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Willshaw model: Associative memory with sparse coding and low firing rates
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The Willshaw model of associative memory, implemented in a fully connected network with sto-
chastic asynchronous dynamics, is studied. In addition to Willshaw s learning rule, the network
contains uniform synaptic inhibition, of relative strength K, and negative neural threshold
—8,8& 0. The P stored memories are sparsely coded. The total number of on bits in each memory
is Nf, where f is much smaller than 1 but much larger than lnN/N. Mean-field theory of the sys-

tem is solved in the limit where C —=exp( —f'P) is finite. Memory states are stable (at zero tempera-

ture), as long as C & ho=K —1+8 and ho &0. When C(ho or ho (0, P retrieval phases, highly
correlated with the memory states, exist. These phases are only partially frozen at low temperature,
so that the full memories can be retrieved from them by averaging over the dynamic fluctuations of
the neural activity. In particular, when ho &0 the retrieval phases at low temperatures correspond
to freezing of most of the population in a quiescent state while the rest are active with a time aver-

age that can be significantly smaller than the saturation level. These features resemble, to some ex-

tent, the observed patterns of neural activity in the cortex, in experiments of short-term memory
tasks. The maximal value of P for which stable retrieval phases exist, scales as f /~lnf~ for

f »1/lnN, and as f 'ln(Nf/~lnf ~) for f &&1/lnN. Numerical simulations of the model with
N= 1000 and f=0.04 are presented. We also discuss the possible realization of the model in a bio-
logically plausible architecture, where the inhibition is provided by special inhibitory neurons.

I. INTRODUCTION

A. Neutral network models and biology

Recent interest in neural network models stems partly
from their superficial resemblance to biological neural
systems. However, relatively little progress has been
made so far, in making a more concrete connection be-
tween the simplified models and the known facts concern-
ing the architecture and operation of real neural systems.
Here we focus on two problems that arise when simple
recurrent network models of associative memory are
compared with neural systems in the cortex.

In most of the simple neural network models, excita-
tion and inhibition play identical roles. The model learn-
ing rules store information by modifications of both exci-
tatory and inhibitory synapses. Although experimental
support of Hebb-like synaptic plasticity has been accu-
mulated, most of the available evidence concerns excita-
tory synapses, and not inhibitory ones. ' Although this
does not rule out the existence of sitnilar changes in inhi-
bitory synapses, it does motivate the study of models in
which information is stored only in excitatory synapses.

A somewhat related issue is that neutrons in the cortex
are believed to be either excitatory, namely, neurons that
send out through their synaptic junctions only excitatory
signals, or inhibitory. Although exceptions to this, so-
called Dale's law, are known in other nervous systems,
there is an accumulating evidence that Dale's law, in the
form defined here, does hold in the cortex. ' This sug-
gests that the two types of neurons may have different
roles in the computational function of the system. In
contrast, most simple models consists of neurons that

send out both excitatory and inhibitory signals.
The second difficulty is concerned with the neural

firing activity. The main paradigm of computation in ful-
ly connected recurrent networks (i.e., networks with
strong internal feedback} has been computation by conuer
gence to an attractor. The outcome of the computa-
tion is encoded in the persistent levels of neural activities,
which are interpreted as representing firing rates of bio-
logical neurons. Recent studies considered also network
models with stable limit cycles. ' " In these persistent
patterns of neural activities, a significant fraction of the
population exhibits activity levels that are close to their
saturation value. For biology this implies that occasional
firing at frequencies close to saturation rates should be
observed during the execution of computational process-
es. These bursts of action potentials should last at least
for several microscopic time units, to allow for a mean-
ingful retrieval of information. However, recordings of
neura1 activity in the cortex during various short-term
memory tasks show that the firing rates of individual neu-
rons fiuctuate in time with a time average which is very
low compared to the saturation rates. ' ' Typica11y, the
activity of a large fraction of the recorded neurons
remains at the extremely low background level of about
3-5 spikes per second. Other neurons do exhibit
enhancement in their activity level which may persist for
10 sec or more. However, the enhanced rates are still rel-
atively low, with a long-time average that is in the range
of 20-50 spikes per second. Bursts of activity with fre-
quencies in the range of several hundred Hz, that last for
at least a few milliseconds, are extremely rare. '

It is important to distinguish between firing rates mea-
sured by averaging over a population of neurons and the
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rates measured locally. Low global firing rates can be
achieved even in simple neural networks, e.g., by intro-
ducing a sufficiently strong inhibition. In fact, several re-
cent models have been studied that possess stable states
with very low global activity. ' ' In the context of asso-
ciative memory these states represent sparsely coded
memories. Nevertheless, the activity levels of the active
neurons are close to saturation, although their number is
small. In fact, stabilizing persistent patterns of activity
with low local firing rates in highly connected recurrent
networks is rather difficult, regardless of the details of the
considered models.

B.The Willshaw model

Motivated by the above-mentioned issues we have
studied in detail a generalization of one of the earliest
neural network models of associative memory, proposed
some 20 years ago by Willshaw. ' The model stores
memories in excitatory synapses using an extremely sim-

ple version of Hebb rules Th.e synaptic efficacy J; be-
tween the jth (presynaptic) neuron and the ith (post-
synaptic) neuron is 1 if the two neurons are simultaneous-

ly active in at least one of the patterns. Otherwise, J; is
zero. Let us denote by [V/'], i =1, . . . , N, @=1,. . . , P
the P memories that are stored in the network. Each
memory consists of an X-bit vector, with V~=0, 1. The
synaptic matrix is given by

J,, =e y vga

A recurrent network with the learning rule of Eq. (1.1)
may posses partially ordered low-temperature phases in
which part of the population is quiescent while the rest
are active at levels that are substantially lower than satu-
ration. This unusua1 behavior resembles to some extent
the above-mentioned low firing rates observed in neural
activity in the cortex. These phases exist only when a
uniform inhibition, i.e., a constant negative term, is add-
ed to Eq. (1). The resultant synaptic matrix is no longer
purely excitatory, and in particular, Dale s law is violat-
ed. Thus biological plausibility requires that the uniform
synaptic inhibitory component should not be interpreted
as representing a direct inhibitory coupling. Rather, we
interpret it as an effective inhibitory interaction between
excitatory neurons, that results from the activity of inhi-
bitory neons.

