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We consider the problem of prediction and system identification for time series having broadband
power spectra that arise from the intrinsic nonlinear dynamics of the system. We view the motion
of the system in a reconstructed phase space that captures the attractor (usually strange) on which
the system evolves and give a procedure for constructing parametrized maps that evolve points in
the phase space into the future. The predictor of future points in the phase space is a combination
of operation on past points by the map and its iterates. Thus the map is regarded as a dynamical
system and not just a fit to the data. The invariants of the dynamical system, the Lyapunov ex-
ponents and optimum moments of the invariant density on the attractor, are used as constraints on
the choice of mapping parameters. The parameter values are chosen through a constrained least-
squares optimization procedure, constrained by the values of these invariants. We give a detailed
discussion of methods to extract the Lyapunov exponents and optimum moments from data and
show how to equate them to the values for the parametric map in the constrained optimization. We
also discuss the motivation and methods we utilize for choosing the form of our parametric maps.
Their form has a strong similarity to the work in statistics on kernel density estimation, but the
goals and techniques differ in detail. Our methodology is applied to “data” from the Hénon map
and the Lorenz system of differential equations and shown to be feasible. We find that the parame-
ter values that minimize the least-squares criterion do not, in general, reproduce the invariants of
the dynamical system. The maps that do reproduce the values of the invariants are not optimum in
the least-squares sense, yet still are excellent predictors. We discuss several technical and general
problems associated with prediction and system identification on strange attractors. In particular,
we consider the matter of the evolution of points that are off the attractor (where few or no data are
available), onto the attractor where long-term motion takes place. We find that we are able to real-
ize maps that give a least-squares approximation to the data with rms variation over the attractor of
0.5% or less and still reproduce the dynamical invariants to 5% or better. The dynamical invari-
ants are the classifiers of the dynamical system producing the broadband time series in the first
place, so this quality of the maps is essential in representing the correct dynamics.

I. INTRODUCTION

15 FEBRUARY 1990

A. General remarks

Analysis of time series from dynamical systems is an
important issue in many different fields of engineering
and science. The most common tool for this analysis is
the Fourier (or other similar) transform of the data x(n)
to discover sharp lines in its power spectrum. Spectral
identification lies at the heart of much of the work on
linear systems to which time series analysis is applied.!?
When one encounters a broadband power spectrum, the
common assumption is that it represents extrinsic noise
and not characteristics of the signal.

It has become increasingly clear in recent years that
nonlinear systems exhibiting deterministic chaos will gen-
erate a time series whose power spectrum is broadband.
Generically, dissipative nonlinear chaotic systems evolve
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nonperiodically on a strange attractor that lives in a
phase space of finite (and often small) dimension. Noise
does not evolve on a strange attractor and will occupy an
arbitrarily large number of dimensions. Hence to model
nonlinear chaotic systems as noise is certainly incorrect.
For these systems the source of the broadband spectrum
is the intrinsic chaotic dynamics that underlies the time
series.

Our focus in this work is on signals with a substantial
broadband power spectrum which, since external noise is
absent or very small, represents the nonperiodic behavior
of a dynamical system whose orbits lie on a strange at-
tractor. The idea, now rather well established, that such
an object can have a small fractal dimension (and still
govern the long time evolution of a system with far more
numerous degrees of freedom than represented by the di-
mension of the attractor) is really the starting point of
our work.>*
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It is very important that though x(n) may be a long,
quiet data set it is likely to have a very broad power spec-
trum. Indeed, if the signal one is studying has a power
spectrum with substantial strong lines, one is well advised
to recognize the implied sinusoids as the underlying
linear degrees of freedom and avoid altogether the labor
we propose here.

It has been shown that in nonlinear systems that exhib-
it deterministic chaos one can determine from the obser-
vation of a single dynamical variable the geometric struc-
ture of the many variable dynamics that produced the
measured signal.’ " !® The method that has developed for
the construction of the phase space in which the dynam-
ics dwells is called phase-space reconstruction. The result
of this reconstruction is an embedding space of d dimen-
sions (d is an integer) in which one may observe the at-
tractor. One can view the evolution in the reconstructed
phase space of the many dimensional dynamics in a quan-
titative fashion in the time domain.

In this article we describe both in outline and im-
plementation a program for extracting from the observa-
tions of this single broadband temporal signal quantita-
tive predictions for the evolution of initial conditions
differing from the observed data points. We assume that
once transients are gone the evolution of the system is on
a strange attractor with dimension d ,, where d , is gen-
erally fractional. If the evolution of the system is on such
an attractor, then the d-dimensional embedding space en-
closing the attractor should be sufficiently larger than d ,
that all the geometric information about the attractor is
exposed in the embedding space. Mafié and Takens’s®’
formal result requires d >2d , + 1 to assure one of a faith-
ful representation of the d ,-dimensional attractor as seen
in the d-dimensional embedding space, but often, in prac-
tice, d >d 4 will do. The method of phase-space recon-
struction seeks to construct from the x(n)s d-
dimensional vectors which, when embedded in R? de-
scribes the full dynamical evolution of the system. Sec-
tion II is devoted to the issue of identifying the correct
value of d from the data set.

