These automata can be viewed as modeling spa-
tially extended dynamical systems that obey a relaxation-
al diffusion process when the system is locally stressed
above some threshold value. The term "criticality" is
used because the steady state is characterized by power-
law spatial and temporal distributions typically associat-
ed with phase transitions of systems in thermal equilibri-
um. "Self-organized" refers to the fact that, after some
transient period, the system naturally evolves into the
critical state, without special adjustment of external
parameters —that is, the critical state is an attractor of
the dynamical system.

Because the specification of automaton rules are rather
abstract compared with more traditional physical models,
the elements of these rules have been described using the
language of "sandpiles" and their induced avalanches, or
of geophysical fault dynamics and their induced earth-
quakes. " Despite the fact that a recent experiment on
granular flow' found no self-organized critical behavior,
the theoretical interest in these models remains high.
This is because our present understanding of dynamical
systems having many degrees of freedom is poor; their
importance lies in their relevance in describing spatially
extended systems. Except in those cases where the essen-
tial dynamics can be reduced to a low-dimensional phase
space, little is known about the general behavior of sys-
tems consisting of many degrees of freedom. In contrast
to the great strides made for dynamical systems whose
behavior is confined to a low-dimensional phase space,
there are few examples of simple, recognizable
behavior(s) common to large classes of systems. The
discovery of self-organized criticality serves as a focal
point for thinking about behavior which seems to require
interplay among all degrees of freedom, and is therefore
described by a very-large-dimensional phase space.

Though the first reports of self-organized criticality
dealt with cellular automata (in which space, time, and
the state variable are all discrete), it appears that the

discrete nature of the state variable is not essential. '

Moreover, an earthquake model based on coupled ordi-
nary differential equations exhibits qualitatively similar
behavior, displaying events of all length scales up to the
system size itself. It has also been argued that self-
organized criticality can occur in a simple (nonlinear)
partial differential equation. ' These works are impor-
tant because they may help to clarify the relationship be-
tween continuous ordinary and partial differential equa-
tions on the one hand and cellular automata on the other.
While ordinary and partial differential equations are the
mainstay of traditional physics, the computational con-
venience of cellular automata has made them a source of
increased interest, for example, for their potential to
simulate various fluid flows. ' '

In the wake of these several works, a few basic ques-
tions are emerging. The primary issue remains to identi-
fy those features which are essential for the generation of
self-organized critical behavior. In this paper, we make a
modest contribution to this question by studying a varia-
tion of the original automaton of Ref. 1 in two spatial di-
mensions. In order for the threshold condition to depend
directly on the slope of the state variable tit(x, t), our
threshold rule involves the vector-valued gradient of g.
[Our original reason for doing this was to draw a closer
analogy between our two-dimensional model and "real
sand"; having said this, we do not think that such a
correspondence is important viewed in the larger con-
text. ] Reduced to one dimension, the present models
reduce to the original scalar automaton. '

As a vector-state automaton, the present system falls
into a different class than models previously studied.
This remark is meant in a physical sense rather than the
more abstract sense of universality classes (i.e., the con-
stancy of certain scaling exponents for distinct systems).
Indeed, it is an open question whether the notion of
universality is relevant to self-organized criticality. It
turns out that the scaling exponents for the automata
studied here differ from those in other works. Conse-
quently, if universality is ultimately found to be relevant
to self-organized critical systems, then the vector auto-
mata fall into a new universality class.

We study the dynamics using two different underlying
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lattices, to test the effect on the global behavior. This is
important since, if cellular automata are to be useful as
models for macroscopic spatially extended systems, de-
tails at lattice length scales should vanish. We also ex-
plore the effect of different boundary shapes.