Finally, Willshaw's model, implemented in a fully con-
nected recurrent network, has some interesting features
from the statistical mechanical point of view. The frus-
tration, which gives rise to multiplicity of stable states,
does not result from a spin-glass-like mixture of nega-
tive and positive bonds. Here it is generated by the com-
petition between a distribution of positive bonds and
external fields. Adding global inhibition creates an addi-
tional source of frustration which is spatially uniform.
The above-mentioned partially ordered phases are to a
certain extent similar to disordered phases with an exten-
sive zero temperature entropy, that are seen in many
short- and long-range uniformly frustrated systems.

where e(x)=1 for x &0 and zero otherwise. Willshaw's
original network was a fully synchronized system with a
simple two-layer architecture. Here we study an im-
plementation of the model in a fully connected recurrent
network with asynchronous dynamics. A similar im-
plementation has been studied recently, in simulations
and in hardware, mainly by Thakoor et al.

The Willshaw model has several attractive features. It
offers an extremely simple way of storing sparsely coded
memories, although it exhibits a poor performance with
regards to random, uncorrelated memories. Let us as-
sume that V~ are random except for the constraints that
g~, V/'=Nf, where f &&1. Then, the memories are
stable states of the network, provided that the threshold
value is appropriately chosen, for

p( (1.2)

Nf lnf . — (1.3)

As was shown by Willshaw, Buneman, and Longuet-
Higgins, ' the maximal information capacity is achieved
when f =lnN/(Nln2). Using Eq. (1.2) one obtains in
this limit I,„=N 1n2 which is 69%%uo of the information-
theoretic bound I =N .

This holds in the limit of f~0 and N~ ~. Of course
one has to take into account the fact that the information
content of each memory decreases with decreasing f as

I/P= N[f lnf +(1—f)—ln(1 —f)]

C. The present work

In this paper we present a statistical mechanical study
of a fully connected network in which sparsely coded
memories are stored according to Eq. (1). A uniform
neural threshold and a uniform synaptic inhibition are
added. The focus of the present study differs from that of
other studies of Willshaw's model. Previous studies ' fo-
cused on values of thresholds and f which yield optimal
capacity. Here we study the robustness of the model by
allowing a wide range of values of threshold and inhibi-
tion strength as well as by introducing stochastic noise in
the form of temperature. Second, the extreme limit of
sparseness, f ~ lnN/N, although optimal for information
storage, is uninteresting for biological modeling. For in-
stance, within the cortex, a reasonable estimate of the
size of a highly connected network yields N in the order
of 10 neurons. For this value of N, f -lnN/N would
imply that only about 10 neurons are active in a given
memory state. Here we study the more realistic case in
which f vanishes not faster than N ", 0&x & 1. In addi-
tion, special attention is devoted here to parameter re-
gimes where the memories are not stable but partially or-
dered low-temperature phases exist which are highly
correlated with the memories. Lastly, we address the
question whether synaptic inhibition via special inhibito-
ry neurons is equivalent to a direct inhibitory coupling.
Preliminary accounts of the results concerning low firing
rates were reported elsewhere. A different associative
memory model that exhibits low local neural activities
has been studied by Amit and Treves.
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In Sec. II we define the model and present an analytical
study of its equilibrium properties using mean-field
theory (MFT). Section (I is devoted to an analysis of the
corrections to the MFl' and their consequences. Results
of simulations of the model are presented in Sec.IV. In
Sec. V we discuss a modified model in which memory is
stored in a purely excitatory network that is coupled to
an ensemble of inhibitory neurons. The main results are
summarized and discussed in Sec. VI.

II. THE GENERALIZED WILLSHAW MODEL—
MEAN-FIELD THEORY

A. The model

We consider a network of N binary neurons in which P
sparse memories are stored. The memories are N-bit vec-
tors denoted by VI", p=1, . . . , P; i =1, . . . , N. The V~

take the values 0 and 1 at random subject to the can-
straints g; Vt'=Nf, where f«1. The memories are en-
coded in the synaptic efficacies according to Willshaw's
rule:

H= —
—,IgJ;, V, V, + gv; —8+V; . (2.4)

Obviously the behavior of the system depends on the dis-
tribution of J;, i.e., on the number of stored patterns P
and their activity level f. The average of JJ. is given by

«J„»=„(1—C),= 1
(2.5)

where C is the fraction of zero bonds and is given, in the
limit P~ IxI and f~0, by

C=e ~f 2
(2.6)

In this section we will study the limit where C remains
finite as f~0, i.e., P is proportional to f . In this lim-
it, a finite fraction of the bonds is zero, and the system is
described by a simple MFT in the limit N ~ 00. It should
be emphasized that although we assume that f is small,
we do consider the extreme case of f being proportional
ta lnN/N. Instead, we deal with the more "realistic"
case where f vanishes as 1/lnN or as N ",0 & x & l.