For the moment suppose we have found d by one
means or another. We imagine measuring a single scalar
variable x at discrete time points x(n) for
n=1,2,...,Np. (Observation of several dynamical vari-
ables from the system is even better, and serves to pro-
vide confirmation of the information on the deductions
from observations of any single variable.) We can con-
struct d-dimensional vectors y(n ) in the embedding space
by

yim)=(x(n),x(n+r),x(n+r),...,x(n+7145_,)),

for some set of time lags 7,75, ...,74—;. The set of
y(n)’s, of which we have N =N, —d, capture the evolu-
tion of the nonlinear system under observation as it
moves through the d-dimensional phase space. Familiar
phase-space coordinates are the time derivatives
x(n),dx(n)/dt,d*x(n)/dt? ..., evaluated at discrete
times. The data on x(n) are acquired only at discrete
times and establishing the values of these derivatives is
certain to be inaccurate. The time lagged x(n)’s, which
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are the coordinate elements of the y(n)’s, are nonlinear
combinations of the local time derivatives and are fully
acceptable substitutes for the usual phase-space coordi-
nates. This has been emphasized by Eckmann and
Ruelle.!°

With the y(n)’s and the embedding space in hand, we
ask here the ambitious question of how we can use the
series of y(n)s to predict y(N+1),y(N+2), etc.
Equivalently, we can ask what is the evolution, under the
same dynamical system that produced the y(n)’s, of a
point y, that is on the attractor but not in the original
data set. We will have answered this question when given
a data set y(1),y(2), ...,y(N), we have identified a “reli-
able” map F from R? to itself parametrized by
a=(a,,a,,...,ap) which takes us from y(n) to y(n +1),

y(n+1)=F(y(n),a) .

If we can establish a reliable F(y,a), then the evolution
of a point y in R? that is not a member of the measur-
ed data set would be y—y,=F(y,a), y,—y,=F(y,;,a)
=F(F(y,a),a)=FXy,a), etc.

Our first view of the data y(1),y(2), ..., y(NN) is that it
can be thought of as a pair of columns of vectors in R?

y(1)
y(2)

y(2)
y(3)

y(n) yn+1)

y(N—1) y(N),

and our function F(y,a) comes from parametrically
“fitting” the right-hand column of y(n+1) resulting
from the left-hand column of y(n). Fitting the data then
suggests making a least-squares estimation of a so that
the cost function

N-—-1 d
Cla)=3 Wm(n+1)—F, (y(n),a))?
=1

n=1

is minimized. Our approach differs from previous work
in detailed tactics and in our imposition of important
geometrical structure as constraints on the minimization
of the cost function. The articles we have greatly relied
on for guidance and initial impetus in our research are
those by Farmer and Sidorovitch!! (we refer to this paper
as FS in the following), Lapedes and Farber,'” and
Crutchfield and McNamara.!?

Our main point, simply stated, is that we are not just
making a fit to data with a set of functions F(y,a). Rath-
er, these functions evaluated along the orbit are to be re-
lated to each other in the manner of a dynamical system.
This leads to a rather different view of the fitting func-
tions than the one usually taken in trying to match data
to observations. It means that the function F(y,a) evalu-
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ated on the data vector y(n) is required to do more than
reproduce y(n+1) as accurately as possible. F(y,a)
must also be a function which when iterated will repro-
duce y(n +2) after two applications to y(n) and y(n +3)
after three, etc. The notion of F(y,a) as a dynamical sys-
tem also leads to modifications of the cost function. The
cost function should reflect the fact that iterations of
F(y,a) also yield points on the orbit. Furthermore, under
our approach geometrical properties of the dynamical
system given by F(y,a) are used to determine the success
of the fit. It is not just the function’s ability to reproduce
in a least-squares sense the observed data that is impor-
tant. The data contain invariant information that is
essential for a full description of the geometrical struc-
ture of the attractor that it evolves on. Our key observa-
tion in this article is that, in general, least-squares fitting
alone does not produce a map that captures the invariant
characteristics of the attractor described by the data
y(n), n=1,...,N. One must calculate from the data as
many of these invariant quantities as possible and then
impose them as constraints on the fit. In this way we em-
phasize the fact that one is creating a dynamics and not
just a fit to data. The product of our minimization of the
constrained cost function is a mapping F(y,a) of R to it-
self which is not only reliable in that it reproduces the
given data set by having a small cost function, but is also
representational in that it has the same geometric invari-
ants as the underlying dynamical system. The methods
for identifying those invariants and utilizing them as
classifiers for the dynamical system is a matter of some
importance in itself.

The invariants are properties of the function F(y,a)
viewed as a dynamical system which maps R? to itself.
We will concentrate on two kinds of invariants. One kind
of invariant, the Lyapunov characteristic exponents
Ap Ay, ..o, Ay, describes the expansion or contraction of
phase-space volumes under the iteration of F(y,a).!o” "
Lyapunov exponents are invariant under smooth changes
of coordinate and are independent of the initial condi-
tions of the orbit one follows on the attractor. The
second kind of invariant is the density of points on the at-
tractor p(y). It captures global features of the frequency
with which orbits visit various portions of the attractor.
The density is a different kind of invariant than the
Lyapunov exponents. Its integrals with smooth functions
G(y) are unchanged under operation with the mapping
function which underlies the dynamics y(n)—y(n +1),

[ a% p(y)G(y)= [ d% p(y)G(F(y,a)) .