Our simulations show that the dynamics naturally
evolve into a state characterized by avalanches of all sizes
up to a cutoff that depends on the system size. We find
that the avalanche size distribution is virtually identical
for both square and triangular lattices; surprisingly, how-
ever, the choice of boundary shape in the square-lattice
case can result in trivial dynamics characteristic of a
minimally stable state. " We make a special effort to
draw a connection between our rules and the direct
discretization of partial differential equations (PDE's)
(i.e., nonlinear diffusion equations). Besides introducing a
more familiar way of thinking about these models, such
PDE's can be amenable to certain theoretical analyses, as
demonstrated by Hwa and Kardar, who used a
renormalization-group approach to compute "critical ex-
ponents" characterizing the dynamics. '

We also found evidence that the critical state, though
stationary only in the statistical sense, is surprisingly well
ordered when viewed at the microscopic level. More-
over, we observe certain regularities in the way the criti-
cal state is formed: it appears to evolve from the system
boundary inward. Though to date we have been unable
to do so, it is possible that these empirical observations
could be exploited to deduce the observed statistics of the
critical state, and the manner in which correlations are
built up from a (noncritical) initial state.

In Sec. II we define the rules for our model, and make
the connection with a related nonlinear diffusion equa-
tion. The results of numerical simulations are presented
in Sec. III, including some details of our numerical
analysis. We end with a brief discussion in Sec. IV, and
include some empirical observations concerning the na-
ture of the statistical steady state.

II. RULES

In this section we de6ne the rules governing our auto-
mata, and their relationship to a continuous diffusion

A. Square lattice

If the underlying lattice is square, we introduce the two
slopes

S„(x,y) =lt(x+ l,y) —g(x,y),
S (x,y)=P(x,y+I) —P(x,y) .

(3a)

(3b)

If the addition of one unit to g(x,y) causes either S„or
S~ (or both) to exceed the threshold magnitude S', the
following relaxation rules are applied:

equation. The rules are defined for two different spatial
lattices, square and triangular.

It is helpful to begin with a physical picture that guides
our choice of rules. We imagine a bounded two-
dimensional surface (a table top); at each position on a
discrete lattice, there is a number P(x,y) (the height of
the sandpile). At a randomly chosen site, we increase f
by one unit

g(x,y)~1(t(x,y )+ 1,
which corresponds to dropping a grain of sand at posi-
tion (x,y). We then check to see if the threshold condi-
tion is exceeded: in the present model, this condition de-
pends on the local slope being greater than a threshold
value (i.e., no sand Rows unless the angle of repose is ex-
ceeded). If so, a relaxation rule is applied, corresponding
to a diffusion of g. Since this relaxation may, in general,
cause some neighboring site(s) to exceed threshold, the
relaxation rule is applied repeatedly until all sites are
quiescent, at which time another site is chosen at random
for seeding.

In terms of a continuum picture, we have in mind a
nonlinear diffusion equation

r),/=V J(VQ)+g(t),

where the current J is a nonlinear function of the gra-
dient of P, and g is a weak (non-negative) random noise
corresponding to the addition of sand, Eq. (1). The pre-
cise connection between J and the automaton will depend
on the rules and the lattice, as we discuss below.

If S (x,y))S', then g(x,y)~p(x, y)+I, 1((x+1,y)~1(t(x+ 1,y) —1;
if S„(x,y) & —S, then f(x,y)~f(x, y) 1, g(x + l,y)~—g(x + l,y)+1;
if $~(x,y) )S', then g(x, y) ~P(x,y)+1, g(x,y +1)~g(x,y +1)—1;
if S (x,y) & —S*, then g(x,y)~g(x, y) 1, P(x,y+1)~g—(x,y+ I)+ I .

(4a)

(4b)

In words, for each slope that is above threshold, one unit
of g is transferred "downhill. " If both S„and S~ exceed
threshold simultaneously, then relaxation takes place in
both directions simultaneously, so that l(t(x, y) diminishes
by two units. The boundary conditions are that P is zero
on the system's perimeter.

If we use the notation that VP= (S„,S ), then one can
represent the above rules in terms of a discretized version

of Eq. (2) with the current J given by

J=(D[$„],D[$ ])

and

V.J=J„(x,y) —J, (x —l,y)+J (x,y) —J~(x,y —1),

where D [u] is the nonlinear operator that takes the in-
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teger part of its argument after dividing by (S'+1):
D[u]=lnt[ul(S*+I)]. (The critical slope S' is the
natural unit of slope in these models; recall that S* is the
largest stable slope. ) In our simulations, the quantity
D[u] only achieves the values of —1, 0, or +1. Thus,
according to the classification of Ref. 6, this is a "local,
limited model. "

y(x,y+1)

S (x
Y

y(x+1, y+1)

Sz(x'y)

~ ~ ~ ~ ~ ~ ~ ~ ~ O~

y(x,y) x(x,y) y(x+1, y)

8. Triangular lattice

S„(x,y) =g(x + l,y) —g(x,y),
S (x,y)=P(x,y+I) —g(x,y),
S,(x,y)=g(x+ 1,y+1) f(x,y—) .

