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We consider the problem of prediction and system identification for time series having broadband
power spectra that arise from the intrinsic nonlinear dynamics of the system. We view the motion
of the system in a reconstructed phase space that captures the attractor (usually strange) on which
the system evolves and give a procedure for constructing parametrized maps that evolve points in
the phase space into the future. The predictor of future points in the phase space is a combination
of operation on past points by the map and its iterates. Thus the map is regarded as a dynamical
system and not just a fit to the data. The invariants of the dynamical system, the Lyapunov ex-
ponents and optimum moments of the invariant density on the attractor, are used as constraints on
the choice of mapping parameters. The parameter values are chosen through a constrained least-

squares optimization procedure, constrained by the values of these invariants. We give a detailed
discussion of methods to extract the Lyapunov exponents and optimum moments from data and
show how to equate them to the values for the parametric map in the constrained optimization. We
also discuss the motivation and methods we utilize for choosing the form of our parametric maps.
Their form has a strong similarity to the work in statistics on kernel density estimation, but the
goals and techniques differ in detail. Our methodology is applied to "data" from the Henon map
and the Lorenz system of differential equations and shown to be feasible. We find that the parame-
ter values that minimize the least-squares criterion do not, in general, reproduce the invariants of
the dynamical system. The maps that do reproduce the values of the invariants are not optimum in

the least-squares sense, yet still are excellent predictors. We discuss several technical and general
problems associated with prediction and system identification on strange attractors. In particular,
we consider the matter of the evolution of points that are off the attractor (where few or no data are
available), onto the attractor where long-term motion takes place. We find that we are able to real-
ize maps that give a least-squares approximation to the data with rms variation over the attractor of
0.5% or less and still reproduce the dynamical invariants to 5% or better. The dynamical invari-
ants are the classifiers of the dynamical system producing the broadband time series in the first

place, so this quality of the maps is essential in representing the correct dynamics.

I. INTRODUCTION

A. General remarks

Analysis of time series from dynamical systems is an
important issue in many different fields of engineering
and science. The most common tool for this analysis is
the Fourier (or other similar) transform of the data x(n )

to discover sharp lines in its power spectrum. Spectral
identification lies at the heart of much of the work on
linear systems to which time series analysis is applied. '
%hen one encounters a broadband power spectrum, the
common assumption is that it represents extrinsic noise
and not characteristics of the signal.

It has become increasingly clear in recent years that
nonlinear systems exhibiting deterministic chaos will gen-
erate a time series whose power spectrum is broadband.
Generically, dissipative nonlinear chaotic systems evolve

nonperiodically on a strange attractor that lives in a
phase space of finite (and often small) dimension. Noise
does not evolve on a strange attractor and will occupy an
arbitrarily large number of dimensions. Hence to model
nonlinear chaotic systems as noise is certainly incorrect.
For these systems the source of the broadband spectrum
is the intrinsic chaotic dynamics that underlies the time
series.

Our focus in this work is on signals with a substantial
broadband power spectrum which, since external noise is
absent or very small, represents the nonperiodic behavior
of a dynamical system whose orbits lie on a strange at-
tractor. The idea, now rather well established, that such
an object can have a small fractal dimension (and still
govern the long time evolution of a system with far more
numerous degrees of freedom than represented by the di-
mension of the attractor) is really the starting point of
our work. '
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It is very important that though x(n ) may be a long,
quiet data set it is likely to have a very broad power spec-
trum. Indeed, if the signal one is studying has a power
spectrum with substantial strong lines, one is well advised
to recognize the implied sinusoids as the underlying
linear degrees of freedom and avoid altogether the labor
we propose here.

It has been shown that in nonlinear systems that exhib-
it deterministic chaos one can determine from the obser-
vation of a single dynamical variable the geometric struc-
ture of the many variable dynamics that produced the
measured signal. ' The method that has developed for
the construction of the phase space in which the dynam-
ics dwells is called phase-space reconstruction. The result
of this reconstruction is an embedding space of d dimen-
sions (d is an integer) in which one may observe the at-
tractor. One can view the evolution in the reconstructed
phase space of the many dimensional dynamics in a quan-
titative fashion in the time domain.

In this article we describe both in outline and im-
plementation a program for extracting from the observa-
tions of this single broadband temporal signal quantita-
tive predictions for the evolution of initial conditions
differing from the observed data points. We assume that
once transients are gone the evolution of the system is on
a strange attractor with dimension d„, where d„ is gen-
erally fractional. If the evolution of the system is on such
an attractor, then the d-dimensional embedding space en-
closing the attractor should be suSciently larger than d„
that all the geometric information about the attractor is
exposed in the embedding space. Marie and Takens's '

formal result requires d )21„+1to assure one of a faith-
ful representation of the dz-dimensional attractor as seen
in the d-dimensional embedding space, but often, in prac-
tice, d )d„will do. The method of phase-space recon-
struction seeks to construct from the x(n )'s d-
dirnensional vectors which, when embedded in IR de-
scribes the full dynamical evolution of the system. Sec-
tion II is devoted to the issue of identifying the correct
value of d from the data set.

For the moment suppose we have found d by one
means or another. We imagine measuring a single scalar
variable x at discrete time points x(n ) for
n = 1,2, . . . , No. (Observation of several dynamical vari-
ables from the system is even better, and serves to pro-
vide con6rrnation of the information on the deductions
from observations of any single variable. ) We can con-
struct d-dimensional vectors y(n ) in the embedding space
by

y(n)=(x(n ),x(n+r, ),x(n+r2), . . . , x(n+~„,)),
for some set of time lags ~„~2, . . . , ~d 1. The set of
y(n }'s, of which we have N=ND —d, capture the evolu-
tion of the nonlinear system under observation as it
moves through the d-dimensional phase space. Familiar
phase-space coordinates are the time derivatives

(nx), dx(n)/dt, d x(n)/dt, . . . , evaluated at discrete
times. The data on x ( n ) are acquired only at discrete
times and establishing the values of these derivatives is
certain to be inaccurate. The time lagged x(n )'s, which

are the coordinate elements of the y(n )'s, are nonlinear
combinations of the local time derivatives and are fully
acceptable substitutes for the usual phase-space coordi-
nates. This has been emphasized by Eck mann and
Ruelle. '

With the y(n )'s and the embedding space in hand, we
ask here the ambitious question of how we can use the
series of y(n)'s to predict y(N+ l), y(N+2), etc.
Equivalently, we can ask what is the evolution, under the
same dynamical system that produced the y(n)'s, of a
point y, that is on the attractor but not in the original
data set. We will have answered this question when given
a data set y(1),y(2), . . . , y(N), we have identified a "reli-
able" map F from R" to itself parametrized by
a=(at, az, . . . , ap) which takes us from y(n) to y(n+ I),

y( n + 1 }=F(y( n), a } .

If we can establish a reliable F(y, a), then the evolution
of a point y in R that is not a member of the measur-
ed data set would be y~y, =F(y, a}, y, ~y2=F(y, ,a)
=F(F(y, a), a) =F (y, a), etc.

Our first view of the data y(1),y(2), . . . , y(N) is that it
can be thought of as a pair of columns of vectors in lR

y(1)
y(2)

y(n )

y(N 1)—

y(2)
y(3)

y(n+ 1)

y(N),

and our function F(y, a) comes from parametrically
"fitting" the right-hand column of y(n+I) resulting
from the left-hand column of y(n ). Fitting the data then
suggests making a least-squares estimation of a so that
the cost function

C(a)= g g [y (n+I) F(y(n), a—}]

is minimized. Our approach differs from previous work
in detailed tactics and in our imposition of important
geometrical structure as constraints on the minimization
of the cost function. The articles we have greatly relied
on for guidance and initial impetus in our research are
those by Farmer and Sidorovitch" (we refer to this paper
as FS in the following), Lapedes and Farber, ' and
Crutchfield and McNamara. '

Our main point, simply stated, is that we are not just
making a fit to data with a set of functions F(y, a). Rath-
er, these functions evaluated along the orbit are to be re-
lated to each other in the manner of a dynamical system.
This leads to a rather different view of the fitting func-
tions than the one usually taken in trying to match data
to observations. It means that the function F(y, a) evalu-
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ated on the data vector y(n ) is required to do more than
reproduce y(n+ I) as accurately as possible. F(y, a)
must also be a function which when iterated will repro-
duce y(n+2) after two applications to y(n ) and y(n+3)
after three, etc. The notion of F(y, a) as a dynamical sys-
tern also leads to modifications of the cost function. The
cost function should reflect the fact that iterations of
F(y, a) also yield points on the orbit. Furthermore, under
our approach geometrical properties of the dynamical
system given by F(y, a) are used to determine the success
of the fit. It is not just the function's ability to reproduce
in a least-squares sense the observed data that is impor-
tant. The data contain invariant information that is
essential for a full description of the geometrical struc-
ture of the attractor that it evolves on. Our key observa-
tion in this article is that, in general, least-squares fitting
alone does not produce a map that captures the invariant
characteristics of the attractor described by the data
y(n ), n =1, . . . , N. One must calculate from the data as
many of these invariant quantities as possible and then
impose them as constraints on the fit. In this way we em-
phasize the fact that one is creating a dynamics and not
just a fit to data. The product of our minimization of the
constrained cost function is a mapping F(y, a) of IR to it-
self which is not only reliable in that it reproduces the
given data set by having a small cost function, but is also
representational in that it has the same geometric invari-
ants as the underlying dynamical system. The methods
for identifying those invariants and utilizing them as
classifiers for the dynamical system is a matter of some
importance in itself.

The invariants are properties of the function F(y, a)
viewed as a dynamical system which maps R to itself.
We will concentrate on two kinds of invariants. One kind
of invariant, the Lyapunov characteristic exponents
A, A, 2, . . . , A,d, describes the expansion or contraction of
phase-space volumes under the iteration of F(y, a). '

Lyapunov exponents are invariant under smooth changes
of coordinate and are independent of the initial condi-
tions of the orbit one follows on the attractor. The
second kind of invariant is the density of points on the at-
tractor p(y}. It captures global features of the frequency
with which orbits visit various portions of the attractor.
The density is a different kind of invariant than the
Lyapunov exponents. Its integrals with smooth functions
G(y) are unchanged under operation with the mapping
function which underlies the dynamics y(n )~y(n+1),

f d y p(y)G(y)= f d y p(y)G{F(y, a)) .

It too is independent of the initial conditions on the or-
10 18 19

In this paper we find the parameters a in F(y, a) by
minimizing a cost function subject to certain constraints.
The constraints are chosen to insure that iterations of the
mapping function F(y, a) give rise to values of dynamical
invariants which are the same as those indicated by the
experimentally measured data set y(n). In this way
essential geometric information about the particular at-
tractor on which the data live will be built into the para-

metric mapping. Straightforward least-squares minimi-
zation does not accurately reproduce these invariants.
Thus one must perform a least-square minimization sub-
ject to the constraints that F(y, a) accurately produce the
Lyapunov spectra k, , X2, . . . , A.d and the invariant densi-

ty p(y). This paper is devoted to explaining in detail how
one implements the idea just stated.

B. Choosing maps and predictors

Assuming for the moment that we have successfully
embedded the data x(n ) in R by creating d-dimensional
vectors y(n ), n =1, . . . , N. We need to choose a class of
parametrized mappings, a cost function to minimize, and
a means to impose the constraints on our minimization.
The maps must have some way of fitting the data by
closely reproducing one data point from the previous one
by y(n+1) =F{y(n ),a}. Our maps are required to "look
around" at the behavior of the phase-space neighbors of
the point y(n ) and predict forward according to how a
cluster of phase-space neighbors, regardless of their tem-
poral sequence, are moved forward in time. The idea
here is that one may use knowledge of the behavior of lo-
cal regions of phase space as well as past points on an or-
bit to determine where a point will be mapped in the tem-
poral future. The maps we choose must then be sensitive
to their neighborhood in phase space and must inquire
about the fate of any spatial neighbor under the map
without concern of its temporal arrival in the neighbor-
hood. The map will then try to take any new point y and
map it forward to some weighted average of its neigh-
bors' forward evolution.

We take our mappings to be of the form

N —1

F(y, a)= g y(n+1)g(y, y(n);a),

where g(y, y(n);a) is near 1 for y=y(n), and vanishes
rapidly for nonzero ~y

—y(n ) ~; the vertical bars represent
some norm, in our case Euclidean, in R . F(y(k ),a) will
then be quite close to y(k+ 1).