It too is independent of the initial conditions on the or-
bits. 10:18.19

In this paper we find the parameters a in F(y,a) by
minimizing a cost function subject to certain constraints.
The constraints are chosen to insure that iterations of the
mapping function F(y,a) give rise to values of dynamical
invariants which are the same as those indicated by the
experimentally measured data set y(n). In this way
essential geometric information about the particular at-
tractor on which the data live will be built into the para-
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metric mapping. Straightforward least-squares minimi-
zation does not accurately reproduce these invariants.
Thus one must perform a least-square minimization sub-
ject to the constraints that F(y,a) accurately produce the
Lyapunov spectra A,A,, ...,A; and the invariant densi-
ty p(y). This paper is devoted to explaining in detail how
one implements the idea just stated.

B. Choosing maps and predictors

Assuming for the moment that we have successfully
embedded the data x(n) in R by creating d-dimensional
vectors y(n), n=1,...,N. We need to choose a class of
parametrized mappings, a cost function to minimize, and
a means to impose the constraints on our minimization.
The maps must have some way of fitting the data by
closely reproducing one data point from the previous one
by y(n +1)=F(y(n),a). Our maps are required to “look
around” at the behavior of the phase-space neighbors of
the point y(n) and predict forward according to how a
cluster of phase-space neighbors, regardless of their tem-
poral sequence, are moved forward in time. The idea
here is that one may use knowledge of the behavior of lo-
cal regions of phase space as well as past points on an or-
bit to determine where a point will be mapped in the tem-
poral future. The maps we choose must then be sensitive
to their neighborhood in phase space and must inquire
about the fate of any spatial neighbor under the map
without concern of its temporal arrival in the neighbor-
hood. The map will then try to take any new point y and
map it forward to some weighted average of its neigh-
bors’ forward evolution.

We take our mappings to be of the form

N-—1
F(y,a)= Y y(n+1)g(y,y(n)a), (1)

n=1

where g(y,y(n);a) is near 1 for y=y(n), and vanishes
rapidly for nonzero |y —y(n)|; the vertical bars represent
some norm, in our case Euclidean, in R¥. F(y(k),a) will
then be quite close to y(k +1).

This type of mapping is strongly suggestive of the form
used in the statistical literature under the name of kernel
estimation or kernel density estimation. An explicit re-
cent example that illustrates the similarity is found in
Ref. 20. Other useful discussions of this method applied
to various problems are to be found in Refs. 21 and 22;
our attention was directed to this similarity by Farmer
and Sidorowich.?> We do not claim to have a better
method for choosing our function g than those in the
literature, but our motivation here does differ from all the
citations except Rice.?* Our constraints on g are also
different, but could be modified. For example, the in-
tegral of g over y need not be unity, nor do we require
that g be positive. We will return to a discussion of
choices for g in our summary in Sec. VI.

Our choice here for g(y,y(n );a)—one among many, of
course—is this:
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P
a,+ay(n)(y—yn))+ 3 ak(ly—y(n)lz/cr)m"]
k=3

g(y,y(n)a)= o

S exp[—ly—y(n)*/o]

n=1

The parameter space a is P  dimensional,
a=(a,,a,,...,ap). o is a fixed parameter that provides
a scale we can use to determine which points in the data
set are “‘close” to y. The m,’s are also fixed at various
values. We could treat both o and the m,;’s as parame-
ters to be optimized in the same sense as the a’s. Howev-
er, we choose not to do this in our work; not for any fun-
damental reasons, but because we wished to explore other
issues and wished to keep down the size of the parameter
space over which our minimization searches were per-
formed.

The weight function g(y,y(n );a) which we use was ar-
rived at after some experimentation. It, as do many other
choices, certainly satisfies our general requirements.
These requirements include the following:

The function is sensitive to the presence of near
“neighbors” in phase space. Only points y(n) within a
distance from y of order Vo make any sizable contribu-
tion to g(y,y(n );a).

When o0—0, g(y,y(n);a) becomes essentially a
Kronecker delta and the point y(n) is mapped precisely
toy(n+1).

It is easy to differentiate both in y and in a. These
derivatives are important in the minimization of the cost
function using our methods, and having explicit expres-
sions for the required derivatives in either of these in-
dependent variables makes the optimization routines run
much faster.

In the function we have chosen it is easy to retain
many parameters all of the same general form, thus as the
number of constraints on the optimization of the cost
function is increased, the pattern of our searches remains
the same.

The essential function which senses neighbors, namely
the exponential, can easily be replaced by other choices,
such as those in Table 3.1 of Silverman’s monograph.?!
The general form of our arguments goes through then
‘without modification.

By virtue of the term involving a, in the numerator,
this form of g(y,y(n);a) allowed us to satisfy constraints
set by the Lyapunov exponents with numerical stability
and accuracy. The denominator serves as an approxi-
mate counter for the number of neighbors of the point y,
so the numerator works less to produce the required aver-
age for the forward prediction of the point y. The pres-
ence of the denominator assured us of numerical ease in
making the parameters in the map F(y,a) meet our re-
quirement of producing an average over neighborhood
points in projecting forward in time any phase-space
point. This made the numerical algorithms we use much
more efficient and accurate.

The choice of cost function is also rather much up to
us. Since we are to think of F(y,a) as a dynamical system

P m
a;+ 3 ally—yn)|*/0)"*
k=

3

evolving points y(n) into new points y(n +1), we should
consider asking the map to reproduce accurately from
y(n) not only the “next” point y(n + 1) but, via iteration,
a sequence of points y(n-+1),y(n+2),y(n+3),

..,y(n+L) up to some L beyond which we simply do
not trust the accuracy of our algorithm F or of the
machines we use to compute the future y’s.

