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We report integral and differential cross sections for the electron-impact excitation of the b 3™
state of CO using the Schwinger multichannel formulation. The calculations were carried out using
a two-state approximation, with the incident electron energies in the range from 10.66 to 20 eV. We
find four peaks in the inelastic cross section, centered at approximately 10.87, 11.6, 13.4, and 16.2
eV. The origins of the peak structures are discussed in terms of a partial-wave analysis, and com-
parison is made with experiment and theory where appropriate. We attribute the two sharp, low-
energy (10.87 and 11.6 eV) peaks to the decay of 2= core-excited Rydberg resonance states of CO ™.
The two higher-energy peaks are broad and less well defined. The 13.4-eV peak is not clearly
identifiable as a resonance, whereas the 16.2-eV peak in the inelastic cross section occurs as a result
of a 2= shape resonance in the elastic channel of the b =™ state. The magnitudes of the cross sec-
tions indicate that the 23 symmetry is dominant for all four peaks. In all the resonances, we find
more than one partial wave contributing at energies slightly shifted with respect to each other. The
present calculation represents the first ab initio study of core-excited Rydberg resonances in
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electron-molecule scattering.

I. INTRODUCTION

Electronic excitations of molecules by low-energy elec-
trons are receiving increasing attention by theoreticians
and experimentalists.' "* The importance of these pro-
cesses for atmospheric and plasma physics has long been
known. In addition, electron-impact excitations have
been used to induce population inversions in high-power
electron beam and discharge pumped lasers® and to the
study of adsorbate-substrate structures.® However, until
recently, difficulties in performing the experiments and
data analysis have inhibited experimental progress.’
Similarly , the complicated nature of the projectile-target
interaction potential (static, nonlocal exchange, polariza-
tion, correlation, multichannel) has prevented fast pro-
gress on the theoretical side.

The recent increased availability of vector computers
has stimulated new theoretical progress. Four computa-
tional methods have demonstrated their capabilities of
producing ab initio cross sections for electronically in-
elastic electron-molecule processes. A comparison of the
four methods (the linear algebraic method,? the varia-
tional R-matrix method,® the Schwinger multichannel
method, '° and the complex Kohn method!') can be made
by reviewing their simultaneous applications®™!! to the
excitation of the b > state of H,. The Schwinger mul-
tichannel (SMC) formulation has been shown to be ap-
plicable to elastic scattering from such molecules as H,,
N,, CH,, and H,0,'>7 ! and to inelastic scattering from
H,, both in the gas phase,!” and as an oriented molecule
to simulate surface scattering.'® Unlike some of the ear-
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lier ab initio methods, '*2° the SMC method avoids deal-
ing with the continuum wave function directly, and in-
stead incorporates the scattering boundary conditions via
a projected Lippmann-Schwinger equation. Also, ex-
change effects are included in an ab initio manner togeth-
er with the correlation terms between the target orbitals
and the continuum orbital. Thus the SMC method is able
to treat the short- and long-range electron-molecule
correlations from a completely ab initio point of view.
Recently, the SMC method was employed to study the
2l'Ig shape resonance?! and correlation effects’? in
electron-N, scattering. Therein, it was demonstrated
that, within the context of the SMC formulation, the
long-range electron-target polarization is associated with
angular correlations and the short-range projectile-target
correlation is associated with both angular and radial
correlations.

The present study applied the SMC method to the cal-
culation of the integral and differential cross sections for
the transition X '2* -5 32" in CO resulting from the
impact of 10.66-20-eV electrons. The two relevant tar-
get states are included in the expansion of the 15-electron
system. No closed channels are considered above the
b 3= threshold. It should be noted that the transition of
interest is optically forbidden and is thus governed by a
short-range interaction. The present calculation fully ac-
counts for the short-range exchange effect and approxi-
mates the electron-target correlation effects with the
two-state treatment.

The e +CO system is important for the modeling of
plasmas,?® the studies of CO adsorbed on surfaces,’*?°
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astrophysics of the interstellar medium,?® and reentry
physics.?’ A significant amount of experimental and
theoretical data on the elastic cross section?* exist in the
literature, but the available data on inelastic proccssesz"‘
are sparse. The literature concerning resonances in
electron-molecule scattering was summarized in 1973 in
the review article by Schulz.?® Specifically for the b *=™
state, the only published data that we are aware of are the
optical measurements of integrated cross sections by Sku-
benich,?’ the experiment of Newman, Zubek, and King, *
using a low work function detector, the experimental rel-
ative total cross-section measurements of Polley and Bai-
ley,>! the experimental differential cross sections at 20 eV
measured by Trajmar, Williams, and Cartwright,? the
recent unpublished experimental results of Allan*® using
a trochoidal electron spectrometer, the semiempirical in-
tegral cross sections of Sawada, Sellin, and Green®* and
the Born calculations of Chung and Lin.*® It should be
noted that the first-order Born theory of Chung and Lin
is not capable of predicting resonance behavior and the
agreement between theory and experiment is not good.
Calculations on this system using an up-to-date technique
are warranted. Also, the b 337 state, a Rydberg 3s state,
is the lowest Rydberg state of CO. A study of this system
will serve as an example of electron-impact excitation of
molecular Rydberg levels.