This type of mapping is strongly suggestive of the form
used in the statistical literature under the name of kernel
estimation or kernel density estimation. An explicit re-
cent example that illustrates the similarity is found in
Ref. 20. Other useful discussions of this method applied
to various problems are to be found in Refs. 21 and 22;
our attention was directed to this similarity by Farmer
and Sidorowich. We do not claim to have a better
method for choosing our function g than those in the
literature, but our motivation here does differ from all the
citations except Rice. Our constraints on g are also
different, but could be modified. For example, the in-
tegral of g over y need not be unity, nor do we require
that g be positive. We will return to a discussion of
choices for g in our summary in Sec. VI.

Our choice here for g (y, y(n );a)—one among many, of
course —is this:
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P
exp[ —

~y
—y(n)~ /cr] a, +a2y(n) (y~ —y(n))+ g aI, (~y —y(n)~ /o). "

g(y, y(n );a)=
N —1

g exp[ —
~y

—y(n ) ~
/cr ] a, +

n=1 k=3

k=3

The parameter space a is P dimensional,
a=(a, ,az, . . . , a~). o is a fixed parameter that provides
a scale we can use to determine which points in the data
set are "close" to y. The mk's are also fixed at various
values. We could treat both ~ and the mk's as parame-
ters to be optimized in the same sense as the a' s. Howev-
er, we choose not to do this in our work; not for any fun-
damental reasons, but because we wished to explore other
issues and wished to keep down the size of the parameter
space over which our minimization searches were per-
formed.

The weight function g(y, y(n );a}which we use was ar-
rived at after some experimentation. It, as do many other
choices, certainly satisfies our general requirements.
These requirements include the following:

The function is sensitive to the presence of near
"neighbors" in phase space. Only points y(n) within a
distance from y of order &o make any sizable contribu-
tion to g(y, y(n );a).

When o —+0, g ( y, y( n );a) becomes essentially a
Kronecker delta and the point y(n ) is mapped precisely
to y(n+1).

It is easy to di6'erentiate both in y and in a. These
derivatives are important in the minimization of the cost
function using our methods, and having explicit expres-
sions for the required derivatives in either of these in-
dependent variables makes the optimization routines run
much faster.

In the function we have chosen it is easy to retain
many parameters all of the same general form, thus as the
number of constraints on the optimization of the cost
function is increased, the pattern of our searches remains
the same.

The essential function which senses neighbors, namely
the exponential, can easily be replaced by other choices,
such as those in Table 3.1 of Silverman's monograph. '

The general form of our arguments goes through then
-without modification.

By virtue of the term involving az in the numerator,
this form of g(y, y(n );a) allowed us to satisfy constraints
set by the Lyapunov exponents with numerical stability
and accuracy. The denominator serves as an approxi-
mate counter for the number of neighbors of the point y,
so the numerator works less to produce the required aver-
age for the forward prediction of the point y. The pres-
ence of the denominator assured us of numerical ease in
making the parameters in the map F(y, a) meet our re-
quirement of producing an average over neighborhood
points in projecting forward in time any phase-space
point. This made the numerical algorithms we use much
more efficient and accurate.

The choice of cost function is also rather much up to
us. Since we are to think of F(y, a) as a dynamical system

evolving points y(n ) into new points y(n+1), we should
consider asking the map to reproduce accurately from
y(n ) not only the "next" point y(n+ 1) but, via iteration,
a sequence of points y(n + 1),y(n +2),y(n +3),
. . . , y(n+L ) up to some L beyond which we simply do
not trust the accuracy of our algorithm F or of the
machines we use to compute the future y's.

This suggests the predictor for future points to be a
linear combination of iterated powers of the map F(y, a),

L
y(m+1)= g XI,F"(y(m —k+1},a),

k=1
(3)

where F" is the kth iterate of F as described above. If
F(y, a) were the exact mapping, then each term in the
sum over k would be X„y(m + 1). Thus we requir'e

L

g Xi, =l .

The X's weight the various iterates of F and are used to
determine which iterates of F we believe are the most ac-
curate. Typically, one would require X ~X +1 to indi-
cate that the lower iterates of F are believed to be more
accurate than the higher iterates. This predictor is a nat-
ural generalization to the nonlinear problem of the corn-
mon linear predictor

L
y(m+1)= g Xl, y(m —k+1),

with the clear differences associated with the iterative na-
ture of the map F(y, a).

This predictor [Eq. (3)] combines both past temporal
information from times m —k+ 1; k = 1,2, . . . , L and in-
formation from all the phase-space neighbors of the orbit
points y(m —k+1) because of the structure of F(y, a).
The combination of spatial and temporal information
provides a significant "lever arm" which permits Eq. (3)
to quite accurately make forecasts about the forward evo-
lution of points y in R . By utilizing the phase-space in-
formation in F(y, a) at each temporal step we efficiently
tap properties of the full data set.

The cost function associated with this predictor is

N —1 L
~y(n+1) —g X„F"(y(n—k+1},a)~

C(X,a}=
g ~y(n) y(n)~'

n=1

(4)

This kind of cost function will automatically contain in-
formation on the Lyapunov exponents which themselves
are expressions of the dynamics as iterations of the map.
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Some information on the invariant density function on
the attractor is also contained in this improved cost func-
tion.

Another major consideration to us is the great
difference in the coordinate scale of various attractors.
The numerator of the cost function [Eq. (4)] is the residu-
al of the mapped function summed over the entire trajec-
tory, and hence gives a measure of the sum of the abso-
lute errors over all the mapped points. Since the absolute
error is obviously dependent on the macroscale of the at-
tractor, it is more informative to rescale the final cost
function value in some manner which reflects error. In
our samples, the scale of the attractor of the Henon at-
tractor is on the order of unity, while that of the Lorenz
attractor is of order 100. Hence some form of rescaling
of the cost function became desirable in order to have a
relative measure of comparison between two systems with
different macroscale. We chose a normalization in the
following straightforward manner: we simple summed
the magnitudes of the position vectors of all the points on
the attractor, and retained this value as a constant. Ab-
solute values for the cost function after normalization by
the denominator in Eq. (4) give a more sensible relative
measure of the error of our prediction function F(y, a).

We note that FS suggest forecasting the evolution of a
point y by looking around at the neighbors of y among
the data set y(n ) and observing where these neighbors go
under one iteration of the underlying map taking the
y(n) to y(n+1). They determine the future of the new
point y by an interpolation involving the future of its
neighbors. Our mapping function Eqs. (1) and (2) does
precisely this as indicated. All points in the data set are
given some weight in the future of y, but if g(y, y(n );a)
falls rapidly for large ~y

—y(n)~, as we shall always
choose, only members of the data set y(n ) near y, i e , the. .
neighbors, play much of a role in its future. Our F(y, a)
in that sense is an analytic formulation of the FS idea.
More or less weight can be given to the near neighbors by
different choices for the function g(y, y(n );a}. The
Gaussian we work with could be replaced by a Lorentzi-
an or other choices which weight neighbors more.

C. Invariants

With a map and a cost function, Eqs. (1), (2), and (4),
we are ready for the constraints. Section III is devoted to
a discussion of Lyapunov exponents. In it we first turn to
the extraction of the Lyapunov exponents A, „A,2, . . . , A, d
from the data y(1),y(2), . . . , y(N). We do not add any-
thing but our own experience to that of many workers
who have explored the calculation of k; from data. We
attempt to convey to the reader an overview of the avail-
able methods for determining Lyapunov spectra and a
sense of their reliability. Therefore that portion of Sec.
III may be skipped by persons with experience. We in-
clude it here since determining the A.,

's is an essential step
in our plan for determining F(y, a}and we have chosen to
comment on how we have done it rather than refer the
reader to the literature. Of course, we do that too. That
established, we discuss how to determine these numbers
in terms of the F(y, a). Equating the numerical values for

A, , from the data to their expression in terms of parame-
ters a in F(y, a) will constitute our first set of constraints
on the minimization of C(X,a).

Section IV contains our discussion of the invariant dis-
tribution of points on the attractor. In principle, this
quantity, which we called p(y), contains an infinite
amount of information on the dynamics. A finite data set
y(n ) restricts the resolution we have of this information.
We have chosen to express this finite amount of informa-
tion in terms of the projection of p(y) on a set of dual
basis functions which are a complete set in I". Keeping
a finite number of these functions is equivalent to a finite
resolution view of the complex structure of p(y). '

One of our contributions in this work is a scheme for
choosing the dual basis functions "tuned" to the struc-
ture of p(y). This allows us to represent our finite resolu-
tion of p(y) by a small number of terms in an expansion
in the optimal basis functions . By projecting the
p(y) determined from the data onto these basis functions,
we can determine the coefficients of the expansion of p(y)
in this basis. Similarly, we can project the p(y) deter-
mined from the map F(y, a) onto these basis functions
and determine the expansion coef5cients of the map.
Equating the coeScients one determines from the data to
the ones determined from the map constitutes our final
constraints on the ininimization of C(X,a). Further-
more, we show how the components of p(y), in this basis,
are the elements of the eigenvalue unity eigenvector of a
finite-dimensional matrix constructed from F(y, a) and
the dual basis functions.

In Sec. V we describe our implementation of the con-
strained minimization program for two model systems:
the Henon map of the plane to itself and (2) the Lorenz
system. In each ase we numerically generate a data set
of x(n )'s. We then discuss in some detail our experience
in establishing the dimension of the space in which the
dynamics is embedded. We also discuss the calculation
of Lyapunov exponents, and aspects of the invariant dis-
tribution on the attractor from the y(n)'s. Finally, we
carry out the constrained minimization of the cost func-
tion and indicate how well our parametrized mappings
are able to perform in predicting orbits other than those
in the given data set.

In this paper we are attempting to describe a method
of analyzing experimental data. For such a situation we
do not know a priori the correct embedding dimension,
the correct Lyapunov exponents, or the underlying
dynamical system that can be used to generate the
correct invariant distribution. Yet we have used data sets
generated by a dynamical system that we know. We have
used known systems for two reasons. The first is that it
provides a simple way to obtain large, noise free, data
sets. Second, it provides a way of measuring how well ex-
isting techniques are able to determine the embedding di-
mension and the Lyapunov exponents. In order to simu-
late experimental systems we treat the data set as having
come to us from an unknown source. Thus we do not use
any of the known properties of either the Henon or the
Lorenz system.

An issue of some importance we do not address in this
paper is that of extrinsic noise which could contaminate
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our signal x(n ). This is not a dismissal of this important
issue but an attempt to separate out the matters of
efficiency and utility of our plan for prediction on strange
attractors from issues concerning the practical degrada-
tion of our procedures by external noise. An equally im-
portant issue is the quantity of data available. The deter-
mination of Lyapunov exponents is very difficult for short
data sets. As we have stated above the resolution of p(y)
is determined by the number of data points available. As
the dimension of the phase space increases, the amount of
data necessary for accurate prediction increases dramati-
cally. We will return to the implications of noisy and/or
short data sets for our prediction procedure in later
work. For now we assume that we are given essentially
noise-free, arbitrarily long time series x(n ).

It is our expectation that our experiences with the two
systems listed above will give us the ability, in many in-
stances, to construct models in the form of our
parametrized mapping F(y, a) which allow prediction
and control of the underlying nonlinear dynamical sys-
tem producing an observed signal x(n). The details of
the F(y, a} for a specific application should reflect the
known features of the physical or other phenomena giv-
ing the signal. It seems too bold, if at all possible, to sug-
gest any general rules for choosing forms for F(y, a).
This is sure to be a rich area for experimentation and our
own choice will be motivated by considerations we shall
defend in a later section and slightly alluded to above.

The matter of noise will be addressed in a future paper.
Our methods for dealing with noise follow those outlined
by Fuller and seem similar to the ideas of Sidorwich.

II. CHOICE OF AN EMBEDDING SPACE

In this section we illustrate how one can determine the
phase-space embedding dimension d from the scalar time
series x(n }, n =1, . . . , ND. We assume that the data set
is long enough that we need not be concerned with sta-
tistical issues about the numerical accuracy of the quanti-
ties we consider below. We also assume extrinsic noise is
absent from the x(n )'s when we receive them. Matters of
short and/or noisy data sets, while critical in all applica-
tions, are addressed only peripherally in this paper.

Following the work of Packard et al. and Mane and
Takens ' and the developmental work of numerous oth-
ers we seek a set of lagged variables x(n ),x(n+r, ),
x(n+72), . . . , x(n+rz, ) which act as the coordinates
in a d-dimensional space in which the dynamics produc-
ing the x(n )'s is fully captured or embedded.