This suggests the predictor for future points to be a
linear combination of iterated powers of the map F(y,a),

L
yim+1)= 3 X, Fy(m—k+1),a), 3)
k=1

where F¥ is the kth iterate of F as described above. If
F(y,a) were the exact mapping, then each term in the
sum over k would be X, y(m +1). Thus we require

L
3 X, =1.
k=1

The X’s weight the various iterates of F and are used to
determine which iterates of F we believe are the most ac-
curate. Typically, one would require X; =2 X, ,, to indi-
cate that the lower iterates of F are believed to be more
accurate than the higher iterates. This predictor is a nat-
ural generalization to the nonlinear problem of the com-
mon linear predictor

L
yim+1)= 3 X,yim—k+1),
k=1

with the clear differences associated with the iterative na-
ture of the map F(y,a).

This predictor [Eq. (3)] combines both past temporal
information from times m —k+1; k=1,2,...,L and in-
formation from all the phase-space neighbors of the orbit
points y(m —k +1) because of the structure of F(y,a).
The combination of spatial and temporal information
provides a significant “lever arm” which permits Eq. (3)
to quite accurately make forecasts about the forward evo-
lution of points y in R%. By utilizing the phase-space in-
formation in F(y,a) at each temporal step we efficiently
tap properties of the full data set.

The cost function associated with this predictor is

N-1 L
3 |lytn+1)— 3 X, Fiy(n—k+1),a)|?
k=1

n=L
C(X,a)=

N

3 ly(n)-y(n)]?

n=1
(4)
This kind of cost function will automatically contain in-

formation on the Lyapunov exponents which themselves
are expressions of the dynamics as iterations of the map.



1786

Some information on the invariant density function on
the attractor is also contained in this improved cost func-
tion.2*

Another major consideration to us is the great
difference in the coordinate scale of various attractors.
The numerator of the cost function [Eq. (4)] is the residu-
al of the mapped function summed over the entire trajec-
tory, and hence gives a measure of the sum of the abso-
lute errors over all the mapped points. Since the absolute
error is obviously dependent on the macroscale of the at-
tractor, it is more informative to rescale the final cost
function value in some manner which reflects error. In
our samples, the scale of the attractor of the Hénon at-
tractor is on the order of unity, while that of the Lorenz
attractor is of order 100. Hence some form of rescaling
of the cost function became desirable in order to have a
relative measure of comparison between two systems with
different macroscale. We chose a normalization in the
following straightforward manner: we simple summed
the magnitudes of the position vectors of all the points on
the attractor, and retained this value as a constant. Ab-
solute values for the cost function after normalization by
the denominator in Eq. (4) give a more sensible relative
measure of the error of our prediction function F(y,a).

We note that FS suggest forecasting the evolution of a
point y by looking around at the neighbors of y among
the data set y(n) and observing where these neighbors go
under one iteration of the underlying map taking the
y(n) to y(n+1). They determine the future of the new
point y by an interpolation involving the future of its
neighbors. Our mapping function Egs. (1) and (2) does
precisely this as indicated. All points in the data set are
given some weight in the future of y, but if g(y,y(n);a)
falls rapidly for large |y—y(n)|, as we shall always
choose, only members of the data set y(n ) near y, i.e., the
neighbors, play much of a role in its future. Our F(y,a)
in that sense is an analytic formulation of the FS idea.
More or less weight can be given to the near neighbors by
different choices for the function g(y,y(n);a). The
Gaussian we work with could be replaced by a Lorentzi-
an or other choices which weight neighbors more.

C. Invariants

With a map and a cost function, Egs. (1), (2), and (4),
we are ready for the constraints. Section III is devoted to
a discussion of Lyapunov exponents. In it we first turn to
the extraction of the Lyapunov exponents A, A, ..., A,
from the data y(1),y(2),...,y(N). We do not add any-
thing but our own experience to that of many workers
who have explored the calculation of A; from data. We
attempt to convey to the reader an overview of the avail-
able methods for determining Lyapunov spectra and a
sense of their reliability. Therefore that portion of Sec.
III may be skipped by persons with experience. We in-
clude it here since determining the A;’s is an essential step
in our plan for determining F(y,a) and we have chosen to
comment on how we have done it rather than refer the
reader to the literature. Of course, we do that too. That
established, we discuss how to determine these numbers
in terms of the F(y,a). Equating the numerical values for
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A; from the data to their expression in terms of parame-
ters a in F(y,a) will constitute our first set of constraints
on the minimization of C(X,a).

Section IV contains our discussion of the invariant dis-
tribution of points on the attractor. In principle, this
quantity, which we called p(y), contains an infinite
amount of information on the dynamics. A finite data set
y(n) restricts the resolution we have of this information.
We have chosen to express this finite amount of informa-
tion in terms of the projection of p(y) on a set of dual
basis functions which are a complete set in R%. Keeping
a finite number of these functions is equivalent to a finite
resolution view of the complex structure of p(y). !’