The present work explores the resonance structures
above the b 337 threshold. We analyze the resonance
structure by performing a partial-wave decomposition
and establish the resonance positions based on the typical
discontinuous behavior in the K-matrix elements as well
as the 7 radian change in the partial-wave eigenphases.
This resonance behavior will, in the process of the discus-
sion, be related to the concept of core-excited resonances
and the “grandparent” model of resonances.?® To relate
our results to the formation of the negative ion, we also
carried out bound-state calculations on the (50)(3s0)?
core-excited Rydberg state of CO™, and found the posi-
tion agrees well with our low-energy resonance positions,
but, due to the lack of proper correlation, it is slightly
shifted to a higher energy from experiment. In Sec. II,
we present a short discussion of the theory. In Sec. III,
the computational procedure and results are presented.
Finally, in Sec. IV, we present our conclusions.

II. THEORY

Detailed descriptions of the SMC formulation have
been given previously.!*!* To facilitate subsequent dis-
cussions of the computational procedure and results, we
give a brief review of the working equations here. Let
W{t) be the total (N + 1)-particle antisymmetrized wave
function with incoming-plane-wave and outgoing-wave
boundary conditions for the nth channel. A projected
Lippman-Schwinger equation for ¥\t is

PV V=5 +GVveT) . (1)

The projection operator P defines the open-channel space
in terms of the eigenfunctions ®,, of the target Hamil-
tonian Hy,

M
P= 2 i<I>M(1,2,...,N))<d>,,,(1,2,...,N)| , ()
m=1
and
Hyl®, )=E,|®,) . (3)

The open channels are associated with those target states
with energy E,, less than &, the total energy of the (elec-
tron plus molecule) system. In Eq. (2) P is defined in the
N-electron space instead of (N +1)-electron space as in
the Feshbach formalism.’® Also S,, in Eq. (1), is the
solution of the unperturbed Hamiltonian Hy + Ty ., and
is given by

Snz\/k,, /(2m)’explik, Ty )P, . @

The interaction potential ¥ between the incident electron
and the target is

N z
p=3 | a

i=1 |f,-_l'1v+1| a |Ra_f1v+1| ’

(5)

The outgoing-wave Green’s function G5, defined in the
open-channel space, is given by

explik,, [ty =Ty 41)

6=—L1 % |0 ) (o, |
P - 277_ m2=l m mil *

lty 41—y 41l
(6)
To obtain a complete equation for ¥,, we must recover

the unprojected component of Eq. (1). This is done by
rearranging the Schrodinger equation to yield

[A—a(PA+AP)W' V'=a(VP —PV)¥'!) | 7

where H=6—H ~+1- The value of a is determined as in
Ref. 12. The above equation can be used to introduce the
closed channels'*?! without defining the closed-channel
Green’s function, which would require the inclusion of
the target continuum states. Takatsuka and McKoy'> !
have shown that a complete equation for ¥',*’ is given by

A(+)\I/(n+)=VS" , (8)
with

A= L PV +VP)—-VGLTV

1 N+1
+N+1 a 5 (PA+AP) | . 9

Based on the fractional form of Schwinger’s variational
principle, the fixed-nuclei T matrix is expressed as

LS, VW VLS, )
mn (w(m—)|A1+)lw(n+))

(10)

The above quantity is calculated in the molecular frame®’
using the fixed-nuclei approximation. It provides an ex-
pression for the body-frame T matrix for molecules of ar-
bitrary geometry. The procedure for obtaining the physi-
cal scattering cross sections by a transformation to the
laboratory frame and averaging over molecular orienta-
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tion is described elsewhere. *®

Equation (10) summarizes the multichannel formula-
tion of electron-molecule collisions. This formulation has
several important practical features. For example, all
matrix elements in the variational expression given by
Eq. (10), except those of VG,™'V, can be evaluated
analytically provided the trial scattering wave function is
expanded in a basis of Gaussian functions and plane
waves. If an approximate closure relation using Gaussian
functions is inserted around G,*’, then the matrix ele-
ments of ¥G5*'V can also be evaluated analytically, i.e.,

(W IVGRT VW)

= SOV VI My Gy VIwW,H) . (D
v,8

This method is termed the “a-insertion” technique. In
addition, it has been shown that the contribution from
the residue of (W' '|[VG,'VIW ")) can be obtained in
analytical form?! and only the principal-value contribu-
tion to this matrix element needs to be evaluated by the
method of Eq. (11). This is called the ‘““k-insertion” tech-
nique. This technique is particularly useful because the
residue contribution in Eq. (11) is often the dominant
one. It has also been shown?! that the unitarity of the
calculated S matrix is determined entirely by the on-shell
contribution. Thus the S matrix from k-insertion calcu-
lations has almost perfect unitarity. All our final produc-
tion calculations were carried out using this technique.
Possible insertion errors in the calculation of the
principal-value contribution are estimated based on the
following argument. Major contributions to the
principal-value integral also comes from the vicinity of
the poles of the Green’s function. The error in represent-
ing the principal-value contribution should be related to
the error in representing the residue using the a-insertion
technique. Thus we routinely compare the results of k
and « insertions to judge the completeness of the inser-
tion basis.

In using partial-wave analysis to locate resonance
structures, we use both the discontinuity of the K matrix
and the sharp increase of the partial eigenphases over 7
radians as distinct resonance signatures. It may be noted
that the SMC calculation directly produces T matrices.
Both the K matrix and the eigenphases of the S matrix
are deduced from the T matrix. A comparison of the two
quantities serves as an internal consistency check for the
computation.