The choice of lags ~, is not a well agreed upon
matter. ' The issue is the accuracy and efficiency with
which the d-dimensional vectors that result from a par-
ticular choice of v., 's represents the phase space in which
the attractor resides. If the underlying system were a
differential equation and a scalar variable x(t ) were mea-
sured at discrete times x(n ) =x(to+ n At ), then we are by
the choice of lagged variables trying to find a discrete re-
placement for the usual phase-space coordinates
x(t), dx/dt, . . . , d 'x/dt" '. Mane and Taken's re-
sults indicate that, in principle, any choice of lags v., will
do. We adopt the practice of choosing a single lag ~ and

y(n )=(x(n ),x(n+1), . . . , x(n+d —1)) (5)

for n = 1,2, . . . , N =ND —d in a space R" capturing the
geometric structure of the attractor on which the orbits
x(n ) lie. To establish d we need some characteristic of
the attractor that becomes unchanging as d becomes
large enough, thus indicating that the attractor can be
embedded in R . The usual Hausdorff or other dirnen
sions of the attractor are such characteristic quantities.
Numerical calculations of the Hausdorff dimension
d„(N, d) of an attractor may depend on the finite length
of the data set N and/or the embedding dimension d. For
X large enough d„will become independent of d when
the attractor is properly embedded in 1R". Operationally
one increases d until d„remains constant and identifies
the minimum d where d„"saturates" as the embedding
dimension.

In fact, we, along with numerous others, do not recom-
mend the computation of d„, however geometrically ap-
pealing it may be, because it is too demanding of comput-
er time. We suggest, and we use, the properties of the
correlation function D(r), proposed by Takens and by
Grassberger and Procaccia, which is much easier to
compute. In terms of the data vectors y(n) this is
defined to be

N N

D(r, N, d)= g g 8(r —ly(j ) y(i)l), —
i =1 j=l

iAj (6)

where 6(x ) is the Heaviside function 6(x )0)=1 and
B(x (0)=0. The vertical bars represent some measure
of distance in jR —we use the Euclidean norm, but that is
only a convenient choice. This correlation function
counts the points of the attractor within a distance r of
each other. Thus it possesses much of the same geometri-

making all other lags multiples of v.. The question of
what is the best way to choose ~ is still open. In a heuris-
tic sense, if r is too small, then the coordinate at x(n+a)
and x(n+2r) represent almost the same information.
Similarly, if r is too large, then x(n+r) and x(n+2r)
represent distinct uncorrelated descriptions of the embed-
ding space.

For reasons of consistency and ease in calculating
Lyapunov exponents (cf. Sec. III) we adopt the following
practice. We take the original scalar measurements and
calculate its autocorrelation function

f—x(t+r)x(t}dt .1

T 0

We then choose ~ to be approximately —,', to —,', the time

associated with the first local minimum of the autocorre-
lation function. We find that this system, although some-
what arbitrary, works well in practice and provides a sim-

ple and systematic way of determining ~. We set ~ to uni-

ty and thereby establish a time scale for the problem.
The data x(n), n=1, . . . , ND thus become measure-
ments of the scalar variable separated by a constant time
step v.

We then form d vectors
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cal content as the Hausdorff or other invariant dimension
attributes.

For N large enough the behavior of D ( r, N, d ) for
small r becomes independent of N. As one would expect
from scaling arguments about fractals, as well as observa-
tionally, D(r, N, d ) is seen to take the form

D (r, N, d) =Ci(r, d )r~

0.1

0.0 &

0 001

d = 3
d

dxi(t)
dt

dx2(t )

dt

dx3(t )

=IT(x2(t )
—x, (t ) ),

xf( t )x 3 ( t ) +Px I ( t ) x 2 ( t )

=x, (t )xz(t ) bx3(t )—,

(8)

with parameter values 0.= 16, b =4, and r =45.92.
For the Henon map we took an initial condition lying

in its basin of attraction and iterated the map 4550 times.
The first 50 iterates were discarded as representing tran-
sient behavior, while the last 4500 points of xI(n ) and

x2(n ) were then used to make d vectors

y, (n)=(x;(n), x;(n+1), . . . , (xn+d —1))

for small r and large N.
We will identify as the embedding dimension that value

of d where the structure in D(r, N, d } becomes indepen-
dent of d. In this regime it is sufficient that D(r, N, d),
becomes independent of d over a range of r near r ~0,
and large N [r =0 in a finite data set always gives strictly
zero for D(r, N, d ) and is an uninteresting limit].

To illustrate the use of the correlation function as an
embedding dimension discriminant we have calculated
D(r, N, d) for very long time series taken from the two
examples we will be working with in this paper: (i) the
Henon map of the plane to itself,

x(In+ I ) =1.0—
ax I (n ) +xz(n ),

x2(n+ 1)=bx, (n ),
with conventional parameter values a =1.4 and b =0.3,
and (ii) the Lorenz system of three autonomous
differential equations

0.000 &

0.00001
0.00 1 0.0 } 0. 1

FIG. 1. D(R) vs r for the Henon map. y&(n)=(x~(n),
x

&
(n + 1)) for 4500 points.

1.00—

vectors yI(n ) =(x i(n ),x i(n + 1)), we reconstruct the
figure seen in Fig. 2. This is, as should not be surprising
in this simple example, a rotated form of the Henon at-
tractor. The usual display of the Henon attractor is ob-
tained by plotting (xi(n), x2(n)) for our data. Since

x, (n ) is ( I /b )x2(n + 1 }, the coincidence of these plots is

certainly not remarkable. Our goal in presenting this
kind of detail is as a guide to what one might expect in
more complicated examples rather than as revelations
about the Henon map.

Next we turn to the Lorenz equations. Once again we
chose initial conditions in the basin of attraction and
solved Eqs. (8) with a straightforward fourth-order
Runge-Kutta ordinary differential equation (ODE} solver
with a fixed time step. After discarding the first 50 time
steps as transients, we recorded x„x2, and x3 for
N =4500 corresponding to many natural cycles of the or-
bit around the attractor. From each of the three data
sets we formed the d vectors as in Eq. (5) and with them
evaluated the correlation function D(r, N, d ) for
d = 1,2, . . . , 5. The D(r, N, d )'s for yI(n ) data are shown

for i = 1 or 2. For d = 1,2, . . . , 5 D(r, N, d ) was cotnput-
ed using an efficient code developed by Theiler.
For yI(n) data these D(r, N, d) are plotted in Fig. l. A
similar plot was generated for y2(n ), but is not
shown. Because of the simplicity of the connection
xz(n+ 1)=bx, (n ) in the Henon map, these two views of
D ( r, N, d ) are really redundant. However, in the spirit of
treating each data series as having originally come to us
from a source whose underlying dynamics is unknown we
performed both calculations.

While a cautious and careful observer might say the
embedding dimension for the y, (n ) data would be d =3,
we feel safe in concluding from these figures that d =2.
Computations with N greater than 4500 support this con-
clusion.

Further, if we take the (nx) Idata and plot the two-

0.,)0

0.00—
/

C / I,

I

—O. a0— /x /

I

l—1.00—

—1.50—

—2 .00 — IIIIIITTTTTTTTTWTTTT 111111111(IIIIIIIII}111111t-tTTTIIIIIIIIfTTTTTTT~-2.00 —1.50 —1.00 -O. vO 0.00 0.50 1.00 1 50

x(n)

FIG. 2. Henon attractor x
&
(n) plotted against x, (n + 1).
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FIG. 3. D(r) vs r for the Lorenz equations, y, (n) for 4500
points and embedding dimensions d = 1, ...5. For this case
r =45.92, b =4.0, and o = 16.

in Fig. 3. An embedding dimension of d=3 is fairly
clearly a safe choice for these data. A bolder choice
would have been d =2. Since it is known that the Haus-
dorff dimension of the Lorenz attractor is just above 2 in
this regime of parameter space, this would have been a
convincing, although incorrect, choice. The message
here is that choosing d too large entails extra subsequent
computation, but no loss of information on the attractor.
It is probably safer to live with a d one dimension too
large as a general matter of care. We thus choose d =3,
The results of the y2 and y3 data are not shown. As with
the Henon example the results of y2 and y3 are similar to
those of y&. The fact that the y„y2, and y3 vectors for
the Lorenz data (y, and y2 for Henon) yields similar re-
sults is to be expected since all three measurements
evolve on the same attractor.

Next we plot the points y, (n)=(x, (n), x, (n+1),
x, ( n +2) ) in the three-dimensional embedding space.
These are shown in Fig. 4 as a projection on a plane
with normal vector n =(cos8)x, (n )+ (sin8)x, (n + 1)
+Ox, (n+2) for 8=1.31. We note the similarity be-

tween Fig. 4 and the well-known shape of the Lorenz at-
tractor. Thus the method of phase-space embedding reli-
ably reproduces the Lorenz attractor. For the two exam-
ples we have used the reconstructed attractor is similar in
appearance to the attractor generated by the "true" un-

derlying equations of motion. In general, the recon-
structed attractor will not have this visual similarity.
However, the reconstructed attractor will contain all of
the important invariant information as the true attractor.
The difference in visual shapes is the result of a nonlinear
change of variables between the true dynamical variables
and the reconstructed variables.

We close this section with a summary note reminding
the reader that our use of the correlation integral Eq. (6)
has been to establish an embedding dimension d in which
to view the system attractor described by our time series
x(n ). We chose D(r, N, d ) because it is familiar, easy to
compute, and has a clear geometrical meaning. For us it

20.00:

10.00—

0.00—
+

y —10.00—
P! 8

I II

—20.00—

,, E+L!

-30.00—

—4QQQ II I IIII II /III I II II I
/

II I III I II ] I I I I I Ill I[ II I I I I I II
/

I I II I I II I [ I II I I I I I!1
—20.00 —1 5.00 —1 0.00 —5.00 0.00 5.00 1 0 .00 1 5.00

Ii, IE
'(l i=

cos( 8 )*x(I1) + sin( (} )*x(n+ I)
FIG. 4. Lorenz attractor created from x, (n) data. The pa-

rameter values are r =45.92, b =4.0, and 0 =16, while the pro-
jection angle is 8= 1.31.

is a diagnostic tool. While the details of the small r be-
havior D(r, d) r"C&—(r) contains important information
about the dynamics, we do not focus on that here.
Indeed, we are quite happy to accept other diagnostic
tools in its place.

III. LYAPUNOV CHARACTERISTIC
EXPONENTS —FROM DATA AND FROM THE MAP

In this section we discuss how one determines the
Lyapunov exponents that govern a dynamical system.
First we discuss how to extract them from an experimen-
tal data set and then from our mapping F(y, a}. By
choosing the parameters a in such a way that F(y, a)
yields the same Lyapunov exponents as the experimental
data set, we are forcing a constraint on F(y, a) that is not
explicitly required by minimizing the cost function given
by Eq. (4). This local constraint should improve our abil-
ity to predict the short-term (and possibly long-term} evo-
lution of points that are not in the data set, but near the
attractor. Certainly points outside the basin of attraction
of the attractor we have observed in the original data set
will not evolve according to our F(y, a}.

Rather than writing our own computer program, and
thereby become embroiled in the controversy of what is
the best way to determine Lyapunov spectra from an ex-
perimental time series, we have chosen to use methods
that have already been proposed by two different research
groups. By comparing the results of both methods we
hope to improve our conMence in the spectra given by
each of them separately. The 6rst method we shall report
on was developed by Eckmann et al. The second
method was developed by Wolf et al. Finally, we will
show how we calculated the Lyapunov spectra from our
mapping F(y, a).

The choice of an appropriate data set for use in either
the Eckmann et al. or the Wolf et al. method is some-
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thing that cannot be overstressed. As stated in Sec. II the
time lag v. between successive measurements of the
dynamical variable must be appropriately chosen, if one
wants optimal results.

A. Kckmann-Kamphorst-Ruelle-Ciliberto method

For the Eckmann et al. method the FORTRAN source
code we used when performing our numerical experi-
ments on the dynamical systems denoted in Sec. II was
provided by the authors of Ref. 38. It assumes that the
input is a string of positive integer data whose sampling
rate is ~. [The temporary conversion of the data set
x(n), n = I, . . . , ND to positive integers for the sake of
the Lyapunov calculation should not be a difficult
matter. ] The code reads the data set and embeds it in a
d-dimensional space in the manner specified in Sec. II.
The result is a set of N =ND data vectors
y(n)=(x(n), x(n+1), . . . , x(n+d —1)}where we have
normalized r to unity [cf. Eq. (5)]. It then chooses an ini-
tial y(n ) and finds all neighbors of y(n ) within a radius r.
These points, as well as their forward images, are used to
construct a linear mapping T from time n to time n+1.
The Lyapunov exponents are related to the eigenvalues of
the successive iterates of the map T. For a detailed dis-
cussion of the algorithm we direct the reader to Ref. 38.