One of our contributions in this work is a scheme for
choosing the dual basis functions ‘“tuned” to the struc-
ture of p(y). This allows us to represent our finite resolu-
tion of p(y) by a small number of terms in an expansion
in the optimal basis functions.*>~%" By projecting the
p(y) determined from the data onto these basis functions,
we can determine the coefficients of the expansion of p(y)
in this basis. Similarly, we can project the p(y) deter-
mined from the map F(y,a) onto these basis functions
and determine the expansion coefficients of the map.
Equating the coefficients one determines from the data to
the ones determined from the map constitutes our final
constraints on the minimization of C(X,a). Further-
more, we show how the components of p(y), in this basis,
are the elements of the eigenvalue unity eigenvector of a
finite-dimensional matrix constructed from F(y,a) and
the dual basis functions.

In Sec. V we describe our implementation of the con-
strained minimization program?®® for two model systems:
the Hénon map of the plane to itself and (2) the Lorenz
system. In each case we numerically generate a data set
of x(n)’s. We then discuss in some detail our experience
in establishing the dimension of the space in which the
dynamics is embedded. We also discuss the calculation
of Lyapunov exponents, and aspects of the invariant dis-
tribution on the attractor from the y(n)’s. Finally, we
carry out the constrained minimization of the cost func-
tion and indicate how well our parametrized mappings
are able to perform in predicting orbits other than those
in the given data set.

In this paper we are attempting to describe a method
of analyzing experimental data. For such a situation we
do not know a priori the correct embedding dimension,
the correct Lyapunov exponents, or the underlying
dynamical system that can be used to generate the
correct invariant distribution. Yet we have used data sets
generated by a dynamical system that we know. We have
used known systems for two reasons. The first is that it
provides a simple way to obtain large, noise free, data
sets. Second, it provides a way of measuring how well ex-
isting techniques are able to determine the embedding di-
mension and the Lyapunov exponents. In order to simu-
late experimental systems we treat the data set as having
come to us from an unknown source. Thus we do not use
any of the known properties of either the Hénon or the
Lorenz system.

An issue of some importance we do not address in this
paper is that of extrinsic noise which could contaminate
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our signal x(n). This is not a dismissal of this important
issue but an attempt to separate out the matters of
efficiency and utility of our plan for prediction on strange
attractors from issues concerning the practical degrada-
tion of our procedures by external noise. An equally im-
portant issue is the quantity of data available. The deter-
mination of Lyapunov exponents is very difficult for short
data sets. As we have stated above the resolution of p(y)
is determined by the number of data points available. As
the dimension of the phase space increases, the amount of
data necessary for accurate prediction increases dramati-
cally. We will return to the implications of noisy and/or
short data sets for our prediction procedure in later
work. For now we assume that we are given essentially
noise-free, arbitrarily long time series x (n).

It is our expectation that our experiences with the two
systems listed above will give us the ability, in many in-
stances, to construct models in the form of our
parametrized mapping F(y,a) which allow prediction
and control of the underlying nonlinear dynamical sys-
tem producing an observed signal x(n). The details of
the F(y,a) for a specific application should reflect the
known features of the physical or other phenomena giv-
ing the signal. It seems too bold, if at all possible, to sug-
gest any general rules for choosing forms for F(y,a).
This is sure to be a rich area for experimentation and our
own choice will be motivated by considerations we shall
defend in a later section and slightly alluded to above.

The matter of noise will be addressed in a future paper.
Our methods for dealing with noise follow those outlined
by Fuller?® and seem similar to the ideas of Sidorwich.*

II. CHOICE OF AN EMBEDDING SPACE

In this section we illustrate how one can determine the
phase-space embedding dimension d from the scalar time
series x(n), n=1,...,Np. We assume that the data set
is long enough that we need not be concerned with sta-
tistical issues about the numerical accuracy of the quanti-
ties we consider below. We also assume extrinsic noise is
absent from the x(n)’s when we receive them. Matters of
short and/or noisy data sets, while critical in all applica-
tions, are addressed only peripherally in this paper.

Following the work of Packard et al.’> and Mafié and
Takens®’ and the developmental work of numerous oth-
ers we seek a set of lagged variables x(n),x(n+7)),
x(n+m,),...,x(n+74_,) which act as the coordinates
in a d-dimensional space in which the dynamics produc-
ing the x(n )’s is fully captured or embedded.

The choice of lags 7, is not a well agreed upon
matter.! The issue is the accuracy and efficiency with
which the d-dimensional vectors that result from a par-
ticular choice of 7,’s represents the phase space in which
the attractor resides. If the underlying system were a
differential equation and a scalar variable x(¢) were mea-
sured at discrete times x(n)=x(z,+nAt), then we are by
the choice of lagged variables trying to find a discrete re-
placement for the wusual phase-space coordinates
x(t),dx/dt,...,d% 'x/dt?"'. Mafié and Taken’s re-
sults indicate that, in principle, any choice of lags 7, will
do. We adopt the practice of choosing a single lag 7 and
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making all other lags multiples of 7. The question of
what is the best way to choose 7 is still open. In a heuris-
tic sense, if 7 is too small, then the coordinate at x(n +17)
and x(n+27) represent almost the same information.
Similarly, if 7 is too large, then x(n +7) and x(n +27)
represent distinct uncorrelated descriptions of the embed-
ding space.