P

J;, = 8 g Vt'Vg
@=1

(2.1)

where e(x) =1 if x )0; otherwise it is zero. The synaptic
efficacies contain also a uniform inhibitory component
denoted by —K(Nf) ', K) Q. In addition, the neurons
have a negative uniform threshold denoted by —8, 8&0.
Thus the instantaneous local field of the ith neuron is
given by

B. Mean-field theory

In the limit of finite C and X~~, the fluctuations of
J;J can be neglected. Anticipating a big overlap of the
state of the system with one of the memories, say V, the
coupling constants J; can be replaced by their average
over the pattern V~, p) 1. The probability that J; =0 if
V,

' =0 is (1 f )
' = C. H—ence J; can be replaced by

h;=HAJJ VJ.
— +V +8 .

J J

(2.2) (e v„'v,'+ Z veve
))

The neural states V assume the values 1 for an active
state and 0 for a passive one. The normalization of the
coupling constants has been chosen so that when the total
activity of the network V =+, V, /N is of order f all the
three terms in Eq. (2.2) are of order unity. We will work
in the parameter range

0&f8&K —1. (2.3)

This ensures that the states where all neurons are active
or all are passive are not stable.

The network is assumed to evolve according to an
asynchronous stochastic dynamics with a noise level
which is denoted by a "temperature" T. Since the
synaptic matrix is symmetric the long-time behavior of
the system can be described by the following energy func-
tion:

1
(CV,' V)i+ 1 —C), (2.7)

where « )) refers to averaging over all the patterns with

p & 1. The ensemble-averaged free energy per neuron F is
given by

TINE =
((In TrI e I

exp ——Z J,, V, V,
— Z V, V,

l,J I,J

—gezv,
))

. (2.8)

Substituting Eq. (2.7) for J; in Eq. (2.4) and using stan-
dard saddle-point methods, the free energy can be written
as

F( V+, V) = —,
' C( V+ ) —

—,'(K + C —1)( V/f) T lnI I+expP[CV—+ (K +C —1)( V/f —
) a8] I

——InI1+expP[ (K+C —1)(V/f)—+8]] .T
(2.9)

The order parameters V+ and Vare v=——y& v, ), (2.11)

v+—= gv, '& v, ), (2.10)
where & V, ) is the thermal average of the neuron activity.
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1
1 —V' Vv-= „,y(l-v, )&v, ) . (2. 12)

We will call the neurons with V,'=1 the on neurons, and
those with V =0 the ogneurons. This classification is,
of course, different for each memory. The total average
activity can be written as V =f ( V++(1 f—) V ) where

C&h, &0. (2.20)

becomes of order 1 implying a behavior that is far from
the one that characterizes the memory states.

The retrieval state: T =0. Substituting V+ =1, V =0
in Eqs. (2.14)—(2.17) at T=O one easily finds that the
memory state is stable at zero temperature as long as

These order parameters are determined by

BF dF
av

(2. 1 3)

which yields the following simple set of mean-field equa-
tions:

This sets the maximum capacity of the model in the ther-
modynamic limit. However, retrieval states exist also for
C &ho. They are characterized by the vanishing of h

while h+=h +CV+=C)0. Thus, in this regime V+

remains 1 but the activity of the neurons with V =0 is
no longer zero, but equals fV where

1+e I'"' (2. 14)
ho —C

(2.21)

—Ph
(2.15)

where h+ is the local field on the on neurons, and h is
the local field on the ogneurons. They are given by

h+=(1 —K)v++(I —C —K)V +8,
h-=a+ —CV+ .

(2.16)

(2.17)

The meaning of these equations is that an on neuron is
influenced, through the J;, by all the on neurons as well

as by a fraction 1 —C of the off neurons. On the other
hand, each of the off neurons "feels" the influence of a
fraction 1 —C of all the neurons. Note that according to
Eqs. (2.14) and (2.15) the local fields within each of the
two populations are uniform. This holds only in the limit
N~ pp and f~0. In the following sections we analyze
the solutions of the mean-field equations, Eqs.
(2.14}—(2.17}. We first discuss the case of positive ho,
where

h =8+1—E (2.18)

is the field on the on neurons in a memory state. Later,
we will address the case of ho & 0.

C. Analytical solution of the mean-field equations for f~0

1. ho&0

In this paragraph we present the asymptotic form of
the solutions of the mean-field equations, in the limit
f~0. Two types of solutions exist. One consists of
V+ »fV, i.e., the activity level, per neuron, of the on
neurons is much bigger than that of the off neurons. This
solution is termed a retrieval state. The other type is a
symmetric state where V =fV, implying the total loss
of information regarding the memory. In both solutions,
the activity level averaged over the whole network V is
low, i.e., of order f. For this to hold, the temperature
must scale as

T = T/( —
lnf ), (2.19)

where T is of order 1, as will be shown below. We limit
our study to this regime. When T becomes of order 1, V

V+ 1 f P

fv fP(cAP)

(2.23)

(2.24)

where P= —rt3/~lnf ~. This solution exists as long as
T&C —ho. We call this regime the strong memory re-
gime. When C & T+ho, V is still close to 1 but V is
of order 1, implying that the contribution of the activity
of the off neurons to the total activity, V, is of the same
order as that of the on neurons. This is the uleak memory
regime. The value of V is such that h = —T yielding

V+ 1 fPc —
1

T—C+ho
E+C —1

(2.25)

(2.26)

Note that as T~O h vanishes and V approaches the
limit of Eq. (2.21). The transition from the strong
memory to the weak memory behavior, at T= C —ho, is
not a sharp transition, except at T=O. The retrieval

The fact that the activity of this population, at T =0, is
neither 0 nor 1 implies that the off neurons do not satu-
rate even at zero T, but keep fluctuating in time, due to
the vanishing of their local field h, Eq. (2.17). The time
average of their activity per neuron is given by Eq. (2.21).