The Eckmann et al. method assumes that the embed-
ding dimension d is related to the number of Lyapunov
exponents via the rule d =(d —1 }M+1,where d is the
number of Lyapunov exponents and M is a positive in-
teger. By allowing d and M to range over various
values a wide range of embedding dimensions is used.
We remark that the reader will recall that in Sec. II we
established a method for determining the minimum
embedding dimension d. The data vectors y(n) are as-
sumed to live on some attractor that occupies some por-
tion of R". It is a numerically difficult exercise to calcu-
late Lyapunov exponents from data. Thus it is necessary
to examine a wide range of possible embedding dimen-
sions d. It is our experience that the calculated values of
the exponents converge onto their correct values as d is
increased above the number specified by methods in Sec.
II. We report numerical experiments for d in the range
between 2 and 9 for M = 1,2. (We remark that M = 1 re-
covers d =d, while M =2 is slightly below the Takens
and Maiie limit. '

) In all of our tests we iterated the
tangent map T 2000 times before evaluating the
Lyapunov exponent.

To get a feel for the proper densities of points on the
reconstructed attractor, it is useful to use diagnostics
such as, say, a histogram of the number of neighbors fal-
ling within a range around the smallest nearest-neighbor
distance on the attractor. If the density of points on an
attractor is quite inhomogeneous, much higher mean
point densities are often necessary to insure that most
points have at least a few nearby neighbors. Often a use-
ful diagnostic is simply to plot out the reconstructed at-
tractor, and visually obtain an intuitive feel for how
homogeneous the point density is. As a general rule of
thumb (inspired by Wolf et al. ), we find empirically that
the minimum number of points required for the predic-
tion algorithm to go as something like 20, where d is the

—2 I I I I I I I I I I I

4
4n

6 8

FIG. 5. The results of calculating Lyapunov exponents by
the Eckmann et al. method for Henon data. The horizontal
axis is d, the assumed dimension of the dynamical system that
produced the data set. Thus the method will produce d
Lyapunov exponents. The vertical axis contains the numerical
values calculated for the d different A, 's. The two horizontal
lines are the known correct values for A,

&
=0.418 and 1=—1.62.

The method relates d to the embedding dimension d via
d =(d —1)M+1. This figure shows results for M =1. Spuri-
ous exponents are labeled with squares while dynamical ex-
ponents are labeled with X's.

dimension of the embedding space, although this is prob-
ably an overestimate when d is 4 or more.

The first dynamical system for which we present re-
sults is the Henon map of the plane given by Eqs. (7). We
used a data set with N=10000 entries. The results are
shown in Fig. 5 and Table I. As one can see, the numeri-
cal experiments accurately predict the accepted value of
the positive Lyapunov exponent A, &=0.418. Although
for the M = 1 case the computer code produced a reason-
ably accurate prediction of the negative Lyapunov ex-
ponent, the code, in principle, will not yield accurate
values of the negative or zero Lyapunov exponents. This
fact is born out in the M=2 case (which is not shown).
Furthermore, we know of no method that will produce
negative Lyapunov exponents from an experimental data
set. Since we are unable to reliably determine the nega-
tive Lyapunov exponents from the data, we will not con-
strain F(y, a) to reproduce the negative values of the
spectra.

It should not be surprising that we are unable to deter-
mine the negative Lyapunov spectra using our data sets.
We have assumed that the data describe motion on an at-
tractor. The negative Lyapunov exponents indicate how
points in the phase space that are 0+the attractor get
onto the attractor. The portion of the data set that might
reveal how points off the attractor get to the attractor is
the initial transient. This transient is typically very short
(sometimes as few as 10 time steps r) and is usually dis-
carded or otherwise unavailable.

A related issue to be addressed is that the code pro-
duces d exponents regardless of the actual number of
Lyapunov exponents that govern the dynamics of the
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TABLE I. Lyapunov exponents for the Henon attractor M = 1, and the number of data points is 10000.

A, l =0.412
A, l =0.412
A, i =0.408
A, )

=0.408
XI =O.407
A,6= —1.56
A, 1=0.437
k, = —0.604
A. , =0.602
k, = —0.332
A, ) =0.677
A,6

= —0.203

k2 = —1.70
A.2

= —0.662
A.2

= —0.281
A,2

= —0.0824
A,2=0. 128

A.2 =0.323
A,7= —1.54
A2=0. 382
A, 7

= —0.642
X,=0.377
A, 7

= —0.324

A, 3
= —1.72

A, 3
= —0.655

A.3 =0.305
A,,= —0. 144

k3 = —0.0767

X3= —0.0509
A8= —1.54
A, 3 =0.0896
A, 8

= —0.652

k4= —1 ~ 88
A,4= —0.622
A,4= —0.321

A,4
= —0. 190

A,4= —0. 118

A,4= —0.0390
A,9= —1.58

kq = —1.55
A, q

= —0.581

kq = —0.335

A. 5
= —0.203

A, q
= —0. 124

Accepted values of A, k) =0.418 A,2= —1.62

physical system in question. However, it is relatively
easy to determine which of the d exponents govern the
dynamics of the system and which are spurious. We as-
sume that one has successfully determined the minimum
embedding dimension of the attractor by the method we
presented in Sec. II (or any other reliable method at the
reader s disposal). Examination of Fig. 5 indicates that
most of the spurious exponents are negative. These nega-
tive exponents are necessary to contract the d-
dimensional phase space onto the attractor whose dimen-
sion is d„(d. The one positive spurious exponent ap-
pears at d =7 for the M =1 case. We know from Fig. 1

that the dynamics of the Henon attractor can be embed-
ded in two dimensions. Hence we conclude that an ex-
ponent that exist only for d ~7 must be spurious. The
origin of this spurious positive exponent is discussed by
Eckmann et al. It is believed it will stabilize at a value
of 2A, i.

We have averaged the calculated values of A, , for the
M= 1 case over the range d =2—6. We discarded the
values of A.

&
for d 7 since they have obviously been al-

tered by the spurious Lyapunov exponent generated at
d =7. We find that the average value is A. , =0.409,
which differs from the accepted value of 0.418 by only
2%%uo. For the M=2 case we found siinilar results. After
averaging we find that A, , =0.420. In conclusion, we state
that by comparing the M = 1 and 2 cases we feel that the
code successfully determined the positive Lyapunov ex-
ponent associated with the Henon attractor.

We now turn our attention to the second dynamical
system we wish to analyze, the Lorenz system of ODE's
given by Eqs. (8). The data set used for our numerical ex-
periments consisted of %=20000 entries and was gen-
erated by integrating Eqs. (8) forward in time using a siin-
ple fourth-order Runge-Kutta routine with a fixed time
step. We chose to record the x, (t) variable, although ei-
ther the x2(t) or x3(t) variable would do as well. Figure
6 is a graph of the autocorrelation function. The first
minimum is at n —12 where n is the number of Runge-
Kutta time steps of length 0.03. The time associated with
this first minimum is approximately t, -0.36. We use a
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FIG. 6. Autocorrelation function for x, (t), the Lorenz sys-
tem from 20000 data points.

sampling rate ~=0.03, which is approximately —,', of the
autocorrelation time. Thus we use every Runge-Kutta
data point as our experimental data set. We allowed d
to range between 2 and 9 for M=1 and 2. The results of
our numerical experiments are shown in Fig. 7 and Table
II.

For all cases M=1 and 2, we are able to accurately
determine both the positive and the zero Lyapunov ex-
ponent. The accepted value of k, is 1.50. The average of
the calculated values of A. , for d & 5 in the M= 1 case is

X, =1.45, which is an error of only 3%%uo. As with the
Henon example, we found better results for the M=2
case.

The question of a zero Lyapunov exponent requires
special consideration. Any dynamical system that is
represented by an ODE will contain a zero Lyapunov ex-
ponent. As can be seen from Fig. 7 and Table II, one of
the Lyapunov exponents calculated from the experimen-
tal data set is very small (as much as two orders of magni-
tude) compared to A, We also notice that this exponent
is very stable and very persistent. It exists for M=1 and
2 over the entire range of d . Given this behavior and
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FIG. 7. The results of applying the Eckmann et al. method
of calculating Lyapunov exponents to a Lorenz data set. The
results shown are for M =1. For this dynamical system there
are three dynamical exponents at A, l

= 1.50, A, 2 =0.0, and
A.3

= —22. 5.

the prevalence of ODE's as dynamical systems, we feel
confident in predicting a zero Lyapunov exponent.

Of course, we have the luxury here of knowing that our
we gedata set came from an ODE. This type of knowled e

concerning the origin of a data set is typically unavail-
able. Thus we must use our best judgment and live with
the fact that we cannot know for certain whether a
Lyapunov exponent generated by the Eckmann et al.
method should be interpreted as zero or just very small.
Our recommendation is that one compare the suspected
zero exponent to the smallest nonspurious positive
Lyapunov exponent generated by the code. If the
suspected exponent is as persistent, as stable, and more
than a factor of 25 smaller than the smallest positive ex-
ponent, we recommend that the suspected exponent be
assigned the value zero.

A second technique that we have investigated to deter-
mine Lyapunov exponents from time series is due to
Wolf, Swift, Swinney, and Vastano (WSSV). This paper
presents two algorithms, one for determining the full
Lyapunov spectrum from a known set of dynamical equa-
tions, and one for determining only the largest positive
exponent if one has available only a time series from the
dynamical system. Since the paper includes the source
codes for the two algorithms, we copied and used them
directly. The WSSV code for time series analysis can
only determine the largest positive exponent. We have
up to now chosen to use only one Lyapunov exponent as
a constraint to the nonlinear fitting method, and so this
program proves sufficient for our needs. Given the
current difficulty of accurately determining other ex-
ponents from a time series of data, we restrict the con-
straints to one Lyapunov exponent. In addition to these
considerations, the WSSV code is exceptionally easy to
use, and requires relatively minimal amounts of data.

The WSSV code for time series works in a manner
somewhat similar to other techniques which attempt to
approximate in some way the local tangent space about a
fiducial orbit. In this case, the code initially constructs
the time-delay reconstructed coordinates for the system
in the usual manner, taking the parameters for the recon-
struction as input to the program. The calculation of the
Lyapunov exponent then begins by finding the nearest
neighbor in the reconstructed phase space to the first
point of the orbit, where "nearest" is measured using the
usual Euclidean metric. Once this point is found, the
magnitude of the difference vector between the two
points is recorded. The algorithm then proceeds b
evolving the fiducial point along its trajectory, and the
neighboring point along its trajectory, a given number of
steps of the time series. The magnitude of the Anal sepa-
ration between the two points is then determined, and the
contribution to the Lyapunov exponent is then sim 1n simpy
given as the logarithm of the final separation divided by
the initial separation, divided by the time interval of evo-

TABLE I .
20000.

I . Lyapunov exponents for the Lorenz attractor M =1 d th b—,an e num er of data points is

A, l =9.54
A. i =2.42
A, , =1.68
A, l

=1.47
A, l

= 1.40
k6= —26. 1

A, , =1.50
A,6= —13.1

1.40
A,6= —8.24
A, l

= 1.48
A6= —5.63

A~= —6.30
A, q

= —1.27
A~ = —0.308
A, 2 =0.0619
A, ~ =0.0471

A, 2 =0.0141
A.7

= —24. 8
A, 2

= —0. 105
A,7= —13.1

A, 2
= —0. 109

A, 7
= —7.70

A, 3
= —26.5

A, 3
= —11.7

k3 = —6.84
k3 = —4.50

A, 3
= —3.49

A, 3
= —1.96

A,s
= —25.5

A, 3
= —1.06

~s= 12.6

A,4= —25.9
X4= —12.7
i' = —S. 12

X4= —5.81

A,4
= —4.02

A,4= —2. 88
A,9

= —25. 3

A5 = —26.5
A, q

= —13.0

A, 5
= —8.69

A, 5
= —5 ~ 62

A, ~
= —3.68

Accepted values of A, A, ) =1.50 A, 2 =0.00 A, 3
= —22. 5
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lution. These contributions are then averaged over the
length of the time series.