For reasons of consistency and ease in calculating
Lyapunov exponents (cf. Sec. III) we adopt the following
practice. We take the original scalar measurements and
calculate its autocorrelation function

1 T
Tfox(t+r)x(t)dt i

We then choose 7 to be approximately 3 to s the time
associated with the first local minimum of the autocorre-
lation function. We find that this system, although some-
what arbitrary, works well in practice and provides a sim-
ple and systematic way of determining 7. We set 7 to uni-
ty and thereby establish a time scale for the problem.
The data x(n), n=1,...,Np thus become measure-
ments of the scalar variable separated by a constant time
step 7.
We then form d vectors

y(n)=(x(n),x(n+1),...,x(n+d—1)) (5)

forn=1,2,..., N=Np—d in a space R? capturing the
geometric structure of the attractor on which the orbits
x(n) lie. To establish d we need some characteristic of
the attractor that becomes unchanging as d becomes
large enough, thus indicating that the attractor can be
embedded in RY. The usual Hausdorff or other dimen-
sions of the attractor are such characteristic quantities.
Numerical calculations of the Hausdorff dimension
d ,(N,d) of an attractor may depend on the finite length
of the data set NV and/or the embedding dimension d. For
N large enough d , will become independent of d when
the attractor is properly embedded in R Operationally
one increases d until d , remains constant and identifies
the minimum d where d , ‘“‘saturates” as the embedding
dimension.

In fact, we, along with numerous others, do not recom-
mend the computation of d ,, however geometrically ap-
pealing it may be, because it is too demanding of comput-
er time. We suggest, and we use, the properties of the
correlation function D(r), proposed by Takens’? and by
Grassberger and Procaccia,’® which is much easier to
compute.’* In terms of the data vectors y(n) this is
defined to be

2 N N

D(r,N,d)=m 2 2 6(r~|y(j)—y(z)l) »

i=1j=1
i#j (6

where O(x) is the Heaviside function ©(x >0)=1 and
O(x <0)=0. The vertical bars represent some measure
of distance in R?—we use the Euclidean norm, but that is
only a convenient choice. This correlation function
counts the points of the attractor within a distance r of
each other. Thus it possesses much of the same geometri-
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cal content as the Hausdorff or other invariant dimension
attributes.

For N large enough the behavior of D(r,N,d) for
small » becomes independent of N. As one would expect
from scaling arguments about fractals, as well as observa-
tionally, D(r,N,d) is seen to take the form

D(r,N,d)=®(r,d)r"?

for small 7 and large N.3*

We will identify as the embedding dimension that value
of d where the structure in D(r,N,d) becomes indepen-
dent of d. In this regime it is sufficient that D(r,N,d),
becomes independent of d over a range of r near r —0,
and large N [»=0 in a finite data set always gives strictly
zero for D(r,N,d) and is an uninteresting limit].

To illustrate the use of the correlation function as an
embedding dimension discriminant we have calculated
D(r,N,d) for very long time series taken from the two
examples we will be working with in this paper: (i) the
Hénon map of the plane to itself,*

x,(n+1)=1.0—ax,(n)*+x,(n),
(7)
xy(n+1)=bx(n),

with conventional parameter values a =1.4 and 6=0.3,
and (ii) the Lorenz system of three autonomous
differential equations®’

dxl(l)

d[ =U(Xz(t)_x1(t)) ’
dX2(t)

dt =—xl(t)x3(t)+rxl(t)—x2(t) 5 (8)
d.X3(t)

dt =xl(t)X2(t)_bX3([) ’

with parameter values 0 =16, b =4, and r =45.92.

For the Hénon map we took an initial condition lying
in its basin of attraction and iterated the map 4550 times.
The first 50 iterates were discarded as representing tran-
sient behavior, while the last 4500 points of x,(n) and
x,(n) were then used to make d vectors

y,(n)=(x;(n),x;(n+1),...,x,(n+d—1))

fori=1or2. Ford=12,...,5 D(r,N,d) was comput-
ed using an efficient code developed by Theiler.>
For y,(n) data these D(r,N,d) are plotted in Fig. 1. A
similar plot was generated for y,(n), but is not
shown. Because of the simplicity of the connection
x,(n+1)=bx;(n) in the Hénon map, these two views of
D(r,N,d) are really redundant. However, in the spirit of
treating each data series as having originally come to us
from a source whose underlying dynamics is unknown we
performed both calculations.

While a cautious and careful observer might say the
embedding dimension for the y,(n) data would be d =3,
we feel safe in concluding from these figures that d =2.
Computations with N greater than 4500 support this con-
clusion.

Further, if we take the x,(n) data and plot the two-
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FIG. 1. D(R) vs r for the Hénon map. y,(n)=(x,(n),

x(n +1)) for 4500 points.

vectors y,(n)=(x,(n),x;(n+1)), we reconstruct the
figure seen in Fig. 2. This is, as should not be surprising
in this simple example, a rotated form of the Hénon at-
tractor. The usual display of the Hénon attractor is ob-
tained by plotting (x,(n),x,(n)) for our data. Since
x,(n)is (1/b)x,(n+1), the coincidence of these plots is
certainly not remarkable. Our goal in presenting this
kind of detail is as a guide to what one might expect in
more complicated examples rather than as revelations
about the Hénon map.