III. COMPUTATIONAL PROCEDURE
AND RESULTS

All calculations were carried out in the two-state ap-
proximation with the ground state of CO represented by
self-consistent-field (SCF) wave function and the b 33"
state by an IVO (improved-virtual-orbital) wave func-
tion.*® The NASA Ames SCF code was used for the tar-
get calculations. Both the target (N-particle) wave func-
tions and the scattering [(N + 1)-particle] wave functions
were represented by a basis of Cartesian Gaussians.
Table I presents the basis set used in our final calcula-
tions. This will be referred to as basis set 4. We started
with the uncontracted 9s5p set of Huzinaga® at the nu-
clei and added two diffuse s and p functions. In addition,
set A also contains 3s3pld Gaussians at the center of
mass (c.m.). The diffuse s, p, and d functions serve to de-
scribe the continuum electron as well as the Rydberg
character of the excited target state. This basis set is con-
siderably more extensive than the set used by Chung and
Lin® in their nonunitarized Born calculations. The
ground state SCF energy determined using set A4 is
—112.736 01 hartrees, and the IVO excitation energy is
0.391 hartrees (10.65 eV). The corresponding experimen-
tal values*' are —113.377 and 0.382 hartrees (10.40 eV).
The calculated dipole moment for the ground state is
—0.220 a.u. and for the b 337 state, +0.888 a.u. The
experimental value for the ground-state dipole moment is
+0.044 a.u. No experimental data is available for the di-

TABLE I. Gaussian basis set® ( 4) used in the representation of ¥\,"’ and G}*".

Center and type

Exponent (a)

C,l1s

C,7p

O,11s

O,7p

Center of mass

5240.635, 782.2848, 178.3508, 50.815 94,
16.823 56, 6.175776, 2.418049, 0.5119,
0.156 59, 0.05, 0.02

18.8418, 4.15924, 1.20671, 0.385 54,
0.121 94, 0.045, 0.01

10662.28, 1599.71, 364.7253, 103.6518,
33.905 81, 12.28747, 4.756 803, 1.004 271,
0.300 686, 0.1, 0.03

34.85646, 7.843 131, 2.308269, 0.723 164,
0.214 882, 0.06, 0.2

3s 0.01, 0.003
3px,3p, 0.09, 0.03, 0.010
1d,,,1d,,,1d,,

ld,;,1d,, 0.80

X5 = Nima(x — Ay — 4,)"(z — A,)7e I~ AP



pole moment of the excited state. The sign error in the
SCF dipole moment for the ground state is well docu-
mented.*> We note that the calculated dipole moment
for the b state is considerably larger than the ground
state.

The Schwinger scattering calculations were performed
with the NASA Ames SMC code.*® Table II presents the
SMC elastic integral cross sections for the ground state,
and the inelastic integral cross sections for the b 3%
state, at incident electron energies between 10.66 and 20
eV. Since the elastic cross sections were calculated in the
fixed nuclei approximation, they correspond approxi-
mately to electronically and vibrationally elastic but rota-
tionally unresolved measurements, with the additional as-
sumption that the rotational excitation energy is zero.
Because CO is a polar molecule, the long-range electron-
dipole potential leads to a slow fall off of the elastic -
matrix elements for large /. The large-/ values contribute
predominantly to the forward scattering angles in the
elastic cross section. In the present calculation, only
low-order angular momentum waves, with maximum
I =6, were included in the partial-wave expansion. Previ-
ous calculations!® on elastic scattering of H,0 showed
that, in the energy range under consideration, such an ap-
proximation can provide differential cross sections in
good agreement with experiment as long as the scattering
angle is larger than 30°. Since the dipole moment of the
ground state of CO is much smaller than H,O, the argu-
ment should be more applicable in the present case. In
comparing integral cross sections, we have made an addi-
tional approximation that the improper treatment of the
forward scattering cross section has only minor effects on
this quantity.

We present in Fig. 1 the elastic differential cross sec-
tions at 20 eV (between 30° and 180°) from the present

w » (3]
T T T
1

N
1

d6/dS2 (1016 ¢cm 2/sr)
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0 30 60 920 120 150
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FIG. 1. Elastic differential cross sections in units of 107!®
cm?/sr at 20 eV. Present theory, basis set A4 ( ); experi-
ment from Ref. 44 (O © O ); experiment from Ref. 45 (— — —).
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calculation using k insertion, and the experimental data
of Tanaka, Srivastava, and Chutjian** and Nickel.
General agreement is found between theory and experi-
ment, except in the forward direction. The deviation at
angles less than 30° is due to the use of low-order angular
momentum waves used in the present calculation. For
this reason, the theoretical results are not displayed in
Fig. 1 at angles less than 30°.

We see from Table II that the elastic integral cross sec-
tion at 15 eV is in good agreement with the experiment of
Tanaka, Srivastava, and Chutjian,44 but at 20 eV we find
an 11% difference. Table II also presents the elastic cross
sections at 9.9 and 10.3 eV, just below the inelastic
threshold, with the b 32" channel included as a closed
channel. Comparison is made with the elastic cross sec-
tions of Tanaka, Srivastava, and Chutjian44 at 9.9 eV.
Our results are considerably larger in magnitude. This is
consistent with other theoretical calculations’ in this en-
ergy region. A possible cause could be the neglect of po-
larization and an overestimation of the flux going into the
elastic channel when the inelastic open channels and dis-
sociative attachment channels are not explicitly included
in the calculations.