(7a)

(7b)

Of course, only two of these are independent; in the con-
tinuum problem this is expressed by the condition that
VXS=O, since S is the gradient of a scalar field i)'j. In
our discrete model, it is easy to see that the condition

I

Each site in this lattice has six nearest neighbors; the
coordinate system (x,y) for a point on this lattice is indi-
cated in Fig. 1. It is convenient to introduce three coor-
dinate axes, and to define the three slopes S„,S~, and S„ FIG. 1. Coordinate system for the triangular lattice. The

slopes evaluated around the dotted path obey the "zero-curl"
constraint Eq. (8).

linking the Sl, may be expressed by (see Fig. 1}

S„(x,y)+S (x+ 1,y) —S,(x,y)=0 .

The relaxation rules for S„and Sz are the same as be-
fore [Eq. (4)], but with the additional rule for S„

If S,(x,y) &S*, then P(x,y)~P(x, y)+1, g(x+1,y+1)~f(x+ l,y+1)—1;
if S,(x,y}(—S', then P(x,y}~f(x,y) —1, g(x+1,y+1)~f(x+1,y+1)+1 .

As before, we can represent these rules as the discretized version of the nonlinear diffusion equation with current J;
here,

J(D [S„],D [Sy],D [S,]), (10)

using three coordinates. In terms of the two independent coordinates x and y, this can be written [with the use of Eq.
(&)]

J=(D [S„(x,y)]+D [S„(x,y —1)+S (x + l,y —1}],D [S (x,y)]+D [S„(x,y)+S (x + l,y)]) .

Note that, in contrast to the square lattice expression
(5}, the x component of the current depends on the slope
in the y direction. This can have important consequences
for the observed dynamics, as will be discussed in Sec. IV.

Finally, as with the square lattice, the boundary condi-
tions are that 11(x,y) =0 on the system's perimeter.

III. RESULTS

We ran simulations for both the square and triangular
lattices. In order to insure that the data represented
steady-state behavior, we started from a state known (by
experience) to be close to the statistical steady state, and
then ran the dynamics for a large number of grains
(10000—75000, depending on the size of the system) be-
fore starting to take histogram data. We checked that
this gives data that are repeatable and in agreement with
data taken when the system is allowed to build up "from
scratch" [i.e., initial condition g(x,y) =0 everywhere].

As discussed more fully in Sec. IV, we have observed
empirically that the steady-state automaton is character-
ized by a pyramid-shaped "sandpile" whose sides have a

slope equal to S' minus 0.5. (Recall that S' is the largest
stable slope. ) In order to minimize the time required to
reach a steady state, the initial state was set to be a py-
ramid with precisely this slope. Typically, between
200000 and 1000000 grains were used for each histo-
gram. Runs using a larger number of grains made little
difference except to extend the histogram out to the larg-
est flip numbers. The critical slope was taken to be 4 for
the square lattice and 6 for the triangular lattice, i.e.,
equal to the number of nearest neighbors. Note that any
value of S' larger than these will not affect the steady-
state dynamics (for these boundary conditions).

After each loading of a site, the resulting relaxation
rules are applied until no slopes are above threshold. The
entire relaxation event can be characterized in a number
of ways; in what follows we will focus on thePip number
F and the event duration t. The flip number —also called
the cluster size in Ref. 1—is the total number of sites
which exceed the threshold condition at some instant
during the event: if a site is triggered m distinct times
during a single event, it is counted m times. (Thus it is
possible for F to exceed the total number of lattice points
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in the system. ) The main reason for focusing on F is that
it spans a larger range than, say, the "drop number, "
which is the number of grains that exit the boundary.
Since we are limited to relatively small systems as a prac-
tical matter, F is the more attractive quantity. The event
duration t is simply the number of iterations the relaxa-
tion rule must be applied to bring all slopes below thresh-
old.