This simple scheme works to provide the largest
Lyapunov exponent because, given arbitrary initial condi-
tions for the two neighbors and an appropriately long
evolution time, the exponential growth due to the largest
positive exponent dominates the overall behavior of the
difference vectors, so that to good accuracy the net
change in the magnitude of the two vectors reAects al-
most solely this rate of growth. Note that a technical
problem exists here, in that the Lyapunov exponent is
defined only in terms of the linearized equations of
motion about the fiducial trajectory, and the exponential
divergence of neighboring trajectories can rapidly drive
them out of the linear regime. In the WSSV code, this
problem is addressed in a straightforward manner; i.e.,
when the distance between the neighbors becomes too
large, the algorithm abandons this point and searches for
a new neighbor. A suitable new neighbor is chosen on
the basis of two criteria: first, the point must again be as
close to the fiducial trajectory point as possible, and
second, the orientation of the abandoned difference vec-
tor must be preserved as nearly as possible. The process
of choosing a new neighbor using these criteria is thus
approximately equivalent to rescaling the difference vec-
tor to a much smaller size. In practical terms there is a
trade-off between choosing points which are very close to
the fiducial point and points whose difference vectors lie
nearly along the ray defined by the abandoned difference
vector. This problem is handled internally in the code by
a multistep search algorithm. Once a suitable new neigh-
bor is determined, the new difference vector is then
evolved until it too becomes too large, and then the pro-
cess is repeated.

Because this numerical procedure is relatively straight-
forward, there are actually few variables necessary as in-

put to the algorithm, and hence the program is much
easier to use than other Lyapunov exponent algorithms.
There are seven basic variables which must be set to per-
form an analysis of a data set, most of which are deter-
mined when one calculates the embedding dimension as
in Sec. II. The first four variables, which are related to
the time-delay reconstruction, are the number of points
in the data set (N), the embedding dimension d, recon-
struction time delay ~&, and the sampling rate for the
data T, . The first of these variables N is usually fixed
when an experimental time series is being analyzed, al-
though some criterion for the minimum number of points
necessary for a good estimate of the Lyapunov exponent
can be given. Wolf, Swift, Swinney, and Vastano give a
general rule for the minimum number of data points as at
least 10, although this value can depend on the topology
of the attractor and the relative magnitudes of the
Lyapunov exponents. Our experience has shown that at
least twice this number of points is usually necessary for
two significant figures of accuracy, and greater accuracy
can require much longer time series. It should be noted
that in terms of the algorithm, longer time series are re-
quired not just to improve the convergence by providing
more contributions to the Lyapunov value; longer time
series also provide a higher density of points on the at-

tractor and hence there are more nearby neighbors to
choose from when replacements are necessary, making
this process more accurate.

The embedding dimension parameter d is the dimen-
sion of the time-delay reconstructed vectors y(n ), and is
determined as in Sec. II. As discussed there, the dimen-
sion of the embedding space must be sufficiently large to
ensure that none of the dynamical information about the
attractor is lost; however, needlessly large values of the
embedding dimension results in greatly increased compu-
tation time for the Lyapunov calculation and also in-
creased sensitivity to noise. For the example systems that
we have investigated using this method, we have chosen
the embedding dimension to be the next highest integer
dimension to the (known) fractal dimension, although for
experimental data, where one is not sure of the fractal di-
rnension, one may often feel safer to choose a larger
value.

The second variable that is necessary for the time-delay
reconstruction in the program is the actual time delay
value ~&. This variable, as discussed in Sec. II, gives the
time separation of the components of the d vectors in
terms of the number of iterates of the time series, and can
be thought of as being chosen to make the d components
as "orthogonal" as possible. For dynamical time series
derived from a mapping, as for the Henon system, this
value can be chosen to be 1, since each iterate generally
represents one entire "orbit" on the attractor of the How

that the mapping is derived from. For continuous
phase-space Rows, as for the Lorenz system, one can
often use the rule of thumb given by d~& =1, where d is
the embedding dimension and ~z is here given as the frac-
tion of the orbital period on the attractor, which must
then be expressed in time series steps. Another more so-
phisticated method is to take ~& as roughly the first zero
of the autocorrelation function for the time series. The
choice of method for determining the time delay is not
crucial, however, since the reconstructed dynamics is
generally not strongly dependent on the exact value as
long as it is within a reasonable range of the correct
value.

The fourth variable T, is the time between successive
measurements in the time series, or rather the inverse of
the sampling rate. This value is not actually a variable,
but rather an additional piece of information that must
be supplied with any time series, and is used in the algo-
rithm to rescale the Lyapunov exponents by setting the
time scale for the rate of divergence of the trajectories.
Although one may have no control over the sampling
rate for an arbitrary set, for systems where one does have
control this parameter is an important issue, and can
greatly affect the quality of data. Many of the aspects of
problems that can arise are from improper sampling rates
are discussed by Mayer-Kress.

Twa of the input variables to the algorithm are con-
cerned with setting length scales for the reconstructed
dynamics. The parameter S,„controls the maximum
distance that the algorithm will look for neighbors when
it attempts replacement. Since we take a rough value for
the limit of the validity of the linear approximation to be
about l%%uo of the macroscale of the attractor, the value of
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S,„should be taken at somewhat less than this value.
Of course, making this parameter smaller will increase
accuracy; however, the density of points on the attractor
determines how small it can be, and making S,„ too
small also has the unfortunate effect of greatly increasing
the computation time of the algorithm. It is instructive
to do some experimentation with the effect of this vari-
able when analyzing a data set, however, we have found
that the 1% rule is usually a good guess. The second
scale variable is S;„,which sets the minimum distance
that the algorithm will look for neighbors during replace-
ment. The purpose of this parameter is to reduce the
effects of very small levels of noise by eliminating the
choice of neighbors which are so close that they are
within the scale of distance that the noise defines. Since
we deal with "clean" data sets throughout the discussion
in this paper, the value of S;„was set quite low. For ac-
tual experimental data corrupted by noise, a good deal of
experimentation with this variable is probably necessary,
as it is difficult to estimate the effective scale that the
noise will appear on. It should be noted that this param-
eter is only effective at reducing the effects of very small
magnitudes of noise, as we have found that S;„can usu-

ally be not much larger than about 1% of S,„,or the al-

gorithrn has difficulty finding sufficient numbers of neigh-
bors within the linear regime for replacement.

The last input parameter to the algorithm is TE, which

gives the evolution time (in time series steps) that a given
pair of neighbors are allowed to evolve before replace-
ment. The value of this variable can greatly effect the ac-
curacy of the calculation of the Lyapunov exponent, for a
number of reasons. If the evolution time is too short, the
difference vector between the two neighboring trajec-
tories may not have sufficient time to evolve with the dy-
namics on the attractor, and the frequent replacement
process can introduce considerable inaccuracies. If the
evolution time is too long, the neighboring points can
often evolve to distances which are greater than the
linearized regime, and so these contributions are also
inaccurate. Additionally, for attractors which may have
a multilobed structure, such as the Lorenz attractor,
enormous errors can be introduced if the evolution time
is sufficiently long to allow two neighboring points to
eventually evolve along the two separate lobes.

To choose TE for a time series produced by a map, one
or two iterations of the map is usually a good value, as
was the case for the Henon system. For a Aow, some ex-
perimentation must be done. A good general rule is that
the evolution time for a Sow should be on the order of —,

'

to 1 —,
' orbital periods on the attractor, although this again

can depend on the magnitude of the Lyapunov ex-
ponents. When one only has a time series to work with,
an orbital period for the system can be determined by
taking a power spectrum of the time series and picking
the dominant feature, if any. Once a rough estimate of
what the evolution time should be is obtained, it is
strongly advised to calculate the Lyapunov value for a
range of evolution times around the rough value. The
computed values of the Lyapunov exponent versus the
evolution time will usually remain Aat for some range of
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FIG. 8. Autocorrelation function for x, (n) in the Henon sys-
tem from 2000 data points.

the evolution times, and a value within this stable range
is usually an accurate choice.

Using the above general guidelines, the Wolf code was
used to determine the Lyapunov exponents of two sample
systems for which the exponents are already known: the
Henon map and the Lorenz system. In both cases, all of
the parameters could be chosen ahead of time with good
confidence, with the exception of the evolution time ( TF ).
For this parameter, a series of runs with differing TE
values were done, as a check of the stability of the
Lyapunov value with different evolution times, and to
demonstrate how this may be done with other parameters
for which good guesses are not available a priori.

For the Henon map (whose dimension is known to be
1.26), we chose d =2, and %=2000, although about 1000
( =30 ) would probably suffice. Since the system is
defined by a mapping, we choose rd =1 (this is verified

using the autocorrelation calculation, Fig. 8), and like-
wise t, =1. Since the largest scale of the map is about 4,
we chose S,„ to be 0.25 to 0.05. Also, since the data are
generated numerically, the only noise is from machine er-
ror, so we chose S;„to be a conservative 10 . Note
that some experimentation was conducted with these
values, but that the result of the calculation showed X,
was not greatly affected for parameter values within
reasonable limits of the ones given, although the run
times could be considerably affected for S,„ too small.
For the remaining parameter TE we present a graph of
the value of the largest exponent A, versus the value of TE
(Fig. 9). Note that there is a plateau in the value of A, at
about 0.624, for values of the parameter TE out to about
5, after which it drops off sharply. Note that even
though the characteristic time for his map is 1, we see
that A, , is stable to a reasonably large variation in TE.
The value we obtain for A,

&
is within about 3% of the

value quoted by Wolf et aI.
For the second example, the Lorenz system, a data set

was generated by integrating the dynamical equations
with a Runge-Kutta integrator, using a time step [=1
(sampling rate)] of about 0.03 sec. Since the characteris-
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FIG. 9. A, vs TF for the WSSV method in the Henon map.

tic time for the Lorenz attractor is about 0.5 sec, this
gives about 17 points per orbit on the attractor. The di-
mension of the attractor is known to be about 2.06, and
an embedding dimension of d =3 was chosen. The
minimum number of data points required, as estimated
by our rule of thumb, is about 5000, so we close a set of
10000 points (=N). The autocorrelation calculation
(Fig. 6) suggests a value of t, =13, and rd is 0.03. Since
the maximum scale of the Lorenz attractor is about 40,S,„was chosen to be about 0.4 or 0.5, and S;„was
chosen, by the same arguments as for the Henon system,
to be about 10 . As for the previous example, we calcu-
lated the largest Lyapunov exponent for a range of the
last parameter TE and these results are shown in Fig. 10.
From the graph, one notes that I, , settles into a some-
what fiat region by a value of TE of about 16 or so (one
orbital period) and remains roughly so until about 30
(two —, orbital periods). There is still a considerable varia-
tion in the values of A, along this region, which very likely
indicates that the convergence is still not very good and a
longer data set is necessary. The average value from this

regime is about 2.22, which is within 2.7% of the value
2.16 quoted by Wolf et al.

It is worth noting that, because of the double-lobed
structure of the Lorenz attractor, the program can often
be "fooled" by choosing two nearby initial orbits which
wind up on different lobes of the attractor, thereby giving
erroneous contributions to the averaged exponent. In
this sense, the Lorenz system is a somewhat difficult case
for study using the fixed-time-evolution program, and
hence the results can be somewhat less accurate than
would be expected.

Calculations of the largest Lyapunov exponent were
carried out for other systems beside the two examples
above, and in all cases the worst errors were on the order
5%, with most values being about 1—2 % of the expected
exponent. We conclude that, at least for the largest posi-
tive exponent, the above code is relatively simple to use
and provides reliable and reasonably accurate results.
Although we have not tested them yet, more elaborate
versions of the code promise greater accuracy, as well as
the calculation of the rest of the positive Lyapunov ex-
ponents. The one drawback of the method is that it does
not allow for calculation of the negative exponents of the
spectrum, although current research suggests that it may
be possible to capture at least the largest negative ex-
ponent using time reversal of the data sequence.

Some experimentation was done with calculating the
largest Lyapunov exponent for a few other systems, and
in all cases the worst errors were on the order of 4-5%,
with most values being within 1—2% of the expected ex-
ponent. We can conclude from these studies that the
WSSV code provides a very simple and reasonably accu-
rate way of determining the largest Lyapunov exponent,
and does not require the excessive amounts of data that
some of the other algorithms seem to need. For applica-
tions where only the dominant behavior of the spreading
of nearby trajectories is needed, and where it is not neces-
sary to know the remaining Lyapunov exponents, this al-
gorithm can prove very useful.

C. Lyapunov exponents from the map F(y, a )
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FIG. 10. A. vs T& for the WSSV method in the Lorenz sys-
tem.

Whatever method one chooses to use for determining
the Lyapunov exponents from the data, and we have ex-
amined only two possible methods proposed in the litera-
ture, we must now establish a way to express these same
quantities in terms of our map F(y, a). A direct tran-
scription of the methods of Shimada and Nagashima, '

Benettin, Froeschle, and Scheidecker, ' or others would
lead to a correct prescription, but not one which is easily
used in the optimization or fitting we wish to do using the
function F(y, a). The point is that one can achieve better
results in this fitting if one has available a useful analytic
formula for the derivatives of the constraints with respect
to the parameters a. We will choose then a slightly
different way of expressing the Lyapunov exponents in
terms of the map F(y, a) than appears in the literature.
Ours may be a usefu1 technique in itself.