In the following discussion of the inelastic transition,
we will present data that are consistent with the picture
that the open-channel threshold structure of the cross
section is dominated by the decay of the (50 )(3s0)?:22 %
state of CO™ into various partial waves. The discussion

TABLE II. Elastic cross section, theory and experiment (see

Ref. 40), and inelastic cross section, for X '=* —b 3%, theory.

Cross sections are in a3.

Present Present
Energy theory Experiment theory
(eV) elastic elastic inelastic
9.90 52.64 45.60
10.30 51.37
10.66 53.43 0.089
10.68 53.27 0.249
10.70 53.13 0.319
10.80 52.54 0.423
10.85 52.29 0.467
10.90 52.05 0.405
11.00 51.54 0.263
11.10 51.02 0.254
11.20 50.53 0.298
11.30 50.07 0.348
11.50 49.28 0.404
11.70 48.53 0.410
12.00 47.48 0.315
12.50 45.98 0.218
13.00 44.65 0.258
13.40 43.75 0.266
14.00 42.59 0.254
15.00 41.01 39.64 0.283
16.00 39.88 0.305
16.50 39.45 0.301
18.00 38.57 0.262
20.00 38.26 33.93 0.242
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is facilitated by the presentation of integral and
differential cross sections as well as graphs of resonant
K-matrix elements and resonant partial-wave eigen-
phases.

We begin with Fig. 2, which presents the integrated
cross section for the inelastic transition X '=*—533*.
In addition to the results calculated using basis set A
(solid curve), we also present cross sections using a
second basis set, set B (dashed curve). This set is ob-
tained by deleting the d functions in set 4. The integrat-
ed cross sections calculated with set A4 are also presented
in Table II. The cross sections from the two sets (4 and
B) of calculations are similar, except for the fact that the
peak heights are reversed. The insertion errors are
significantly reduced by the inclusion of the d functions
(set 4) as compared with the s and p basis set (set B).
The difference between the a-insertion and k-insertion re-
sults (set A) is approximately 10% at 10.85 eV, indicat-
ing an acceptable level of convergence in the VGV [see
Eq. (9)] term. Thus we conclude that our inelastic cross
sections are adequately converged with respect to basis
set size. The first peak at 10.87 eV is the narrowest. A
lower and broader peak occurs at 11.6 eV. A third peak
is located at about 13.4 eV, and a broader but larger peak
at approximately 16.2 eV is also shown in Fig. 2.

In order to understand the physical origin of the four
local maxima observed in the inelastic cross section, a
partial-wave analysis was performed. To aid in this
analysis, we present in Table III the contribution of the
23 and *I1 symmetries to the inelastic cross section as a
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FIG. 2. Inelastic integrated cross sections in units of a3/sr
for X'S*—b33*. Present theory, k insertion; basis set A
( ); basisset B(— — —).

TABLE III. Contributions of the 2= and %Il symmetries to the inelastic cross section for the
X '2* b33 transition, and to the excited elastic cross section b3Z*—b 3=*. Cross sections are in

a3. The energies are in electron volts (eV).

) m > m
Energy Inelastic Inelastic b3=™ elastic b3=? elastic
(eV) cross section cross section cross section cross section
10.66 0.089 0.000 2.655(3) 2.042(1)
10.68 0.248 0.000 3.583(3) 3.198(2)
10.70 0.318 0.001 3.031(3) 1.655(3)
10.80 0.420 0.003 1.217(3) 1.114(3)
10.85 0.464 0.004 8.870(2) 8.368(2)
10.90 0.401 0.005 7.277(2) 6.815(2)
11.00 0.258 0.006 6.206(2) 5.129(2)
11.10 0.248 0.007 6.976(2) 4.255(2)
11.20 0.290 0.008 6.828(2) 3.732(2)
11.30 0.338 0.009 5.707(2) 3.368(2)
11.50 0.391 0.013 3.330(2) 2.771(2)
11.70 0.393 0.017 2.109(2) 2.234(2)
12.00 0.290 0.025 1.117Q2) 1.682(2)
12.50 0.182 0.036 6.666(1) 1.177(2)
13.00 0.215 0.043 5.687(1) 8.781(1)
13.40 0.220 0.046 5.161(1) 7.242(1)
14.00 0.206 0.049 4.954(1) 6.263(1)
15.00 0.234 0.048 5.786(1) 2.149(1)
16.00 0.260 0.045 6.216(1) 8.946
16.50 0.259 0.043 6.224(1) 8.512
18.00 0.221 0.041 6.196(1) 7.817
20.00 0.188 0.054 5.313(1) 8.076
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function of energy. The dominance of the 23 symmetry
is clearly demonstrated. We also present in Table III the
elastic cross section for the excited b state, decomposed
by symmetry. The large peak in the excited elastic cross
section in the *IT symmetry at about 10.7 eV is very obvi-
ous. No corresponding Il peak is found in the inelastic
cross section and the structure and the excited-state elas-
tic 2I1 channel does not seem to influence our results for
the inelastic cross section in a significant way.

It should be noted that the projectile angular momen-
tum quantum number / is not conserved for the case or a
nonspherical potential. Thus the analysis of the reso-
nance behavior in electron-molecule scattering is more
complicated than for electron-atom scattering. In addi-
tion, we are considering an inelastic process. The eigen-
phase sum analysis* that is so useful for elastic electron-
atom scattering is not so clearly and unambiguously
defined in the present case. The eigenphase sum is
defined according to the symmetries of the scattering sys-
tem, which are 23 and I in the present case. We con-
sidered the I's 0,1,2. The departure of the present
analysis from that described in Ref. 46 is that, for a given
process and a given symmetry, we include the possibility
that the resonance behavior may occur in different partial
waves and at different energies. Our analysis also applies
to the case of overlapping resonances. As a result, we
calculate partial resonance positions and widths for each
process. However, the inelastic process of present in-
terest is unavoidably connected with the elastic processes
when the S-matrix diagonalization is performed to con-
struct the partial eigenphases. Thus it is not considered
illuminating to construct resonance positions and widths
as is done in Ref. 46.