This interpretation of the retrieval phase is supported
by the calculation of the entropy per neuron,
S = BF/BT.—From Eq. (2.9) one obtains that the entro-

py per neuron of the retrieval phase is finite in the limit
of T~O,

S = f(V+lnV—++ V lnV )= fV lnV—

(2.22)

where V is given by Eq. (2.21). This type of retrieval
state is different from those encountered in the Hopfield
model and its variations. The retrieval states in those
models are stable configurations that contain a small frac-
tion of erroneous bits.

The retrieval state: T&0. When C & T+ho the effect
of nonzero T is exponentially small, and the local fields
are essentially the same as at T=0, i.e., h + =h 0,
h =h —C & —T. From Eqs. (2.14)—(2.17) one obtains
the following results:
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D. Numerical solution of the mean-field equations

(a) The analytical solutions of the mean-field equations of
the previous paragraph are valid in the f~0 limit.
Mean-field solutions for nonzero f can be obtained only
numerically. Of course one has to keep in mind that the
mean-field equations themselves are valid only in the

f—+0. However, finite f corrections to the mean-field

0.5

0.4

FIG. 1. The phase diagram of the mean-field theory in the
limit f~0. (a) ho) 0. The thick horizontal line marks the re-

gime where the memory states are stable. (b) ho & 0.

0.3

0.2

state exists up to T= T„
T, =C . (2.27)

0.1

Above this temperature the correlations with the indivi-
dual memories are lost and the state of the system is
characterized as a symmetric state.

The symmetric state In a.ddition to the above solution
there is a stable solution in which fV = V+ =0(f), i.e.,
the activity of the on and off neurons is roughly equal.
The mean-field equation for V+ becomes

V+ IP[(K+c—1) v /f —8]

yielding

0.5

0,4

0.3

0.2

0.0 0.6 0.8 1.0

T+8
K+C —1

(2.29)
0.1

This solution exists and is stable for all T & 0 and C. It is
the only solution when T & C. The phase diagram of the
mean-field theory in the limit f~0 is shown in Fig. 1(a).

2. ho(0

0.0

0.15

0.0 0.2 p 4 0.6 0.8 1.0

%hen the local field on the on neurons in a memory
state is negative this state is, of course, unstable. Never-
theless, at low T there are retrieval states characterized
by a big difference in the activity levels of the on and off
neurons, as in the case C & ho above. However, here the
off neurons are quiescent at T =0, whereas the on neu-
rons are only partially active. Thus h+=0, and V+ is
given by

(2.30)

0.10

0.05

0.00
0.0 0.2 p 4 0.6 1.0

The local field on the off neurons is h =CV+. Hence
this state (with V =0) exists for T (T, where

(2.31)

In addition to the retrieval states, there exists also a sym-
metric phase at a11 T & 0 with the same activities as in the
case ho &0, i.e., Eqs. (2.28} and (2.29}. The phase dia-
gram for this case is shown in Fig. 1(b).

FIG. 2. Numerical solutions of the MFT and simulations
with f=0.04, N=1000, K=2. Below the solid lines, the re-
trieval phase is stable acccording to MFT. The symmetric
phase exists above the dashed lines. Dots represent the results
of simulations for the value of C below which the retrieval
phase exists. The errors, denoted by the bars, result from the
uncertainty in defining exactly the transition, as well as from

sample to sample fluctuations. (a) h =0.75. (b) ho =0.25. (c)
"0= —0.75
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equations, which will be discussed in the following sec-
tion, are in general smaller than the finite f corrections to
the mean-field solutions.

Studying the mean-field equations, Eqs. (2.14)—(2.17),
at finite small values of f, one finds that most of the
features of the phase diagram, presented in Fig. 1, are not
modified. The main differences are concerned with the
symmetric state. At finite f the values of V+ and fV
are not identical but differ by a small amount. At T of
order 1 this has only a minor effect since both V+ and
fV are of order f. However at low T, the small
difference h+ —h =CV+ is sufficient to generate large
differences in the activity of the two populations. Thus
the symmetric state disappears at low temperatures below
a critical temperature, T of order f. The results of the
numerical solution of the mean-field equations for
f=0.04 are presented in Fig. 2, for positive and negative
ho. Note that the critical line for the appearance of re-
trieval phases is approximately linear but the slope is sub-
stantially less than that predicted by Eq. (2.27) and Eq.
(2.31). The fact that there are relatively large finite f
corrections to that slope can be already observed by ex-
amining the 1eading corrections to the f~0 results for
T, . This analysis yields

A. Corrections to the local fields

We define 5J, . as the deviations of the synaptic
efficacies J; from their mean-field value, Eq. (2.7):

5Ji=J; —J;

They are given by

5J; = (1 —V V')(8; —C),1

(3.1)

(3.2)

where:

P
e,, =e y tv~

p —2

(3.3)

The local fields on the neurons of the on and off popula-
tions (relative to pattern 1) can be written as

h,
+—=h

+—+5h,—, (3.4)

sufficiently small values of C, i.e., for sufficiently large I'.
To evaluate the capacity of the system one has to consid-
er the effects of both finite f and finite N corrections to
mean-field theory.

T.= C

»l»f I

(2.32) where h
—+ are the local fields of the mean-field theory, i.e.,

Eqs. (2.16) and (2.17), and 5h;
+—are the fluctuations,

5h;
+—=h;*—h+—=+5J;,*(V, ) .