In collecting the histograms, one finds a great deal of
scatter for the largest events. This is a simple matter of
statistics: there may be many large avalanches, but only
a small number with have, say, precisely F =1021. Thus
one is faced with a choice of binning procedure to smooth
the data. We chose to smooth by averaging bins within
10%%uo of each given avalanche size F. That is, if P(F) is
the raw histogram (normalized by the total number of
grains dropped), we formed the smoothed avalanche dis-
tribution P(F), where

FU

P(F)= 3 g P (F') +P (FI —1)(FI F/y )—
F'=FI.

+P (FU+ 1 )(Fy FU )—
where

FI =Int(1+F/y ), F& =Int(Fy),

3 =(Fy F/y+1—)

and the constant y is 1.10 for averaging over bins within
10% of F. The final two terms represent fractional parts
of the bins at the lower and upper limits of the sum. The
precise value of y was not found to be crucial; the virtue
of this procedure is that it has its largest bins where the
data are most sparse.

We begin with the results obtained for the square lat-
tice, governed by the relaxation rules Eq. (4). Interesting-
ly, the behavior is completely different for the two
different choices of boundary conditions that we studied.

If the boundary is a square of side L, with sides run-
ning parallel to the lattice vectors (so that both x and y
range from 1 to L}, the stationary state is extremely sim-
ple. We always chose L odd so that the system has a
unique central site. Specifically, the system builds up to a
(square based} pyramid, with ridges along the main diago-
nals and apex at the center. On each of the four faces, ei-
ther S =S' and S =0 or vice versa. Once in this state,
the addition of a single grain at (x,y) induces a slide in
which one, two, or four grains tumble all the way to the
boundary, depending on whether (x,y) is on a face, a
ridge, or the apex, respectively. Except for the loaded
site, the entire pile remains unchanged. (Strictly speak-
ing, there are exceptional sites on the ridges and apex
which temporarily become subthreshold. But these sites
represent a vanishingly small fraction of sites with in-
creasing system size. ) It is a straightforward matter to
compute the avalanche distribution explicitly: one finds
that, up to the normalization constant 1/L,

L —
—,', F =0

L —14L —8F, F~, odd

L —14L —8F+2, F~, even

L —1
2, &F~L —1, F even

2

F =2L +2
0, otherwise .

(12)

The behavior of this system is reminiscent of the
minimally stable state achieved by the one-dimensional
version of the automaton originally introduced by Bak,
Tang, and Wiesenfeld. ' In particular, a perturbation at
any site leads to an avalanche extending to the system's
edge, yet the state of the system is virtually unchanged
after each event.

The constant contributions that appear for F even and
for F =2L +2 vanish in the large-L limit, corresponding
to the fact that the fraction of ridge and apex sites be-
comes negligible. In this limit, P(F) is a straight line (up
to the cutofF at L/2) with slope that diminishes with F;
asymptotically, this slope tends to zero. Thus one might
view the L~~ limit as a power law P(F)-F', with
r=1, but with diminishing amplitude. Nevertheless, we
view this behavior as fundamentally different from other
measured distributions for self-organized criticality,
which are characterized by a negative exponent. The no-
tion that ~=1 is somehow a special case is reinforced by
the fact that a change in boundary shape leads to the
more typical power law with negative exponent, as we
now discuss.

The other boundary shape we chose for the square lat-
tice was also a square, but with sides inclined at 45 ' with
respect to the lattice vectors: we call this the "diamond"
boundary. Thus, if we specify the diamond to have side
of length L, there is a total of L +(L —1) sites, and the
coordinates are bounded by the four conditions

x+y =L, x —y =L, y
—x =L, x+y =3L . (13)

For this boundary the system builds up only roughly to a
pyramid, with measured avalanche distribution shown in
Fig. 2. Clearly, one observes much larger events than
previously; viewed as a function of increasing L, one sees
some limiting function "unfold. " The observed distribu-
tions are consistent with a power law P(F)-F ', with
~=1.4. The roll off at the largest avalanche sizes is due
to finite-size effects: the point at which the curve breaks
moves out as a function of increasing system size. Figure
3 shows the histogram for the event duration t. As is typ-
ical, the data does not span as many decades as that for
the Hip number, even if we go to a larger system size.
Nevertheless, the data fit a power law tolerably well,P(t)-t, with a=1.6.