In order to gain additional insight into the nature of
the peak structure, a bound state (SCF plus IVO) calcula-
tion of the energy of the 2= state of CO™ was done us-
ing the (50)(3s0)* configuration. The resulting energy
was 11.044 eV, approximately 1 eV above the experimen-
tal value of 10.04 eV,?? and lies above the b 337 thresh-
old energy. This computed energy indicates that the
CO™ state (50:*="), the grandparent state,’® must be
well correlated in order to accommodate the two Ryd-
berg electrons. Only then can one expect the CO™ ener-
gy to agree with experiment. Since the present SMC cal-
culation uses a frozen-core representation, we should ex-
pect the CO™ resonances in 227 system symmetry to be
higher in energy than experiment. Thus the resonance
appears as an open-channel core-excited shape resonance
in the theoretical calculations, while in experiment, it ap-
pears as a close-channel Feshbach resonance in the elastic
channel. As seen from Table II, we did not find a Fesh-
bach resonance below the b > threshold, only a slight
dip in the elastic cross section associated with opening up
the inelastic channel. An analysis of the elastic K-matrix
elements and the corresponding partial eigenphases also
fail to indicate a resonance immediately below threshold.

The difficulty of calculating an accurate energy for neg-
ative ions is known.*’~* In the case of the oxygen atom,
Sasaki and Yoshimine*’ obtained an electron affinity of
1.041 eV using a singles and doubles configuration in-
teraction (SDCI) treatment, 0.421 eV smaller than the ex-

perimental value*® at 1.462 eV. A more sophisticated cal-
culation of Bauschlicher et al.,* which is done at the full
configuration interaction CI level of correlation, obtains
an electron affinity of the oxygen atom to be 1.290 eV,
which differs from experiment by 0.172 eV. These calcu-
lations show that a highly correlated wave function is re-
quired to describe the negative ion. It is not surprising
that the present calculation, using uncorrelated target
functions and neglecting e-target correlation except at a
two-state level, results in an error of 1.0024 eV in the po-
sition of the resonance.

We have investigated the possibility of artificially pro-
ducing a Feshbach resonance below the excitation thresh-
old by shifting the energy position of the neutral CO
b33 ™ target state with respect to the negative-ion state.
Since the experimental Feshbach resonance energy posi-
tion?® (10.04 eV) is approximately 0.36 eV below the ex-
perimental threshold energy position*' (10.40 eV), we
have shifted the theoretical threshold to 11.404 eV, which
is 0.36 eV above the bound-state (SCF plus IVO) energy
(11.044 eV) calculated for the 22" state of CO™. We
have done a thorough scan below threshold and have
been unable to detect a resonance structure. In addition,
the basic integral cross-section structures above threshold
did not change except a shift to a higher energy corre-
sponding to the 0.36-eV threshold shift. This result is
consistent with the discussion in the preceding paragraph
that the error in the position of the resonance is due to
insufficient correlation. For our final result, we chose to
use a purely ab initio set of scattering parameters because
the intent of our study is to judge the reliability of purely
ab initio calculations without recourse to empirical ad-
justments based on experiment.

The two lowest energy peaks are too close together in
energy to be considered isolated. The width of the 11.6-
eV peak is sufficently large so as to overlap the 10.87-eV
resonance. The two higher energy peaks are broad and
weak and are also not isolated. The possible resonance
behavior is analyzed by considering the behavior of the
K-matrix elements and of the partial eigenphases. This is
done for the inelastic matrix elements as well as the
excited-state elastic matrix elements and for the partial-
wave eigenphases. Both inelastic and excited-state elastic
quantities exhibit resonance behaviors, but generally at
somewhat different energies. The >=* core excited reso-
nance can also manifest itself in the ground-state elastic
channel. However, our analysis of the ground-state elas-
tic K-matrix elements and eigenphases failed to find any
resonance behavior. Since the coupling between the neg-
ative ion (50)(3s0)? and the elastic channel (50 )X (ko) is
a correlation effect, it is possible that the present two-
state approximation is not sufficiently correlated to ac-
count for the experimental Feshbach resonance in the
elastic channel.

It has also been pointed out?! that in the vicinity of a
resonance, the completeness requirement for the insertion
calculation of the VGV term is severely tested. Although
the validity of the cross-section calculation can be tested
by comparing the a insertion and the k insertion, the va-
lidity of the behavior of the K-matrix elements and par-
tial eigenphases as a function of scattering energy is more
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difficult to judge. In fact, a large insertion basis is re-
quired to produce the exactly correct behavior at energies
very near the resonance energy.?! This is true, even
though the cross sections are not nearly as sensitive to
the exact convergence of the VGV insertion basis. Nev-
ertheless, a thoughtful consideration of the K-matrix ele-
ments and partial eigenphases can, even when more than
one open channel is present, give substantial insight into
the nature of the resonance behavior.