J
(3.5)

III. CORRECTIONS TO THE MFT

The MFT predicts the existence of retrieval phases for
all values of C. Obviously, this should break down for

I

For large N, 5h;—can be treated as Gaussian variables
with zero mean and variance b,* —= ((5h;* )). The vari-
ance of h,

+ is given by

/+2 ] V1 1 V1 V V C C + ] V1 V 2 g C 2 (3.6)

The first term in Eq. (3.6) represents finite f corrections due to correlations between J; and J;k. In the Appendix it is
shown that

, =C'llnClf,«e„e„»,=((e Zv&'vg e Zv& v&'
. P . P

(3.7)

where (xy ), —:(xy ) —(x ) (y ). The second term
represents fluctuations in J; . These spin-glass-like fluc-
tuations are, in the present case, finite N corrections,
since their total contribution to Eq. (3.6) is of the order of
1/Nf. In fact, defining where

=fc'llncl( v++ v-)'+ (3.10)

q
- =—y(1 —v,') ( v, )'

J

(3.8)
q= —y«)'.1

N J
(3.11)

one obtains

b+'=((5h+')) =fC'llnCl( V )'+
Nf

In the same way we find

(3.9)

In the presence of these quenched fluctuations, the
thermal activities of the neurons are no longer homogene-
ous. In particu1ar, the spatial-averaged activity of the off
population is given by

fV
— I" —z'/i

&2n.
I 1+exp[ —P(h +zb, )] I

(3.12)
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At T =0 one obtains

fV =erfc( —h /i/2b, ) . (3.13)

Similar expressions hold for the activity of the on popula-
tion.

B. Capacity of memory states

(C —h(i)

fC ~lnC~+C(1 C)/(Nf—)

=2/lnN .

(3.14a)

(3.14b)

In analyzing the effects of fluctuations it is useful to dis-
tinguish between two regimes. One is the case of large f,
defined by f &) 1/lnN. In this regime the dominant con-
tributions to the fluctuations are the first terms in Eqs.
(3.9) and (3.10), namely, the fluctuations due to correla-
tions. In the small f regime, f «1/lnN, the dominant
terms are the spin-glass fluctuations, namely, the second
terms in these equations. In the small f regime, Eq.
(3.14b) reduces to

C= h~

1 &2f lnN~lnC~—
(3.15)

This represents only a small correction to the mean-field
result C =ho, see Eq. (2.20). In fact, Eq. (3.15) holds
even in the case of f ~1/lnN. When f is much larger
than 1/lnN the critical value of C approaches unity, im-

plying that, in the large f regime, the memory states are
never stable. This, however, does not invalidate the
above mean-field results since even in this case, the frac-
tion of errors, i.e., the fraction of off neurons that fire, is
not finite (as N~ oo) until C reaches the neighborhood of
h().

C. Capacity of retrieval states, hp & 0

According to the MFT, even when the memory states
are not stable there are retrieval phases highly correlated
with the memories. This holds also when fluctuations are
taken into account. However, it is important to note that
at low temperatures, T «6, the fluctuations pin the lo-
cal activities of the neurons. At finite C, the freezing of
the neural fluctuations sets in at

z =v'f . (3.16)

In particular, at T=O, the retrieval phases are frozen
states, with V,

+ =1, while V; =0, or 1 according to the
values of h,- . Although the dynamic nature of the
phases changes drastically by the fluctuations, the popu-

The above results can be used to calculate the effect of
fluctuations on the stability of the memory states at
T=O. In a memory state, V =0, V+=1, q =0, and

q
=f, implying that b, + =0 but b & 0. As C decreases

the noise in h, eventually causes one of the off neurons
to fire. The probability that at least one off neuron will
fire is finite if fV ))1/N. This implies through Eq.
(3.13) that the limit of stability of the memory states is
given by

When C decreases below this value, the local fields on
the on populations acquire negative values leading to a
drastic reduction in the activity of this population and to
destabilization of the phase. To determine the actual lim-
its on C, implied by the above equation, we distinguish
again between the large f and the small f regimes. In the
large f regime, b, =fC ~lnC~(1+ V ), where V is
given by Eq. (2.21); see Eq. (3.10). Hence Eq. (3.18)
reduces to

Pf = —lnC &, f )&1/lnN (3.19)
ln

where A =[1+ho/(K —1)] /2. In the small f regime,
=C(1+V )/Nf [see Eq. (3.10)], yielding

C & A, f «1/lnN/inf [

N
(3.20)

where A =2[1+hiil(E —1)]. Note that the capacity in-

creases as hz decreases.

D. Capacity of retrieval states, Ap & 0

When ho &0 the retrieval states are characterized, in

the MFT, by V =0, whereas V+ has a value less than
unity, Eq. (2.30), reflecting the partial saturation of the
system. To leading order, V+ is still given by Eq. (2.30),
implying that h+=0, and h = —CV+. The value of
V is determined by Eq. (3.13). Self-consistency requires
that V &&1, otherwise the activity of the on neurons
will be suppressed. Solving Eq. (3.13), using Eq. (3.10),
we find that there is a self-consistent solution for

Pf = —lnC&, f »1/lnN1
(3.21)

in the large f regime, and for

C )A, f &)1/lnN
ln

Nf
where A =2/V+ =2(E —1)/8 in the small f regime.

(3.22)

IV. NUMERICAL SIMULATIQNS

We have carried out numerical simulations of the gen-
eralized Willshaw model, Eq. (2.4), with N = 1000,
f=0.04, and K =2. The memories were chosen at ran-
dom subject to the constraint +~V(=Nf. The network
evolves according to a finite temperature single-spin-flip
sequential dynamics, with a random order of updatings,
starting from the state V, = V,.

'
~ The total activity of the

lation activity levels are only slightly modified. To lead-
ing order, one has (at T =0) V+ = 1 while V is approxi-
mately given by Eq. (2.21). The zero T value of h

differs from zero. Its (small) value is determined by the
consistency of Eqs. (3.13) and (2.21) yielding

(3.17)

On the other hand, h + =h +CV+ =h +C must be
positive, hence h must be greater than —C. Thus the
retrieval state is stable only for C larger than that given
by

(3.18)
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on and off neurons was computed for different values of P
and 0. At zero temperature and small P, V =1 and
V =0 as expected. When P increases, a few wrong bits
appear. In most cases, some of the off neurons start to
fire, i.e., V becomes greater than 0. Only at larger
values of P, a reduction in V+ is observed.