Finally, we turn to the triangular lattice, governed by
the relaxation rules Eqs. (4) and (9). We chose a hexago-
nal boundary with sides parallel to the lattice vectors,
and having main diagonal d. In contrast to the square
lattice, this "commensurate" situation did not lead to
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FIG. 2. Flip number probability density P(F) for the square
lattice with diamond-shaped boundary of side L, for L =8
(closed squares), L =16 (closed triangles), L =32 (closed cir-
cles), L =64 (open triangles), and L =128 (open squares). In
each case, the distribution reflects a total of at least 200000
avalanches.

FIG. 4. Avalanche size distribution P(F) for the triangular
lattice, with hexagon-shaped boundary with main diagonal d,
for d =16 (closed squares), d =32 (closed triangles), d =64
(closed circles), d =128 (open triangles), and d =256 (open
squares). Each curve represents a total of at least 200000
avalanches.
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FIG. 3. Event duration probability density P(t) for the
square lattice with diamond-shaped boundary of side L, for
L =8 (closed squares), L =16 (closed triangles}, L =32 (closed
circles), L =64 (open triangles), and L =256 (open squares). In
each case, the distribution reflects a total of at least 200000
avalanches.

trivial steady-state dynamics. In fact, the avalanche dis-
tribution P(F) is virtually identical to that of the square
lattice with diamond boundary, as is evident from a com-
parison of Figs. 2 and 4. Indeed, when these two 6gures
are superimposed, they appear to form a single data set;
even the oscillations for smallish avalanches (not ap-
parent on the scale of the figures) match up. The only
question is how to quantitatively compare the sizes of the
two distinct geometries. The natural choice is to use the
total number of lattice sites —i.e., the area. Thus, for the
hexagon with main diagonal d, the area is
N =(3d +1)j4, and for the diamond of side L, the area
is N=2L 2L+1. In—deed, viewed as a sequence of
curves with increasing N, these appear to unfold a unique
N~00 limiting distribution. The event duration data
show the same compatibility between lattice types as for
the Rip number, so we have chosen to omit the plot of
P(t) for the triangular lattice.

We also ran simulations for the triangular lattice with
a triangular-shaped boundary, and found results statisti-
cally identical to those for the hexagonal boundary. That
is, the occurrence of trivial dynamics was never observed
for the triangular lattice. As discussed below, we believe
that the presence of trivial dynamics in the square lattice
is an artifact of the severe anisotropy of the fourfold
coordination number; sixfold coordination seems
suScient to eliminate the possibility of trivial steady-state
dynamics.

IV. DISCUSSION

Our simulations show that the "vector threshold" au-
tomaton displays the earmarks of self-organized criticali-
ty. Virtually identical stationary state statistics are ob-
tained for two different underlying lattices, as one would
expect for processes which involve events having length
scales up to the system size itself. Interestingly, however,
the choice of boundary shape profoundly afFects the dy-
namics of the square 1attice: specifically, a quite "natu-
ral" choice of a square with boundary edges parallel to
the lattice vectors leads to trivial dynamics. The system
evolves to a pyramidal shape; the surface f(x,y) is as per-
fect (i.e., nonstatistical) as possible considering the pres-
ence of a random seeding rule. This is the minimally
stable state for this dynamics, since the addition of one
unit anywhere induces an avalanche. The avalanche dy-
namics correspond to that of the minimally stable state
described in the one-dimensional (scalar) automaton of
Ref. 1. This is not too surprising insofar as the vector au-
tornaton reduces to the original scalar model in one di-
mension.