We present, in Table IV, selected inelastic K-matrix
elements at the energies near the four-peak positions, for
the dominant 23 symmetry. The dominant partial-wave
contribution at 11.7, 13.4, and 16.0 eV comes from s
waves in both the incident and the exit channel. At 10.85
eV, the dominant contribution is from an incident s wave
and an exit po wave. At 11.7 eV, the second most impor-
tant contribution comes from an incident do wave and
an exit s wave. There is also a significant contribution
from an incident po wave and an exit s wave. At 13.4
eV, incident po and do waves with outgoing s waves are
of almost equal magnitude as the second most dominant
contribution after the incident and exit s waves. For the
peak at approximately 16.2 eV, the tabulated K-matrix
elements in Table IV show no clear partial- wave domi-
nance.

Specific evidence for resonance behavior can be seen
most clearly by examining the K-matrix elements. Fur-
ther evidence is obtained from the partial eigenphases.
We begin with the inelastic K-matrix elements. The in-
elastic 22t K-matrix elements considered (/:0,1,2) all
showed the discontinuous behavior characteristic of a
pole between 10.9 and 11.5 eV except for those partial
waves with an exit do wave. We show this behavior for
selected partial waves in Fig. 3. We also note that this is
the only energy region where the inelastic K-matrix ele-
ments showed discontinuous behavior. There is no evi-
dence of discontinuous K-matrix behavior in the 2II sym-
metry for the inelastic excitation process.

We next consider the elastic K-matrix elements for the
excited state. We show in Figs. 4(a) and 4(b) the discon-
tinuities in the s wave in and s wave out, 22" K-matrix
elements. There are also discontinuities for po waves
and do waves in the vicinity of the 16.5 eV peak for ="

INELASTIC PARTIAL WAVE K MATRIX

(e)

-1
109 1 13 1.5 109 1na ns3 ns
ELECTRON ENERGY (eV)

FIG. 3. Selected resonant 22 inelastic K-matrix elements la-
beled by [;—1,. (a) 0—0, (b) 0—1; (c) 1 —>1; (d) 2—0.

symmetry. Figures 4(c) and 4(d) shows the pm-wave K-
matrix discontinuities for the 2II system symmetry.
There is also a discontinuity in the d7 wave for 2II sym-
metry in the vicinity of the 11.6-eV peak. It should be
noted in Fig. 4 that the discontinuities in Figs. 4(a) and
4(d) show a qualitatively different energy dependence
than in Figs. 4(b) and 4(c). It is known that at a reso-
nance, the partial eigenphase shift §, sharply increases by
(7/2)(modw).>! This then implies that the K-matrix
discontinuity must increase on the low-energy side and
decrease on the high-energy side as in Figs. 4(b) and 4(c).
The behavior in Figs. 4(a) and 4(d) is consistent with a
partial eigenphase shift that decreases through
(m/2)modw). Newton®! described this type of collision
as a ‘“time advance.” It should be further pointed out
that the sign of the off-diagonal K-matrix elements is ar-

TABLE IV. Selected (*2) K-matrix elements for the inelastic X '=* —b >3 transition at four ener-

gies near the resonance positions.

Entrance Exit K-matrix

channel channel elements
(L,m) (I,m) 10.85 eV 11.70 eV 13.40 eV 16.00 eV
(0,0) (0,0) 0.15 0.52 0.37 0.18
(0,0 (1,0) 0.30 0.15 0.16 0.13
(0,0) (2,0) 0.04 0.05 0.10 0.14
(1,0) 0,0 0.06 0.29 0.26 0.15
(1,0 (1,0 0.16 0.10 0.13 0.09
(1,0) (2,0) 0.02 0.03 0.07 0.10
(2,0 (0,0 0.07 0.35 0.27 0.15
(2,0) (1,0 0.18 0.13 0.13 0.13
(2,0) (2,0 0.03 0.04 0.09 0.13
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FIG. 4. Selected resonant 2% and 2Il excited elastic K-
matrix elements labeled by /; —1,. (a) 2300, (b) 2=*:0—-0;
(c)2M:1—1; (d) M:1 1.

bitrary, but the sign of the diagonal elements is not, so
that this contrasting energy dependence in the excited
elastic K-matrix elements is not arbitrary with respect to
the sign.

The term time advance is used generically by Newton®!
to indicate a sharply decreasing phase shift as opposed to
“time delay,” which means a sharply increasing phase
shift. Only in the case of time delay is the increase
through /2 radians over a narrow energy range. Then
the label resonance be used to describe this phase shift be-
havior. However, the term ‘“narrow energy range” is left
somewhat imprecisely defined. If the rapid energy varia-
tion occurs in a particular partial wave over an energy re-
gion where the other phase shifts are changing slowly,
then they play the part of the resonance background and
the definition of narrow energy region is easily given in
each particular case. If, on the other hand, the other par-
tial waves have rapidly decreasing phase shifts over the
energy region where the supposed resonance is undergo-
ing a rapid increase in phase shift, then interference
effects can occur and obscure the resonance signature.
Thus, a time advance could result from a predominantly
repulsive effect for the rapidly changing phase shift, or it
could result from the interference effect of a strong non-
resonant background scattering.>2~3* At our present lev-
el of understanding of these phenomena, it is not clear
how to distinguish these various possibilities. Thus we
shall use the term time advance to indicate a rapidly
changing phase shift, which decreases through 7 /2 radi-
ans over a narrow energy region, with the unavoidable
imprecision in the definition of the width of the afore-
mentioned energy region.