A. Capacity of memory states

The capacity for the stability of the memory states for
different values of ho is shown in Fig. 3. For large ho,
these results are in good agreement with the analytical re-
sults (solid line). The latter were calculated by equating
the right-hand side (RHS) of Eq. (3.13) to 1/N, using Eq.
(3.14a) for h /b, . This yields a slightly better agree-
ment with the simulations than using the asymptotic re-
sult, Eq. (3.14b). When ho decreases, the difference be-
tween the numerical and analytical results increases.
This happens because the analytical results are based on a
Gaussian approximation for the distribution of the local
fields on the off neurons; see Eq. (3.12). This approxima-
tion is valid in the limit N~ ~ and finite ho. However,
for a fixed finite N, the local fields that cause an off neu-
ron to fire get close to the "tail" of the local fields' distri-
bution as ho~0, and the Gaussian approximation is in-
validated.

B. Phase diagram

Above the capacity for the stability of memory states
one observes a phase characterized by V+=1, fV =0
similar to the retrieval phase predicted by the MFT. We
have measured the values of P and T below which the re-
trieval phases exist, for three values of ho: 0.25, 0.75, and
—0.75. Above these values of P and T, the system settles
in a state characterized by V+ =fV both of the order f.
This state is similar to the symmetric state of the MFT.
The results are presented in Fig. 2, together with the
theoretical predictions. The theoretical lines are based
on numerical solution of the mean-field equations, Eqs.

(2.14)—(2.17), with f=0.04. For a given T, the critical
value of P below which retrieval phases appear is always
lower than the value predicted by the mean-field result.
This discrepancy is smaller as the temperature increases.
Note that at high T the capacity increases with ho as ex-
pected from the mean-field results.

The major deviations from the mean-field results
occurs at low temperatures. In particular, Auctuations
destabilize the retrieval states below some critical value
of C, while the mean-field line extends to C~O. This
effect has been discussed in the preceding section. The
asymptotic estimates of Eqs. (3.21) and (3.22) for the limit
of stability of the retrieval phases at zero T are, in fact, of
the same order of magnitude as the numerical values.
Unfortunately, a precise quantitative comparison is
diScult to make, as the various limits assumed by the
theoretical analysis are not justified for N =1000 and

f=0.04.

C. Low firing rates

As Fig. 2(c) indicates, the simulation results for
ho= —0.75 are in good agreement with the theory. To
check whether the retrieval phases are indeed unfrozen,
we have measured the local firing rates. The results are
shown in Fig. 4, where the histogram of V;, averaged
over two time windows (ht), are displayed. The peak
near zero corresponds to the off population, which
remains completely quiescent. The level of activity, aver-
aged over the whole population of on neurons, is 0.27 (for
ht =50), and 0.275 (for b, t =200). These numbers agree
well with the mean-field prediction V+ =0.25 for the pa-
rameters used in the simulations. Note that the width of
the histogram (of the on neurons) shrinks from
5V=0. 106, in the case of Et=50 to 5V=0.054 for
ht =200. This is consistent with the expectation that the
individual neurons fluctuate at random, essentially in-
dependent of each other, except for the global constraint
on the average activity.
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FIG. 3. Capacity of memory states for f=0.04, %=1000,
K =2. The theoretical results, represented by the solid line,
have been derived by equating the RHS of Eq. (3.13) to 1/A' us-

ing the value of h /6 as given by Eq. (3.14a). The points are
the simulation results.

FIG. 4. Histogram of the local firing rates, obtained from
simulations with f=004, %=1000, It =2, and ha= —0.75.
The histogram represents averages over 50 time steps (solid
curve) and 200 time steps (dashed curve). The peak near zero
corresponds to the 960 off sites.



41 WILLSHAW MODEL: ASSOCIATIVE MEMORY WITH SPARSE. . . 1851

D. Spurious states Excl ta tory Synapeoo

(andi fleblo)

lnhlbl tory Synepeoo

(flxat)

So far we have discussed simulations that start from
one of the memories. In order to check the existence of
spurious states and the basins of attraction of the
memories, we have performed simulations starting from
random initial conditions that have an overall activity of
f =0.04. The overlaps of the state of the network with
all the stored patterns are computed. The simulations
were done for P =50 ( C =0.92) and varying tempera-
ture, and for T=O and varying P. In both cases ho was
0.5. For P=50, the network always reaches a memory
state at zero temperature. When the temperature in-
creases, the system settles in one of the retrieval phases.
Above T=0.35, the system settles in a state which has
small overlaps with many patterns, i.e., a mixed state.
The typical overlap of this state with individual memories
is small, typically of the order of f, similar to the sym-
metric phase. This is consistent with the MFT, accord-
ing to which at T)0.255 the symmetric phase exists. In-
creasing P at T=0, we find that the system converges to
the symmetric phase for P & 220, i.e., C &0.7. Note that
at this value of ho, retrieval phases are stable at T=O up
to C=0.26. This implies that symmetric phases are
stable at zero temperature before the retrieval phases lose
their stability. In conclusion, at low temperature and
small P, spurious states, if they exist at all, have very
small basins of attraction. In large P or T, spurious sym-
metric phases appear besides this retrieval phase.

r Eireitetery ttpepeee l(fixed)

Exct to tory ~ ~ Inhtbt tory
Neurons J/N' Neurons

tn0ibi tort Sppepwe

(flxat)

rons, respectively, averaged over the stochastic noise.
The dynamic equations of the local activities are

—(v, ) = —(v, )+(g(ph;")),a

—(U;) = —(U;)+(g(Ph ")),cl

(5.1)

(5.2)

where g(x)=1/[1+exp( —x)]. The fields on the excita-
tory neurons are

FIG. 5. A network with a biologically plausible architecture.
There are two neural populations, excitatory neurons and inhi-

bitory neurons. Information is stored on the excitatory neurons

only, via Willshaw's learning rule. The uniform coupling
strengths of each population to itself and to the other popula-
tion are indicated in the figure.