Lyapunov exponents characterize the way in which
neighboring points, small areas, or small volumes near
the orbit of interest evolve under the mapping. To find
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them one linearizes the mapping y(n+ 1)=F(y(n), a}
around a given orbit y(1),y(2), . . . , y(X). Small devia-
tions from this orbit, call them 5y(n), evolve as

5y(n +1)=M(y(n))5y(n),

where

[~(y)]kl Fk(y a)
~~I

is evaluated along the orbit of interest. The Lyapunov
exponents are found from the eigenvalues of the matrix
M (y(1))

M"(y(1))=M(y(K))M(y(E —1)) M(y(1)),

which has information about the orbit generated by
F(y, a} beginning at y(l). Indeed, calling the Lyapunov
exponents A, , i = 1,2, . . . , d the eigenvalues of M (y(1) )

are exp(rKA, ;) in the limit as E~oo. The r in this ex-

pression is the same one we set to unity in Sec. II. For
the Henon system (a map) r is 1, while for the Lorenz sys-
tem (an ODE) v=0.03 (cf. the Eckmann method in this
section).

The familiar method of finding these A, s (Refs. 10, 15,
and 16) is to apply the matrix M to an arbitrary vector
w. Then forming

yields the largest exponent A,
&

for large K. To find the
next largest exponent A, 2 one applies M to the elements
of an outer product w' Xw, and calculates the logarithm
of the norm of this vector for large E. This gives the sum
of A,

~
and A, 2. Continuing in this fashion, the full

Lyapunov spectrum may, in principle, be extracted.
While the expression of the k s as logarithms of the

norms of various vectors to which M has been applied is
correct, it presents serious problems in evaluating the
derivatives with respect to the parameters a of the map-
ping F(y, a) from which M is formed. So we take a
slightly different approach.

We note that the trace of the matrix M contains the
information on Lyapunov exponents we desire. Our first
observation is that the expression

d

tr(M )= g exp(rKA. )

[tr(M )] —tr(M «),
where

M (y(1))=M(y(2K))

XM(y(2E —1)) M(y(2))M(y(1))

behaves as exp[re(k, +A&)] for large K. So we can find

the sum of k, +k2 by

A, ~+A2= lnt [tr(M )] —tr(M ) I

1

for large K. It is straightforward to construct expressions
for the sum of exponents up to order m by recognizing
the terms in the above logarithms as those of an expan-
sion of the trace of the m '" power the matrix
(M ),, —tr(M )5,,

In any case, our procedure is now clear. Use whatever
means available to evaluate the A, s from the data. Then
form the indicated logarithms of combinations of traces
of the matrices M, M, etc. as computed from the
parametrized mapping F(y, a). Equating the A, s evalu-

ated from the data to the expressions for the A. ,
's in terms

of F(y, a) gives us a set of d constraints. We impose these
constraints on our choice of the parameters a in conjunc-
tion with the minimization of our cost function.

Our actual practice restricts attention to the largest
Lyapunov exponent k, since that is the only one we know
how to reliably extract from data. Thus only the trace of
M is needed in our constraints. It seems to us a matter
of some importance to devise accurate methods to deter-
mine the full spectrum of Lyapunov exponents from data.
They would be useful in the program we are engaged in,
and they act as classifiers for nonlinear dynamical sys-
tems with broadband power spectra. In the case of
broadband spectra, sharp lines are not available for clas-
sifying and one must turn to the kind of dynamical in-
variant we have here.

IV. INVARIANT DISTRIBUTIONS ON THE ATTRACTOR

The frequency with which orbits y(n) visit regions of
the phase space IR" defines an invariant distribution func-
tion, p(y), which is formally defined for the mapping
y(n+1)=F(y(n)) as

N

p(y)= lim —g 5"(y—F"(y(1)))= lim p~(y) .
Q~ oo

allows us to find the largest exponent A,
&

by In a similar fashion, the invariant distribution for a nu-
merical data set y(n ), n = 1, . . . , N is given by

ln[tr(M )]
1

wK
(10) 1

N

p(y)= lim —g 5 (y —y(k)) .w-~ 1Vk
(12)

in the formal limit that K~ ~. This expression is much
more conducive to differentiation with respect to the pa-
rameters a (recall that M is a function of a) since we have
to deal with the logarithm of a simple scalar, the trace of
M, rather than the norm of a vector ~~M w~~ as in Eq.
(9).

One can find an expression for the next exponent k2 by
observing that the combination

Eckmann and Ruelle' discuss the features of p(y) at
some length. In particular, they address the question of
the dependence of p(y) on the initial point y(1). They
state that any two initial points in the basin of attraction
will lead to the same p(y). In this sense p(y) is invariant.
For a dynamical system with two attractors it is possible
for their basins of attraction to be intertwined in a com-
plicated way. Any uncertainty in the initial point y(1)
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due to noise, machine round off, etc., may effect our abili-

ty to say with certainty the attractor to which a particu-
lar y(1) will go. Also, in the absence of noise there may
be particular y(1)'s (often, but not exclusively, on a set of
measure zero in R ) that lead to nongeneric orbits. An
example of this type of nongeneric behavior would be an
unstable fixed point or periodic orbit in the presence of a
strange attractor. In any event we will assume that noise
levels are low and the only nongeneric orbits are unstable
and of measure zero in the phase space. In this case,
once a particular y(1) has moved beyond its transient
stage the frequency with which it visits various portions
of the attractor is, by definition, p(y).

The complete invariant density p(y) has too much in-
formation in it for our purposes. (We could not constrain
a cost function to reproduce every point on the invariant
density without an inordinate amount of work. ) Any
finite sequence of N points has a finite resolution on the—1/d ~attractor. That resolution is approximately
which is the order of the mean distance of N points on a
d„-dimensional set. Furthermore, we will never actually
resolve the detailed 5-function resolution implied by Eqs.
(11)and (12).

To handle this matter of finite resolution we introduce
a complete orthonormal set of functions g„(y) defined on
IR which can serve as a basis set. We then expand p(y)
in terms of this basis

G

p(y)= g &„g„(y) . (13}

Truncating this expansion at some finite order (p=G)
provides a finite-resolution representation corresponding
to whatever information we have on p(y). The
coefficients B„will be the invariants of the dynamical
process which characterize p(y) within a given basis
g„(y). After our discussion of how to select the g„(y)'s
we will establish how one extracts B„'s both from the
data vectors y(n) and from the parametrized map F(y, a).
Equating the B„'s from the data to those from the map
will be our final constraints on the cost function C(X,a}.

While any complete orthonormal set of functions g„(y)
would do to determine our B„'s, some are more appealing
than others. For example, Fourier series formed by tak-
ing

(y)=e' ", m=(m„m2, . . . , m )

are formally fine. However, since the attractor is occupy-
ing only a small portion of R", most of the work per-
formed by the Fourier representation of p(y) will be ex-
pended in making p(y) vanish off the attractor. What we
seek are orthonormal functions concentrated on the at-
tractor, so all the work in the expansion of p(y) is expend-
ed exhibiting structure where the attractor is located.
This would also result in the need for many fewer B„
than required for Fourier series or other familiar choices
for g„(y).

An optimal choice using information in the data set is
constructed as follows. ' Take the total data set y(n),
n =1,2, . . . , and divide it into two portions. The first
portion (of length N) will be treated as the data we are

trying to model. The second portion of the data set (of
length N') will be used to construct orthonormal func-
tions. These orthonormal functions will be the P„(y)'s
that we will use in our expansion of p(y}, shown in Eq.
(13). To explicitly construct these functions we further
divide the second portion of the data into G groups of
length L (N' =LG). Each group is a sample of the invari-
ant attractor. If L is large enough, each sample is a
significant look at p(y). Treat each of the G data sets as
an independent sample of p(y) and form the invariant
distribution for the ath sample

L

p (y) =—g 5 (y —y(k, a) },
Lk

(14)

From the G samples p (y) we form the following phase-
space correlation function

G

R(z, w)= —g p (z)p (w) .
a=1

(16)

It can be shown ' that the normalized eigenfunctions
of this correlations function are the optimal eigenfunc-
tions for expansion of functions localized on the attrac-
tor. Optimal means that these eigenfunctions provide the
best representation in a least-squares sense of the infor-
mation in p(y) when expressed as a finite series in an
eigenbasis. The label a is to be treated as a sampling in-
dex from a set of independent looks at the data each of
which is to be thought of as selected from a uniform sta-
tistical distribution of invariant densities. The various
averages over a then appear quite natural.

The requirement that g„(y)'s be an eigenfunction of
R(z, w) leads to

f d "z R(w, z}tP„(z)=JLtg„(w) .

The g„(y }'s are normalized as follows:

f ddw p„(w)p„(w)=5„„..

(17)

(18)

As the number of samples 6 becomes infinite, the set of
eigenfunctions becomes complete in the usual least-
squares sense. If we insert Eq. (16) into Eq. (17), we see
that for finite G, R(w, z) becomes a finite sum of separ-
able kernels. It is easily seen that in this case the eigen-
functions P„(y) must have the form

G

P„(y)= g C",p (y) .
a=1

(19)

The eigenfunctions defined in this fashion are localized
near the attractor, just as we wished. This follows direct-
ly from Eq. (19) since g„(y) is made of the p (y)'s which
vanish off the attractor.

Inserting Eqs. (16) and (19) back into Eq. (17) reduces

with a = 1,2, . . . , G. The data point y( k, a ) is the kth
member of the ath sample. Of course, the mean density
of the 6 samples is just the total invariant density of the
data set of length N',

G

p(y)= —g p (y) .6
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the eigenvalue equation to a finite matrix problem. The
coeScients C" are the G vectors which are eigenvectors
of the 6 X G matrix

1
d z p (z)pp(z), (20)

1.e.)

6
A &C~&=juC", .

P=1
(21)

We now turn to the normalization condition Eq. (18). In-
serting the representation for l(„(y) given by Eq. (19) into
Eq. (18), and using the relationship between the C"'s and
A

& given by Eqs. (20) and (21), dictates that the vectors
C" obey the following normalization condition:

G

g C"Cg =(pG) '5„„.
a=1

(22)

(Incidentally, this equation also shows that all the eigen-
values p are positive. )

Formally, the elements of p (y) are 5 functions.
Hence, numerically speaking, computation with them is
really not possible. We choose to replace 5 (x) by

g (x)~ e
—I*I ~=f-( lxl )

L

p (y)= —g f„(ly—y(k, a)-l),
k=1

and Eq. (20) becomes
d/2

1 1

GI.

(23)

which, when co is small, represents only a small loss of
resolution in calculating p (y). f also has the same in-

tegral as the 5 function it replaces. To this approxima-
tion

[cf. Eq. (19)].
We now have a set of 6 orthonormal functions g„(y)

extracted from 6 samples p (y) of the invariant distribu-
tion. We can use the orthonormality condition, Eq. (18),
to project a particular B„out of Eq. (13),

B„=Jd"V p(y)4„(y) . (25)

Incidentally this shows the B„are invariants of the map-
ping since they are integrals of P„with the density p(y)
(cf. Sec. I). If we insert Eqs. (12) and (19) into this expres-
sion we get

G N

B„=—g g C"p (y(k))

N G L

~LE XX( )„,
X exp[ —ly( j,a) —y(k) l /co]

(26)

where we have used Eq. (23). Equation (26) has been used
to numerically calculate the B„'s from the data.

This should make it clear how one evaluates the 8„'s
from the X'=GL data vectors y(k, a) in R . The B„'s
are the 6 numbers characterizing the invariant density
p(y) by its projection on the optimum basis vectors
P„(y). Now we wish to see how to evaluate them from
our parametrized mapping F(y, a). The G equalities be-
tween these two evaluations of B„ form our final con-
straints on the minimization of the cost function C(X,a).

To determine B„from the map F(y}—we suppress the
parameters a for a moment —we return to the de6nition
of the invariant density as expressed by Eqs. (11)and (12).
Call Ai, the projection on p„(y) of each term in the sum

in this equation:

&1,(p)= Jd"y g (y)& (y —F"(y(1)))
L

X g exp[ —ly(k, a) —y(j,P)l'/6] . (24}
=g„(F"(y(1) ) ) . (27)

k, j=1

We are now in a position to calculate our optimal
eigenfunctions g„(y) from the 6 data sets. Use Eq. (24)
to numerically calculate the 6 X G matrix A &. Next cal-
culate the eigenvalues p and eigenvectors C" of this ma-

trix, being sure to normalize them according to Eq. (22).
We can then form the eigenfunctions l(„(y) by using the
normalized C"'s and the p (y)'s [in the form of Eq. (23)]
in Eq. (19).