Next we turn to the Lorenz equations. Once again we
chose initial conditions in the basin of attraction and
solved Eqgs. (8) with a straightforward fourth-order
Runge-Kutta ordinary differential equation (ODE) solver
with a fixed time step. After discarding the first 50 time
steps as transients, we recorded x,, x,, and x; for
N =4500 corresponding to many natural cycles of the or-
bit around the attractor. From each of the three data
sets we formed the d vectors as in Eq. (5) and with them
evaluated the correlation function D(r,N,d) for
d=1,2,...,5. The D(r,N,d)’s for y,(n) data are shown

0.50

ISRINEEE NSNS SRRV ERE SN SN SRR SN S NREI

e

~2.00 T T T T T T A T T

-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50
x(n)

FIG. 2. Hénon attractor x,(n) plotted against x,(n +1).
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in Fig. 3. An embedding dimension of d=3 is fairly
clearly a safe choice for these data. A bolder choice
would have been d =2. Since it is known that the Haus-
dorff dimension of the Lorenz attractor is just above 2 in
this regime of parameter space, this would have been a
convincing, although incorrect, choice. The message
here is that choosing d too large entails extra subsequent
computation, but no loss of information on the attractor.
It is probably safer to live with a d one dimension too
large as a general matter of care. We thus choose d =3.
The results of the y, and y; data are not shown. As with
the Hénon example the results of y, and y; are similar to
those of y,. The fact that the y,, y,, and y; vectors for
the Lorenz data (y, and y, for Hénon) yields similar re-
sults is to be expected since all three measurements
evolve on the same attractor.

Next we plot the points y,(n)=(x;(n),x;(n+1),
x;(n+2)) in the three-dimensional embedding space.
These are shown in Fig. 4 as a projection on a plane
with normal vector fi=(cos0)X(n)+(sin6)X,(n+1)
+0%X,(n+2) for 6=1.31. We note the similarity be-
tween Fig. 4 and the well-known shape of the Lorenz at-
tractor. Thus the method of phase-space embedding reli-
ably reproduces the Lorenz attractor. For the two exam-
ples we have used the reconstructed attractor is similar in
appearance to the attractor generated by the “true” un-
derlying equations of motion. In general, the recon-
structed attractor will not have this visual similarity.
However, the reconstructed attractor will contain all of
the important invariant information as the true attractor.
The difference in visual shapes is the result of a nonlinear
change of variables between the true dynamical variables
and the reconstructed variables.

We close this section with a summary note reminding
the reader that our use of the correlation integral Eq. (6)
has been to establish an embedding dimension d in which
to view the system attractor described by our time series
x(n). We chose D(r,N,d) because it is familiar, easy to
compute, and has a clear geometrical meaning. For us it

FIG. 3. D(r) vs r for the Lorenz equations, y,(n) for 4500
points and embedding dimensions d =1,...5. For this case
r=45.92, b=4.0, and o = 16.
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FIG. 4. Lorenz attractor created from x,(n) data. The pa-
rameter values are r =45.92, b =4.0, and o =16, while the pro-
jection angle is 6=1.31.

is a diagnostic tool. While the details of the small r be-
havior D(r,d)~r"®(r) contains important information
about the dynamics, we do not focus on that here.
Indeed, we are quite happy to accept other diagnostic
tools in its place.

III. LYAPUNOV CHARACTERISTIC
EXPONENTS—FROM DATA AND FROM THE MAP

In this section we discuss how one determines the
Lyapunov exponents that govern a dynamical system.
First we discuss how to extract them from an experimen-
tal data set and then from our mapping F(y,a). By
choosing the parameters a in such a way that F(y,a)
yields the same Lyapunov exponents as the experimental
data set, we are forcing a constraint on F(y,a) that is not
explicitly required by minimizing the cost function given
by Eq. (4). This local constraint should improve our abil-
ity to predict the short-term (and possibly long-term) evo-
lution of points that are not in the data set, but near the
attractor. Certainly points outside the basin of attraction
of the attractor we have observed in the original data set
will not evolve according to our F(y,a).

Rather than writing our own computer program, and
thereby become embroiled in the controversy of what is
the best way to determine Lyapunov spectra from an ex-
perimental time series, we have chosen to use methods
that have already been proposed by two different research
groups. By comparing the results of both methods we
hope to improve our confidence in the spectra given by
each of them separately. The first method we shall report
on was developed by Eckmann et al.3® The second
method was developed by Wolf et al.*® Finally, we will
show how we calculated the Lyapunov spectra from our
mapping F(y,a).

The choice of an appropriate data set for use in either
the Eckmann et al. or the Wolf et al. method is some-
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thing that cannot be overstressed. As stated in Sec. II the
time lag 7 between successive measurements of the
dynamical variable must be appropriately chosen, if one
wants optimal results.

A. Eckmann-Kamphorst-Ruelle-Ciliberto method

For the Eckmann et al. method the FORTRAN source
code we used when performing our numerical experi-
ments on the dynamical systems denoted in Sec. II was
provided by the authors of Ref. 38. It assumes that the
input is a string of positive integer data whose sampling
rate is 7. [The temporary conversion of the data set
x(n), n=1,...,Np to positive integers for the sake of
the Lyapunov calculation should not be a difficult
matter.] The code reads the data set and embeds it in a
d-dimensional space in the manner specified in Sec. II.
The result is a set of N=N, data vectors
y(n)=(x(n),x(n+1),...,x(n+d—1)) where we have
normalized 7 to unity [cf. Eq. (5)]. It then chooses an ini-
tial y(n ) and finds all neighbors of y(»n ) within a radius r.
These points, as well as their forward images, are used to
construct a linear mapping T from time » to time n +1.
The Lyapunov exponents are related to the eigenvalues of
the successive iterates of the map T. For a detailed dis-
cussion of the algorithm we direct the reader to Ref. 38.