V. NETWORK WITH EXCITATORY
AND INHIBITORY NEURONS

N

h "(t)= g J„V(t), f 'KU(—t)+8, (5.3)

So far, we have discussed the properties of the sym-
metric model, Eq. (2.4), which violates Dale's law, as
mentioned in the Introduction. In this section we modify
the model so that it contains two groups of neurons.
Memories are stored, using Willshaw's rule, Eq. (2.1), in
the excitatory synaptic connections between excitatory
neurons. Inhibition is provided through the coupling of
these neurons with inhibitory neurons.

We assume for simplicity that there are N neurons of
each type. In addition to the Willshaw connection ma-
trix, there is a uniform excitatory interaction from the ex-
citatory to the inhibitory populations, of strength J/Nf.
The inhibitory neurons have a uniform mutual inhibitory
coupling, J'/Nf, and the—y inhibit the excitatory neu-
rons with a uniform coupling, K/Nf. Thus th—e role of
the inhibitory neurons is to serve as sources of a uniform
inhibitory feedback for the excitatory population. The
network architecture is depicted in Fig. 5. For simplicity
we choose the parameters J=J'= 1 and assume that the
threshold of the inhibitory neurons is zero. The thresh-
old of the excitatory neurons is —0, 0&0. The activities
of the excitatory (inhibitory) neurons are denoted by
V, (U;).

The time evolution of the system is governed by a sto-
chastic Markov process of single spin flips. The transi-
tion rates are given by (Ref. 31) to ( V; ) = —,

' [1
+(2V, —1)tanh( —,'ph;)]. Let us denote by ( V, ) and

( U; ) the activities of the excitatory and inhibitory neu-

where U= N'g; U—
, . The fields on the inhibitory neu-

rons are uniform and equal

h,'"(t)=[V(t) U(t)]/f . — (5.4)

8 V+ — V+ +g (Ph ex+
)

Bt
(5.5)

—V = —V +g (Ph'" ),
dt

—U= —
U+g (Ph'"),a

Bt

(5.6)

(5.7)

where V, V are defined as in Eqs. (2.10) and (2.12).
The mean fields are given by

h '"+ = V++ (1—C) V KU/f +0, —
h'" =(1—C)(V++ V ) KU/f +8, —

(5.8)

(5.9)

and h
' = ( V —U) /f as above.

Equations (5.5)—(5.9) may have time-periodic solutions.
We focus here on low-temperature properties of the sta-
tionary solutions, which read

V+ (ph ex+
) (5.10)

We assume that the initial state is correlated with only
one memory, say, with p=1. In the limit of N~~,
f~0, and finite C, one obtains, in a manner similar to
the derivation of Sec. II B, the following mean-field equa-
tions:
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and similarly for fV and U. As in previous sections, we
choose parameter range 0 &f8 &E —1 which ensures
that the average activity of the excitatory population, V,
is of order f. At zero temperature, the only self-
consistent stationary solution is that in which the U = V.
In other words, the inhibitory population never saturates
and its time-averaged activity matches the average activi-
ty of the excitatory population. Substituting this equality
in Eqs. (5.5)—(5.9), one obtains the same mean-field equa-
tions as Eqs. (2.14)—(2.17). We have checked the dynam-
ic stability of the stationary solutions by linearizing Eqs.
(5.5)—(5.7). We find that all the stationary solutions are
stable at all the parameter values that they exist, i.e., for
ho &0.

The above mean-field results imply that in the limit of
large N, a system with an indirect inhibitory feedback
through inhibitory neurons will have the same stationary
phases as that with direct inhibitory couplings. This in-
cludes the phases with low firing rates, for ho &0. How-
ever, numerical simulations of this network with %=500
revealed that the phases with low firing rate are, most of
the time, unstable. The problem lies in the fact that the
indirect inhibitory feedback is too slow to suppress
eff'ectively fluctuation in the level of activity of the excita-
tory neurons. We will discuss the implications of this

problem in the following section.

VI. SUMMARY AND DISCUSSION

ho —C
V

K —1+C (6.4)

For ho & 0, V is close to zero (even at finite 1}while V+
is nonzero even at low T, where it is given by

V+= 8
K —1

(6.5)

At all finite T the results (6.4) and (6.5) represent not only
population averages but also the time average of the fluc-
tuating activities of the individual neurons. The transi-
tion from the memory to retrieval phase is sharp only at
T=O, i.e., at C =ho.

(3) Symmetric phase H. ere, V+=fV so that the
correlation between the state and individual memories is
small. This phase exists at all C, T &0.

The above results are valid when C and T are finite as
f~0. When this is not the case, finite f corrections are
important. At finite f, the local fields within the on and
off populations are not uniform. Two sources of fluctua-
tions exist. One is the correlation between different
bonds converging on the same neurons. These are dom-
inant in the large f regime, f »1/lnN. The other source
is spin-glass-like fluctuations in the values of individual
bonds. They are the dominant fluctuations in the small f
regime, f «1/lnN. The fluctuations set limits on the
value of P for which retrieval phases exist. The limits are
of the forms

A. Summary of results

The extended Willshaw model, Eq. (2.4), has a simple
behavior in the limit N ~ oo, f~0, and

(6.1)

and

P &, , f »I/lnNA

f Inf

P & ln, f «1/lnN

(6.6)

(6.7)

where T=O(1). The quantity that determines the stabil-
ity of the memory states is the local field generated in a
memory state on the on neurons. This field is
ho=8+ I E. When ho &0 me—inory states are stable (at
T =0) for

llnho IP& (6.3}

This is valid provided that f « 1/lnN.
For general values of T and C:—exp( Pf ) there are-

three phases.
(1) Memory phase. The fraction of errors is extremely

small even at T&0. The activity per neuron of the on
neutrons, V+, is nearly 1, whereas that of the off popula-
tion, fV, is much smaller than f. This phase exists only
for C&ho&0.