In Fig. 11 we show p, (y) evaluated for the Henon at-
tractor from a data set I.=750 steps in length. These
data are displayed on a grid of 75 points in each coordi-
nate direction. The other densities are qualitatively simi-
lar in that they are very spikey. However, the exact posi-
tion and size of the spikes varies from one sample to the
next. The P„(y)'s look like the p (y)'s except that they
are allowed to be negative is some regions. This is not
surprising since they are composed of the p (y)'s and the
weights (given by the C"'s}are not required to be positive

We interpret Eq. (27) as saying that Ai, (p) is the projec-
tion «5 (y —F"(y(1))) onto the orthonormal eigenfunc-
tions p„(y). Using this interpretation we expand the 5
function in terms of g„(y) to get

G

~"(y —F (y(1)))= g &q(p}l( (y) .
@=1

For large N, Eq. (11)can now be written as

G 1 N

p(y)= X —X ~1, (1 ) 4„(y) .
@=1 k =1

Comparing this equation to Eq. (13) indicates that

B„=—g Aq(p)

N=—g g„(F"(y(1))) .
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T = f d"y g„(y)g„(F(y)) . (29)

(1—T)pL(p, )=—(1—T )A& .

Since limL „pL(p)= J d y p(y)f„(y)=8„, this shows

that the B„are the components of the eigenvector of T
with eigenvalue unity and further that all other eigenval-
ues must lie within the unit circle, if the expression, Eq.
(11), for p(y) converges. By our assumption that the p(y)
we observe is unique, we infer that the eigenvalue unity of
T is nondegenerate. We tried to implement this observa-
tion about the 8„ to yield a method for numerically
determining them from Eq. (29) (Refs. 18 and 19), but
found roundoff error undermined our efforts.

V. OPTIMIZATION OF THE CONSTRAINED
COST FUNCTION: PARAMETER DETERMINATION

A. Analysis for the Henon map

Our first application of the methods described above is
to data generated by the He.non map of the plane to itself.
Data were created by iterating the map from some initial
condition and discarding the first 50 points of that data
set. Two data sets of x, (n) were created this way. The
first had N'=3750 points which we divided into five
groups of 750 points each. These groups were used to
create the densities p (y), and the phase-space correlation
function among groups was used to generate the eigen-
functions. The second data set was then used to select
samples of length N =750, 1200, and 1752 for our
analysis.

We first studied the distribution of Euclidian dis-
tances among the two vectors y(n)=(x~(n), x, (n+I)),
n =1,2, . . . , N —1 formed from the data set. On the nat-
ural scale of the attractor, which is order unity, the
minimum distance was always order 10 —10 . This
led us to choose the parameter cr in our maps to be
cr =5 X 10 so that each data point, at least for N 500,
would have neighbors. We varied o. by a factor of 10 or
so with no qualitative differences in our results. A
thorough parameter search would vary o. in the con-
strained minimization of the cost function.

Next we chose to use four parameters a in our set and
took the powers m3 and m4 in F(y, a) to be m3=4,
m4=5. We did not further vary these parameters. Our
choice of four a's rested on our knowledge that we would
be constraining our cost functions by only the largest
Lyapunov exponent A, , and the projection 8, of p(y) on
the eigenfunction g, (y) with the largest eigenvalue. Four
seemed a minimum reasonable number of parameters,
and since the work required to search large parameter
sets can become significant, we were content with four.

In a matrix notation the recursion relation Ak+i= TAk
leads to an expression for

L

d3'pL y „y pL p Ak p
k=1

which is

In effect, we had two free parameters in F(y, a) when the
values of A.

&
and B, were specified.

Our final a priori choice was on the values of X in the
predictor Eq. (3). We took three terms here since we
were being quite conservative in how many iterations of
the map F(y, a) we felt we could trust. Then, further
reflecting our sense that iterations of F(y, a) could be-
come unreliable, we chose X, =0.8, Xz =0.1, and
X3 0. 1 . Once again the X's could be parameters which
vary in our constrained minimization. We found that
varying the X's by 20%%uo or so did not qualitatively
change our results. In the case of the Lorenz attractor
study discussed in Sec. V B we report results for X, =0.5,
X2=0.3, and X3=0.2, and note that the cost function
changes by =20%.

We chose to simply fix the X's for purposes of this pa-
per. Clearly, the X's can be varied along with the a' s, o.,
and m3, . . . , mz, if one wishes. Ours is a first try with
the F(y, a) we have chosen in fitting the data and meeting
the invariant constraints. The feasibility of accomplish-
ing this seemed daunting enough when we set out. We
expect to include many more parameters in future work
in this area.

One additional important matter deserves note before
we proceed to the discussion of our numerical results.
The maps F(y, a) as we carry out our search over the pa-
rameters a have very little ability to reliably fit the given
data for most a. Only when we arrive near a (con-
strained) minimum of the cost function can we be very
confident that our map is reasonable. Until the map is
near the optimum map points in the data set are quite
often mapped far off the attractor. For numerical stabili-
ty in our search algorithms we need a method to identify
orbits which are leaving the attractor for nonoptimal
values of a and return them to the neighborhood of the
at tractor.

Maps of the form we have chosen have the feature that
points far off the attractor, as defined by the data set it-
self, are mapped to y=O. There is no reason to expect
the origin of coordinates to lie on an attractor which has
d„&d and is quite sparse in IR", but we choose to always
translate our data set so one of its points is the origin.
This changes nothing about the signal processing issues
we address in this paper and makes our parameter
searches numerically sensible.

With this translation of the origin, an orbit being gen-
erated by F(y, a), when a is not optimal, which tries to
depart significantly from the attractor is sent back to
y=0, which is now on the attractor. When a is near its
optimal values, this feature is operationally unimportant
because the map is tracking the data very accurately.

Our experience indicates that if one is trying to create
global maps F(y, a), as we are here, some form of "orbit
reinjection" will be required to give numerical sense to
the whole process of searching parameter space to mini-
mize the cost function. The problem becomes more im-
portant as d grows, since the attractor of dimension
d, &d occupies "less and less" of the full volume of the
phase space. If one is making "fits" to the data by
numerous local or nearly local polynomial maps as in the
work of FS, the issue raised here is absent. Global maps
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have an economy of parameters and a potential ease of
interpretation; local maps appear to have an advantage of
calculational speed. We have no overall judgment of a
way to choose between these alternatives.

Our results for data from the Henon map are shown in
Table III. The parameter searches were carried out using
the FORTRAN package NPSOL. "' One of its authors, Gill,
was kind enough to consult with us extensively on its use
and on the interpretation of its output. For each value of
the number of points in the data set, namely, %=750,
1200, and 1752, we report seven quantities for each of
three cases: (1) unconstrained minimization of the cost
function; (2) minimization constrained by A, ,
(A,

~

'"=0.408); and (3) minimization constrained by both
k, and B, . In each case we report the value of the cost
function normalized by the sum of the squares of the Eu-
clidian lengths over all data vectors, the values of the a' s
at the minimum cost function, and the deviations hA, ,
and hB

&
from the values of A. ~"' and B&"' determined by

the data. The allowed tolerances on these deviations are
set in NPSOL by the user. We typically required the rela-
tive magnitudes of AA.

&
to A, , and the same for B& to be in

the range 0.5 —5%%uo. This is not a limitation of NPSOL, but
it seemed quite accurate enough for our purposes.

A look at Table III reveals a consistent pattern. Un-
constrained optimization resulted in a cost function with
a rms deviation of our predictor from the data of O. l%%uo or
smaller. Not surprisingly when we track the data so ac-
curately, the value of B, comes out quite precise. The
value of k&

' for this best least-squares fit is remarkably
bad. Indeed, in our examples this quantity was actually

What is more important is the fact that our predictor
L

y(m+1)= g X{,F"(y(m —k+1),a) (30)

accurately predicts. We have taken numerous points

negative, which indicates the absence of chaos for the
parametric map.

When the A, , constraint is imposed, the parameters a
change, but we regard their specific values as of inciden-
tal interest here. More important is the observation that
the rms value of the cost function —the bare measure of
the quality of the fit —remains about 0.5% while the
Lyapunov exponent is now accurate to about 1% or
better. Of course, having moved away from the very best
point-to-point least-squares tracking of the data, the ac-
curacy of B, degrades to =10%. Finally, imposing both
constraints we achieve 0.5% or so in the rms error for the
cost function, highly accurate A, „and somewhat better
B& values.

The message of these calculations is that the procedure
we outlined in this paper is both feasible and highly accu-
rate. The few scalar numbers, the cost function, k„and
B~ do not tell the whole story. One can take the map
with the optimum a's and calculate a new orbit starting
from some new phase space point y"'"(1): y"'"(1),
y"'"(2), . . . , and compare the new orbit to that generat-
ed by the Henon map starting with the same initial point.
The data so generated look the same when plotted as a
sequence of two vectors, but this temporal representation
contains very little useful information, so we do not show
it.

TABLE III. Optimization results for Henon map data. C(X,a) is shown with and without invariant constraints.

C(X,a)

8 —
1

F(y, a)= g y(j+1)g(y, y(j);a))
j=1

% —1 L

g ~y{k +1)—g x,F'(y{k —j+1),a)~'

c(x,a)= "='

g y(n) y{n)
n =1

X1=0.8 Xq =0. 1 X3 =0. 1

umber of points=750 $1 =0.408 B1 =3.4739
al Q2 Q3 a4 ggmap

1
gB map

1

Unconstrained

XI,B1

4.016X 10-'
4.77 X 10-'
2.06x10- '

7.5347
6.6855
0.3422

1.3289
20.6948
1.1169

—0.7041
—0.1714
0.3766

0.1485
0.0956
—0.055 86

—2.0098
1.6X 10-'
4.23 x10-'

—5.70X10-'
0.223
0.140

C(X,a)
Number of points=1200 A, 1'"=0.408 B1"'=3.388

al Q2 Q3 a4 ggmap
1

gB map
1

Unconstrained

A.„B1

3.41X10 '
1.1297x 10-'
2.38 x 10-'

7.5217
8.4520
6.6093

2.9658
26.7454
19.6341

—0.3145
0.2686
0.083 62

0.075 02
0.011 77
—0.010 87

—1.676
—6.32X10 4

—1.1x10-'

—9.85 x 10-'
0.214
0.198

C(X,a)
Number of points=1752 $1 =0.40g B1 =3.369

al a2 Q3 a4 ggmap
1 gB map

1

Unconstrained

A, I,BI

3.5359x 10-'
1.7284 x 10-'
2.54 x 10-'

8.4093
3.1671
5.8314

6.0546
9.8576
18.446 12

—0.1497
—0.1120
0.1832

0.023 15
0.027 43
—0.028 18

—1.211
—6.512X 10-'
1.005 x 10-'

—5.80 X 10
0.2605
0.2466
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from our data set and evolved them forward by use of the
predictor. We find we are able to track the actual data to
the l%%uo level, seven to ten steps along the orbit all around
the attractor. This means that iterates of our optimum
map F"(y, a) are accurate to k =7 —10, far beyond our
original safe choice of k =3. The implications of this re-
markable accuracy for prediction and control of non-
linear chaotic systems are transparent.

B. Prediction for the Lorenz system

We now turn to the application of our methods to the
Lorenz system, defined by Eq. (8). These equations were
originally motivated by an attempt to model atmospheric
phenomenon using only a few degrees-of-freedom dynam-
ical system. It was one of the first systems known to ex-
hibit an attractor of fractal dimension, or a strange at-
tractor, and consequently to connect this with the ap-
parent chaotic motion of the resultant dynamics. The
primary concern in modifying our previous techniques
for use on the Lorenz system will be (i) the jump to a
three-dimensional embedding space, which will require
much longer time series to properly fill out the attractor,
and (ii) the large difference in the macroscale of the two
attractors, which will require the rescaling of some of the
variables we have previously defined. We will first, how-
ever, give a short review of some of the characteristics of
the Lorenz system.