In Figs. 5(a)-5(d), the excited elastic, s-wave eigen-
phases corresponding to one of the two degenerate com-

PARTIAL EIGENPHASE (7rad)

L L ! L
1.2 115 120 125 13.0 135 140

0 L " L
108 109 1.0 1na
ELECTRON ENERGY (eV)

FIG. 5. Selected resonant =" excited elastic partial eigen-
phases labeled by the channel component number [component 1
corresponds to active target electron spin assignment (a8 + Ba),
and component 2 to (aa), or (BB),] and labeled by I;—I, in
units of 7. (a) Excited elastic component 1 (0—0), (b) excited
elastic component 1 (0—0), (c) excited elastic component 2
(0—0), (d) excited elastic component 2 (0—0).

ponents of the excited-state elastic channel are presented
for the 2% symmetry for two resonance energy regions.
The two components of the excited elastic channel are
classified according to the spin assignments of the two ac-
tive electrons of the target. Component 1 corresponds to
the §,=0 symmetric combination (af+Ba),. Com-
ponent 2 corresponds to S, ==x1, which results in (aa),
or (8B),. Figure 5(a) shows the signature of time-advance
scattering as mentioned above. This partial eigenphase is
associated with the K-matrix discontinuity shown in Fig.
4(a). It should be pointed out that the resonance struc-
tures of Figs. 4(b) and 5(b) are different as can be seen by
the energy ranges. The width and resonance energy cor-
responding to the three resonance parts of Fig. 5 are
presented in Table V. The resonance of Fig. 5(c) is asso-
ciated with the 10.87-eV peak and the resonances of Figs.
5(b) and 5(d) are associated with the 11.6-eV peak.

Now considering the 13.4-eV peak, no discontinuous
K-matrix behavior is evident in either of the inelastic >3
or I symmetries. There are sign changes in the excited
elastic K-matrix elements for both symmetries in the vi-
cinity of the 13.4-eV peak, but no evidence for discon-
tinuous behavior. Neither is there any clear evidence of
resonance behavior in the partial eigenphases of either
symmetry. Thus the origin of this peak is not clear.

We finally consider the peak at 16.2 eV. There is no
evidence for discontinuous inelastic K-matrix behavior in
the vicinity of this peak for either the %X or %Il symmetry.
However, the 23 symmetry for the excited elastic process
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TABLE V. Resonance [Figs. 5(b)-5(d)] energies and widths in > symmetry for the excited-state

elastic channel.

Fig. 5(b) Fig. 5(c) Fig. 5(d)
component 1 component 2 component 2
Energy (eV) 12.74 10.95 12.22
I' (meV) 49.0 6.6 57.0

exhibits discontinuous K-matrix elements for s waves, po
waves, and do waves. The po waves give the weakest
discontinuity while the s and do waves have about the
same strength of discontinuity. The Il symmetry has no
evidence of K-matrix discontinuity near the 16.2-eV peak,
for the excited elastic process.

The 10.87 and 11.6 eV peaks are two of the most in-
teresting results from the present calculation. Partial-
wave analysis shows that these peaks come from the %3
partial channel. This is to be contrasted with the *IT res-
onance in the elastic scattering of the ground state at
about 2.0 eV. Although the inelastic peak does not ap-
pear to be as sharp and long lived as the vibrational peaks
common in polar molecules right above vibrational
thresholds, > there are similarities. In the exit channel
the electron has lost most of its kinetic energy to the
molecular target and is moving slowly in the presence of
the enhanced dipole field of the excited molecule, which
is attractive and tends to further delay the electron, re-
sulting in the formation of a temporary negative ion.

In Figs. 6(a)-6(d) the integrated inelastic cross sections
calculated with basis set 4 are compared with available
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FIG. 6. Inelastic integrated cross sections in units of a3 for
X't b32". (a) Present theory, (b) experiment from Ref. 33,
(c) experiment from Ref. 29, (d) experiment from Ref. 30.

experimental data from threshold to 14 eV. Figure 6(a) is
the present theory result. Figure 6(b) is the experimental
data of Allan® and Fig. 6(c) is the optical experimental
data from Ref. 29. Figure 6(d) shows the experimental
results of Newman, Zubek, and King.30 The disagree-
ment in magnitude among the various results is apparent.
However, all results show one or two low-energy peaks.
The experiment of Allan employed a trochoidal elec-
tron spectrometer that is especially sensitive to processes
with small cross sections.®> The measured cross section
is a superposition of differential cross sections at 0° and
180° and thus the shape may differ from the true integral
cross section if the angular distributions vary with ener-
gy. Nevertheless, Allan’s data show a sharp peak just
above the threshold, in qualitative agreement with our
present result. Also, there are four structures, albeit of
much different sizes than ours, in Allan’s data.
Skubenich’s cross section in Fig. 6(c) is the only experi-
ment that has units associated with the cross section and
is almost an order of magnitude smaller than our two-
channel cross sections. Recent multichannel calcula-
tions>>>® on the valence excitations of N, showed that
unitarized two-state calculations tend to overestimate the
excitation cross sections because available open channels
responsible for the loss of the incident flux are not prop-
erly accounted for. On the other hand, the electron-
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FIG. 7. Inelastic differential cross sections in units of 1073
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impact excitation cross sections for the X '3 —b°3
state of H, calculated in the two-state approximation®™!!
are in good agreement with experiment. We note that
the N, states studied by Huo and co-worker® > are
valence excited states, whereas the X —b transition of
H,, like the transition in the present study, is a Rydberg
transition. Whether the nature of the excitation plays an
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important role in determining the amount of channel
coupling remains to be studied.