(2) Retrieual phase. In this phase, for ho & C & 0, V+ is

still close to 1. The level of activity (per neuron) of the
off neuron is fV =O(1}. The low-temperature limit of
V is

The temperature range where the main phase transitions
occur is given by

(6.2)

where the constant A depends on ho and K; see Eqs.
(3.19)—(3.22). Finally, at very low T, the spatial fluctua-
tions freeze the thermal fluctuations of the retrieval
phases, leading to local activities that are either quiescent
or saturated. For finite C, this freezing sets in when
T=i/f. This effect is particularly strong in the case of
ho) 0.

B. Discussion

2f /»f J

(6.g)

In this paper we have studied the generalized Willshaw
model in the realistic case f ))lnN/N. In addition, the
threshold 8 was not confined to the optimal value
0=K —1 which implies ho =0. Under these cir-
cumstances, the model is robust, as demonstrated by our
finite temperature results. However, in this regime of pa-
rameters, the capacity, given by Eqs. (6.6) and (6.7), is in-
ferior to other models of storing sparsely coded memories
in recurrent neural networks. In particular, the model of
Tsodyks and Feigel'man, ' which is also based on simple
Hebb rules, has a capacity that is close to the optimal lim-
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We believe that the essential difference between their
model and the present one is that the Hebb rule adopted
by Tsodyks and Feigel'man induces also suppression of
the synaptic efficacies, whereas Willshaw's rule, Eq. (1.1),
uses only enhancement of synaptic efficacies. In biology,
both long-term potentiation' (LTP) of synapses and
long-term depotentiation (LTD) have been observed.
The superior performance of the model of Tsodyks and
Feigel'man suggests that both mechanisms are essential
for an effective learning.

The numerical simulations, reported in Sec. IV,
confirm qualitatively the theoretical results. However, a
quantitative comparison is difficult to make, as the
asymptotic limits regarding f and N, assumed in the
theory, are hardly achieved in the simulations with
N= 1000 and f=0.04. This difficulty probably exists also
in simulations of other models of sparse coding.

One of the motivations for studying this model has
been the issue of local firing rates, discussed in the Intro-
duction. Indeed, we have shown that when hp &0, the off
neurons are quiescent, whereas the activities of the on
neurons fluctuate in time with an average given by Eq.
(6.5). This average can be made small by, e.g. , decreasing
the magnitude of 8. Note that although 8 represents a
negatiue neuronal threshold, it does not imply that the in
trinsic neural thresholds are necessarily negative. A neg-
ative threshold can be realized biologically by uniform
excitatory inputs to the neurons from, e.g., other parts of
the cortex or the thalamus. This excitatory input con-
trols the mode of operation of the network. When it be-
comes sufficiently weak so that the effective neural
threshold is positive, the network settles in a quiescent
state, and memory retrieval is blocked.

In relating the present model to biology, several prob-
lems remain. First, the dynamic fluctuations in the local
activities are sensitive to quenched noise. For instance,
quenched fluctuations in the values of the local thresh-
olds will cause freezing of the local activities, at tempera-
tures that are low relative to the width of these Auctua-
tions. This freezing implies that the neurons will be
forced to be either in a quiescent state or close to satura-
tion. Secondly, in our model, the existence of stable, par-
tially saturated phases depends on the type of dynamics.
In particular, in a fully synchronized parallel dynamics,
uniform inhibition will generate oscillations with relative-
ly high frequencies, at least at low temperatures. Thus it
is important to study the behavior of this model in a
more biologically realistic dynamics.

Finally, our analysis of the asymmetric network shows
that in order to stabilize low firing rates by indirect inhi-
bition, through excitatory neurons, one has to consider
sizes significantly bigger than N = 1000. It should be not-
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APPENDIX

In this appendix, we evaluate the correlation ( J;~J;k ),
jAk, where

(A 1)

The quantity 1 —(J; J;t, ) is the probability that the prod-
uct J; J;t, is zero. The probability that J,J is zero is
(1 f ), and t—he same for J;t, . The probability that both
vanish is (JV&„b), where JV «b is the probability that
both V/' Vt' and Vi' Vf are zero. Clearly, JV „b= 1 f +f (1 f—) = 1 2f—+f3. T—herefore

1 —(J;,Jk ) =2(1—f } —(1 2f +f3}p . —

The connected correlation is

(A2)

When f && 1 this can be approximated by

(J,"J,k), =Pf e f =C llnClf .

(A3)

(A4)

For finite C, the connected correlation goes to 0 when

f~0.
Using a similar method, it can be shown that

( J; J;k J;t ),=C
I
ln C lf ' . (A5)

ed that we have assumed, in Sec. V, that both the excita-
tory and inhibitory synapses have the same time con-
stant. Low firing rate can be stabilized by direct inhibi-
tion if the time constants of the inhibitory synapses are
assumed to be substantially shorter relative to the excita-
tory ones. At present, it is unclear whether such an as-
sumption is compatible with the available data on synap-
tic transmission in the cortex. To conclude, understand-
ing the function of the cortex in terms of simple recurrent
neural network models is still an open challenge.
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