Can we understand why the square lattice can behave
"trivially" for this choice of boundary, while the triangu-
lar lattice does not7 We can gain some insight by noting
an analogous situation that arises in the study of lattice-
gas automata. ' ' There, deterministic collision rules
on a square lattice lead to special (and undesirable) dy-
namics, due to the existence of an extra conserved quanti-
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ty which is not present for the triangular lattice. In fact,
we can identify an "extra" conserved quantity in our au-
tomaton for the square lattice, as follows. If we take the
gradient of Eq. (2), we get

(14)

For the pyramid state, either S„orS is zero over an en-
tire face, with the result that the two slope equations
decouple; the zero slope stays zero during the entire re-
laxation event. For the triangular lattice, this decoupling
cannot occur, as can be seen from the "cross-coupled"
expression for the current Eq. (11); if either S„or S» is
above threshold, this induces a change in both S„and Sy.
In the case of the square lattice with diamond boun-
daries, the coupling between S„and S occurs through
the boundary conditions rather than the local current.
This can be observed directly by watching a simulation in
progress: the pyramid formation begins at the boundary,
and works in toward the center with time.

Of course, this discussion does not reveal why the sys-
tem should be attracted to the pyramid state in the first
place; rather, it shows why once in the pyramid state, it
will remain there.

While working with these automata we observed that
even the nontrivial (statistical) critical states were re-
markably more ordered than the broad avalanche distri-
bution might suggest. Invariably, the steady state was
marked by a "macroscopic" slope —the average slope
over an entire face of the pyramid —that was well
defined even on the smallest length scales, and which
changed very little with time. If we define the row r of a
site to be its distance from the nearest boundary, then the
probability distribution of the heights f(r) is centered
about

fo(r) =S r +b,
where the macroscopic slope S is empirically observed
to be equal to S' —0.50. The constant b is measured to
be 1.1 for the square lattice and 0.7 for the triangular lat-
tice. Aside from a very slight deviation for sites within a
few rows of the boundary or the apex, the data are in ex-
cellent agreement with this rule. Furthermore, the width
of the distribution of g(r) does not increase with r, rather
it remains fixed at roundly a few bins to either side of
go(r). It may be that this observation can be used to con-
struct a theory for the distribution of avalanches, perhaps
calculating the power-law exponent for the flip number
distribution P(F). As yet no work has been done in this
direction.

There are three important issues that we have not ad-
dressed here. The first is that, given that a system evolves

into a self-organized critical state, what is the best way to
characterize the statistical behavior? Kadanoff et al.
have suggested that a multifractal description may be
more appropriate than the more traditional finite-size-
scaling analysis. We have compared these two descrip-
tions for our data, and find no distinct preference for one
over the other: both work tolerably well, though neither
gives an outstanding fit. The second issue, which to our
mind is more fundamental, is whether or not self-
organized criticality requires a locally conserved quanti-
ty. ' ' ' In Ref. 14, it was suggested that the ex-
istence of a locally conserved quantity is responsible for
the resulting criticality in their study of a nonlinear par-
tial differential equation; in contrast, very recent work on
cellular automata has suggested that this is not a neces-
sary ingredient. ' The models studied in this paper
have a relaxation rule which manifestly conserves 1( local-
ly (except, of course, at the boundaries). This is reflected
by the continuity equation (2), and the resulting dynamics
unambiguously reveals self-organized critical behavior.
An interesting extension of the present work would be to
alter the local rules in a way that breaks the local conser-
vation, and see the degree to which criticality is main-
tained. The third point is the issue of universality, that
is, whether the exponents quantitatively agree for
different automata. The present model gives ~=1.4 and
a=1.6, whereas in Ref. 1 v.=1.0 and a=0.43. Of the
four two-dimensional models studied in Ref. 6, two
values of ~ are inconsistent with the value measured here,
and agreement with the other two is uncertain (~=1.35
and v=1.5, unfortunately no values of a were reported).
Our own opinion is that universality in this sense may not
be relevant for these systems.

Finally, we have taken pains to draw a correspondence
between the automaton rules and partial differential
equations. One reason is our hope that such analogies
will prove useful for gaining insight into these nonlinear
diffusion processes. In addition, existing methods for ex-
tracting quantitative information proceed from the con-
tinuum limit in particular, it is a challenge to see if
renormalization-group methods can correctly compute
the exponents we have arrived at by purely numerical
means. It may also be that our empirical observations re-
garding the remarkable microscopic regularity of the
critical state can be exploited to gain insight into the ori-
gin of self-organized criticality, and to compute quanti-
ties characterizing the macroscopic statistical behavior.
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