The Eckmann et al. method assumes that the embed-
ding dimension d is related to the number of Lyapunov
exponents via the rule d =(d,, —1)M +1, where d,, is the
number of Lyapunov exponents and M is a positive in-
teger. By allowing d,, and M to range over various
values a wide range of embedding dimensions is used.
We remark that the reader will recall that in Sec. II we
established a method for determining the minimum
embedding dimension d. The data vectors y(n) are as-
sumed to live on some attractor that occupies some por-
tion of R% It is a numerically difficult exercise to calcu-
late Lyapunov exponents from data. Thus it is necessary
to examine a wide range of possible embedding dimen-
sions d. It is our experience that the calculated values of
the exponents converge onto their correct values as d is
increased above the number specified by methods in Sec.
II. We report numerical experiments for d,, in the range
between 2 and 9 for M =1,2. (We remark that M =1 re-
covers d =d,,, while M =2 is slightly below the Takens
and Mafié limit.>”) In all of our tests we iterated the
tangent map T 2000 times before evaluating the
Lyapunov exponent.

To get a feel for the proper densities of points on the
reconstructed attractor, it is useful to use diagnostics
such as, say, a histogram of the number of neighbors fal-
ling within a range around the smallest nearest-neighbor
distance on the attractor. If the density of points on an
attractor is quite inhomogeneous, much higher mean
point densities are often necessary to insure that most
points have at least a few nearby neighbors. Often a use-
ful diagnostic is simply to plot out the reconstructed at-
tractor, and visually obtain an intuitive feel for how
homogeneous the point density is. As a general rule of
thumb (inspired by Wolf et al.), we find empirically that
the minimum number of points required for the predic-
tion algorithm to go as something like 20%, where d is the
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dimension of the embedding space, although this is prob-
ably an overestimate when d is 4 or more.

The first dynamical system for which we present re-
sults is the Hénon map of the plane given by Egs. (7). We
used a data set with N =10000 entries. The results are
shown in Fig. 5 and Table I. As one can see, the numeri-
cal experiments accurately predict the accepted value of
the positive Lyapunov exponent A;=0.418. Although
for the M =1 case the computer code produced a reason-
ably accurate prediction of the negative Lyapunov ex-
ponent, the code, in principle, will not yield accurate
values of the negative or zero Lyapunov exponents. This
fact is born out in the M =2 case (which is not shown).
Furthermore, we know of no method that will produce
negative Lyapunov exponents from an experimental data
set. Since we are unable to reliably determine the nega-
tive Lyapunov exponents from the data, we will not con-
strain F(y,a) to reproduce the negative values of the
spectra.

It should not be surprising that we are unable to deter-
mine the negative Lyapunov spectra using our data sets.
We have assumed that the data describe motion on an at-
tractor. The negative Lyapunov exponents indicate how
points in the phase space that are off the attractor get
onto the attractor. The portion of the data set that might
reveal how points off the attractor get to the attractor is
the initial transient. This transient is typically very short
(sometimes as few as 10 time steps 7) and is usually dis-
carded or otherwise unavailable.

A related issue to be addressed is that the code pro-
duces d,, exponents regardless of the actual number of
Lyapunov exponents that govern the dynamics of the
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FIG. 5. The results of calculating Lyapunov exponents by
the Eckmann et al. method for Hénon data. The horizontal
axis is d,,, the assumed dimension of the dynamical system that
produced the data set. Thus the method will produce d,,
Lyapunov exponents. The vertical axis contains the numerical
values calculated for the d,, different A’s. The two horizontal
lines are the known correct values for A;=0.418 and A= —1.62.
The method relates d,, to the embedding dimension d via
d =(d,,—1)M +1. This figure shows results for M =1. Spuri-
ous exponents are labeled with squares while dynamical ex-
ponents are labeled with X’s.
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TABLE 1. Lyapunov exponents for the Hénon attractor M =1, and the number of data points is 10 000.
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d, A

2 A,=0.412 A, =—1.70

3 A,=0.412 A, =—0.662 Ay=—1.72

4 A,=0.408 A,=—0.281 A,=—0.655 A,=—1.88

5 A,=0.408 A,=—0.0824 1,=0.305 Ay=—0.622 As=—1.55

6 A,=0.407 1,=0.128 A, =—0.144 A,=—0.321 As=—0.581
Ae=—1.56

7 A,=0.437 1,=0.323 A= —0.0767 As=—0.190 As=—0.335
A¢= —0.604 A, =—1.54

8 1,=0.602 1,=0.382 A;=—0.0509 As=—0.118 As=—0.203
A¢=—0.332 A,=—0.642 Ag=—1.54

9 A,=0.677 A,=0.377 A;=0.0896 As=—0.0390 As=—0.124
A¢=—0.203 A,=—0.324 Ag=—0.652 A= —1.58

Accepted values of A A;=0.418 A=—1.62

physical system in question. However, it is relatively
easy to determine which of the d,, exponents govern the
dynamics of the system and which are spurious. We as-
sume that one has successfully determined the minimum
embedding dimension of the attractor by the method we
presented in Sec. II (or any other reliable method at the
reader’s disposal).