Figure 7 presents our inelastic differential cross section
at 20 eV obtained with basis set A (solid curve), basis set
B (dashed curve), and the experimental differential cross
section of Trajmar, Williams, and Cartwright®? (squares
with error bars). The agreement between basis set 4 and
B is good, both in shape and magnitude. The agreement
with the data of Trajmar, Williams, and Cartwright is
only qualitative. Both theory and experiment show for-
ward peaking and a broad minimum. The calculated
minimum is near 90° whereas the experimental minimum
is close to 60°. While our calculation shows a distinct
backward peaking, experiment did not extend to large
enough angles to confirm this. It is interesting to note
that if we extrapolate the differential cross section of
Trajmar, Williams, and Cartwright and integrate over an-
gles, an integral cross section will be obtained that is ap-
proximately two to three times smaller than theory, and
hence significantly larger than the optical data of Skuben-
ich.? It should also be pointed out that Zetner and Traj-
mar’ showed recently the differential cross-section mea-
surements reported in Ref. 32 may be subject to large un-
certainties due to problems with stray electrons and over-
lapping bands. In view of the experimental difficulties, no
firm conclusion can be drawn from the comparison.

Because each resonance results from a mixture of par-
tial waves, the nature of the resonances is not clearly in-
dicated by the shape of the differential cross-section
curves. In this respect, our results indicate that the com-
mon practice of relying on the shape of the differential
cross section to deduce the symmetry of the negative-ion
resonance may be questionable, at least for some transi-
tions. For these same reasons, it is more informative to
look at partial eigenphases and K-matrix elements rather
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FIG.9. Energy vs angle surface fit of the inelastic differential cross section in units of 10~ '® cm?/sr for X 'S+ 533 ™.
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than eigenphase sums, in order to analyze resonance be-
havior.

Figure 8 presents the inelastic differential cross sec-
tions at 10.85, 11.70, 13.40, and 16.00 eV. The curve at
10.85 eV is rather flat and somewhat asymmetrical indi-
cating an admixture of s and po waves. The curves at
11.70 and 16.00 eV have deep minima. This is probably a
reflection of the importance of do-wave —s-wave
scattering (see Table IV). The curve at 13.40 eV shows a
decline from low to high angles with various small wig-
gles, probably indicating interference effects.

Finally, in Fig. 9, we present a plot of a surface fit of
the inelastic differential cross section from 10.60 to 13.00
eV. In the vicinity of the two resonances located in this
energy interval, the differential cross-section (DCS) peaks
both in the forward and backward direction and a local
minimum is found near 90°. The DCS surface shows a
deep trench immediately after each resonance peak. In
the nonresonant region near 13 eV, the DCS curve is rel-
atively flat and shows no backward peak.

IV. CONCLUSIONS

The X '3 —b =™ transition of CO has been described
using the Schwinger multichannel method in the two-
state approximation, in an energy range from threshold
to 20 eV. Four peaks in the inelastic cross section were
found at approximately 10.87, 11.6, 13.4, and 16.2 eV.
All except the 13.4-eV peak were identified as resonance
structures. From an analysis of the K matrices and the
partial eigenphases, it was also determined that time ad-
vance scattering behavior contributes to the 10.87-eV
peak. The 2% symmetry was found to dominate the
cross section at this level of the target-state coupling. As
more states are coupled, the extent of this dominance
could be modified. The compound state of CO~ of 2=+
symmetry was found to control the inelastic process just
above threshold resulting in the 10.87 and 11.6-eV peaks.
These seem to be structures that result from decay of the
configurations (5¢)(3s0)? 2% and (50 )(3s0)(3po):2=™
into the inelastic channel. The 10.87-eV peak seems to be
predominantly 503s03po with an admixture of 503s0?
while the 11.6-eV peak is apparently predominantly
503s0? with an admixture of 50350 3po.

An SCF calculation of the energy of the 23X CO~

state with a frozen core resulted in an energy of 11.044
eV. Experimentally, this state is identified with a core-
excited Feshbach resonance at 10.04 eV, below the b 3™
threshold. Thus the present SMC calculation, apparently
due to insufficient correlation, places the closed-channel
10.04-eV Feshbach resonance as an open-channel shape
resonance. Experimentally, the large width of this Fesh-
bach resonance (approximately 45 meV) produces a sharp
open-channel threshold structure as a result of the decay
in the wings of this resonance, into the open channel. We
see this effect as a direct decay into the open channels.

The small peak at 13.4 eV is not identifiable as a reso-
nance, but rather appears to be an interference effect
among the various partial waves. The 16.2-eV peaks ap-
pears to be a shape resonance, also in the 22 symmetry.
It is possibly associated with the compound CO™ state;
however, the energy separation from the SCF energy of
11.044 eV for this state argues against this association.
The resonance appears to be limited to the excited-state
elastic channel. No resonance indications were observed
in the inelastic K-matrix elements.

This study clearly shows that present day ab initio
theories are capable of describing resonances in electron-
molecule inelastic collisions. To understand these pro-
cesses, a systematic and detailed investigation must be
conducted, beginning at the two-state level. The exten-
sion of the present study explicitly including additional
channels is underway. We might also state that two-state
calculations on an analogous transition X 12; —E33}
of N, also showed core-excited Rydberg resonances.§7
These results, along with other work on N,, clearly indi-
cate that resonances play an important role in low-energy
electron-molecule inelastic scattering.
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