For the parameter values cr =16.0, r =45.92, and
b =4.0, the Lorenz system possesses a strange attractor
which has become one of the classic examples of non-
linear science. The structure consists of two nearly flat
lobes connected, roughly at a point and angled somewhat
with respect to one another. Hence the local dimension
of the attractor is essentially two, however, the minimum
embedding space required is three. Note that the motion
of the phase-space orbits for the Lorenz systems is con-
tinuous, i.e., a flow, as opposed to that of the Henon sys-
tem which is a mapping. The discretization of the
Lorenz orbits after phase-space reconstruction, and the
density of points along an orbit, is therefore due to the
choice of a sampling rate in the measurement of the time
series of data. This sampling rate therefore can be
thought of as setting a time scale in the reconstructed
picture of the attractor. In turn, this time scale deter-
mines the time-delay values for the method of phase-
space reconstruction used in Sec. II, the evolution times
for Lyapunov exponent calculations, etc. A discussion of
optimal ranges of sampling rates, and the problems which
occur when sampling rates are too large or small, is given
at some length by Mayer-Kress. In practical applica-
tions, of course, one often has no control over the data set
one is presented with, although too frequent sampling
can often be remedied by simply throwing away data.

To investigate the behavior of our prediction technique
on a system with a somewhat larger embedding space, we
chose the Lorenz system as a test case with known pa-
rameters, as was done with the Henon system. An "ex-
perimental" time series was generated for the Lorenz
equations, Eq. (8), using the parameter values listed
above, by a Runge-Kutta numerical integration scheme

with a fixed time step of 0.03. A data set of the x, vari-
able consisting of approximately 20000 points (after tran-
sients) was generated. We used the same time series for
all of our numerical runs.

As we have stated above (cf. Sec. II) we chose an
embedding dimension of three. Note that in an actual ex-
perimental situation, a more cautious choice of four
would also be reasonable, although this would have in-
creased our computational requirements by a significant
amount. For the choice of the delay time constant ~ a
number of different choices could be made. Since the de-
lay time reconstruction is rather weakly dependent on
this constant, provided one is within certain limits, there
is no unique choice for this variable. Our final choice was
motivated by the desire to have the reconstructed attrac-
tor look most like the original Lorenz attractor. This re-
sults in a time delay of two time steps. For an actual case
where one would have no a priori sense of what the at-
tractor looks like, the methods of Sec. II are, of course,
recommended. A feel for the required density of points
can also be obtained by calculating the minimum
nearest-neighbor distance, and perhaps the frequencies
that a range of somewhat larger neighbor distances
occur, and comparing this with the "macroscale" of the
attractor (i.e., the maximum ranges of the coordinates of
an attractor}.

The embedding dimension and delay time comprise the
two parameters necessary to correctly reconstruct the dy-
namics of the systems attractor, and hence is the first step
in setting up the prediction method. We now turn to the
changes necessary in the numerical algorithm when we
consider the Lorenz system.

The most significant difference between the prediction
models for the Henon system and for the Lorenz system
is that of the size of the time series required for the
phase-space reconstruction. Because of the increase in
the dimensionality of the embedding space from two to
three, the number of phase-space points required to per-
forrn our procedure increases dramatically. The reasons
for this is clear. Our prediction function F(y, a) requires
that most points have a significant number of nearby
neighbors, i.e., points within distances of a few &0 values
so that a good "mapping" of the local phase space
around a particular region is obtained. Additionally,
nearby neighbors are important to obtain good numerical

approximations to the gradients of the objective and con-
straint functions. Since the number of points required to
yield a given mean nearest-neighbor distance is consider-
ably larger for a volume than for an area, the number of
points required to properly fill out the attractor is much
greater for a three-dimensional embedding space. In Sec.
II we presented general methods for determining the
number of data vectors needed for a given embedding di-
mension d. For our particular analysis of the Lorenz at-
tractor reported here, we found that the minimum num-
ber of points that gave reasonable results to be about
6000. For the numerical experiments reported in Table
IV we used data sets with 6000 and with 8000 points.

One final change in the numerical parameters for the
prediction code is in the number of matrices that are to
be multiplied together to obtain the Lyapunov exponent
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TABLE IV. Optimization results for Lorenz attractor data. C(X,a) is shown with and without invariant constraints.

N —]

F(y, a)= g y(j+1)g(y, y(j);a))
j=]

N —1 L

g ~y(k+1) —g x,F'(y(k —j+1),a)~2

C(X,a)= '='

g y(n) y(n)
n=1

X]=0.8 X2=0. 1 X3=0.1

Number of points=6000 A.]'"=1.51

a, Q2 Q3 a4 ggmap
1

Unconstrained
A]

2.51672 x 10
2.51672 x 10

57.7977
57.7977

0.087 68
0.09044

10.2388
10.2388

—0.043 58
—0.043 35

—4.100x 10-'
—1.000x 10

Number of points=8000 k]'"=1.51
a] Qp Q3 Q4 ggmap

Unconstrained 1.870 51x10-'
1.870 51 x 10

57.7977
57.7976

0.085 89
0.093 52

10.2392
10.2392

—0.036 77
—0.037 62

—6.162x 10-'
—1.101 x 10-'

X]—0.5 Xc —0.3 X3 =0.2
Number of points=6QQQ

a] Qp Q3 a4 ggmap
1

Unconstrained 3.223 71x10-'
3.223 72 x 10

37.1460
37.1459

0.0201
0.0581

0.4224
0.4224

0.00
0.020 16

—1.0706
—1.000 x 10-'

Number of points=8000
a, Q2 Q3 a4 ggmap

1

Unconstrained
Ar ]

2.395 96x10-'
2.395 97 x 10-'

81.1459
81.1456

0.055 89
—0.1270

2.4222
2.4226

0.00
9.0809x 10-'

—0.8307
—9.999x 10-'

from the mapping function. Since each iteration of the
Henon map represents a significant evolution of the sys-
tern, the multiplication of 500 Jacobian matrices for the
Lyapunov calculation represents a good average over the
phase space, and results in fairly good accuracy of the
final value. However, each step of the time series for the
Lorenz system represents much less evolution time for
the dynamics. It was necessary to experiment with the
number of matrices required to give good convergence.
It was found that about 1000 matrix products gave a
reasonably good convergence to the final value, but was
still not excessively computationally intensive.

To complete the formulation of the prediction model
for the Lorenz data, it is necessary to pick the exact form
of the mapping and cost functions that are to be mini-
mized. We first discuss the choice of the polynomial
terms which multiply the exponential in the mapping
function. These terms are defined, as for the Henon
analysis, with the intention of giving the exponential
form in the mapping function a longer "tail" by adding
multiplicative polynomial terms to it. As for the Henon
analysis, we chose to use four polynomial terms in the
mapping function, and hence have four variables in the
minimization fit. The first coeScient is, of course, the
constant term, and the second again multiplies the linear
term that expresses some dependence of the mapping
function on the Lyapunov exponent. Therefore there
remains to be determined the powers of the last two poly-
nomial terms.

In choosing the values of the exponents of the remain-
ing two polynomial terms, we recall that we wish to
elongate the tail of the exponential term in the mapping
function to make it feel more of the surrounding neigh-
bors. However, we do not wish to make these exponents
so large that we increase the scale well beyond that which
we set by o. After some experimentation, we chose
m =3 and 6 as the two powers for the polynomial terms,
although this is by no means the only possible choice.

The second set of parameters of the minimization pro-
cedure which need to be chosen are the X's which appear
in the definition of the cost function Eq. (4). These
coefficients weight the different iterates of the map F(y, a)
and essentially determine how many iterates forward we
wish the map to accurately reproduce the data. For the
Henon analysis, we chose three X's with values
(0.8,0.1,0.1). Our choice indicates a desire to weight the
first forward iterate very heavily, while giving the second
and third iterates only minimal importance. This set of
values was chosen primarily because the Henon system is
a mapping, and each iterate represents a large step in
evolution of the original system. On the other hand, the
Lorenz system produces a flow in phase space, and the
time step we chose for each iterate of the time series
represents a rather small amount of forward evolution of
the system. Thus we choose to weight some of the multi-
ple iterates of the map more heavily than we did for the
Henon system. We have therefore presented data for the
Lorenz system with two different sets of values for these
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parameters. In one case we used the original weights of
the Henon system (0.8,0.1,0.1). For the other case, we

weighted the multiple iterates more heavily, namely,
(0.5,0.3,0.2). Note that we could have easily chosen to
take more than two multiple iterates of the system. How-
ever, for the sake of simplicity and comparison we chose
to use two as for the Henon system. We also point note
that the X*s like the a's could be made variables in the
minimization search; we will do that in our further work
in this matter.

Finally, to determine a value of the parameter o.

(which sets a characteristic scale of distance over which
the mapping function is influenced by neighbors), it is
necessary to experiment with different values by actually
doing a number of minimization runs. One can, however,
make an a priori guess by considering two factors. The
largest value that o. can possibly have will certainly be
the scale of the linear regime for the system. This is very
roughly about 1% of the attractors macroscale, as men-
tioned previously. Hence o should be considerably
smaller than this value. Additionally, the smallest value
that a can possibly attain is given by the smallest neigh-
bor distance of the data set, and should be at least one to
two orders of magnitude larger than this value. Within
this range, o. must be chosen with some experimentation.
We have found that typically, the value of the C(X,a) at
its minima will be relatively large for larger values of o.,
and decreases until a threshold in o. is crossed. For
values of o. smaller than the threshold value, the minima
of C(X,a) becomes a great deal less, sometimes by an or-
der of magnitude or more. We recommend that o be
chosen somewhat smaller than this threshold value, how-
ever, not too much smaller as it is still desirable to have
as much of the surrounding phase space as possible con-
tribute to the mapping of each orbital point. For our ex-
periments on the Lorenz system we used o = 1.0 X 10

Using the parameter values stated above, a search for
the minima of Eq. (4) in the parameter space a was con-
ducted using the NPSOL (Ref. 41) package. Since there is
no general method known for determining the absolute
minimum of a function using numerical methods, one
generally proceeds by finding the minima after iteration
for each of a large number of initial conditions, while at-
tempting to cover a large representation of the phase
space. In practice, one will usually find a number of local
minima, all of which have "basins of attraction" of vary-
ing sizes. After a number of runs, one usually will gain
some intuition as to which regions of the parameter space
evolve to which local minima. When some confidence is
gained that a large region of the parameter space has
been investigated, we label the minimum with the lowest
cost function value the "absolute" minimum. Of course,
generally speaking, one can never be sure that one has
bound the actual global minimum.

Using the time series for the Lorenz data and the pa-
rameter values we have just described, the NPSOL routine
was able to find a number of minima of the cost function
C(X,a). There values ranged over as much as two orders
of magnitude. The lowest value of the cost function
found was in the neighborhood of 1.87 X 10,as indicat-
ed in Table IV. In the preliminary analysis there were

three minima which had almost this same value. A more
detailed analysis, however, found that after many itera-
tions of the search routine two of these minima actually
evolved into the third. Using better error tolerances in
NpsoL, it was found that this point actually did have a
slightly lower minima. It should be noted that even
though the three minima had cost functions which agreed
very closely, their resulting values for the a's were much
different. This is in keeping with our observation that,
for a large range of parameter values around these mini-
ma, the cost function was very "flat" with respect to the
parameters, i.e., C(X,a) varied very little over a large
range of a' s. This has the unfortunate effect of causing
the iteration procedure to proceed very slowly, since the
minima were very shallow, and a large number of itera-
tions were required to achieve the optimal solution. One
possible conclusion from this is that, if one were interest-
ed in a purely least-squares fit of the map to the data, any
of the parameter sets in this range were nearly as good as
the optimal solution.

After the analysis just described, we performed another
changing the X's changed to (0.5,0.3,0.2). These parame-
ter values weight the later iterates of the map more heavi-

ly, and correspond to trying to make the map predict far-
ther into the future. We did not impose the B„con-
straints on the Lorenz system, but used this system to ex-
plore the variations on the cost function and the quality
of our ability to reproduce the largest Lyapunov ex-
ponent as we changed the weights X, in the predictor.
The results of these minimization searches are also
presented in Table IV; both 6000 and 8000 points on the
attractor are used in our example. As can be seen, the
cost function for these minima are about —,

' higher than
for the previous system, and this is to be expected since
the later iterates, which must be inherently less accurate,
now give a much larger contribution to the cost function.
In terms of relative fitting error, however, these minima
are still surprisingly low. The final parameter values, al-
though significantly different from the previous system,
are still similar enough to give the same general character
to the fitting function.

One noticeable difference between the two different
values of X's was in the fitting of the map using the
Lyapunov constraint. The iteration procedure for the
(0.5,0.3,0.2) system went far more quickly than for the
(0.8,0.1,0.1) system. This can probably be interpreted in
terms of the fact that if later iterates of the map are
weighted more heavily, then the parameters result in
more sensitivity of the map to the Lyapunov constraint,
which usually requires longer evolution times to manifest
itself for flows.

VI. SUMMARY AND FUTURE TASKS

In this paper we have given a set of procedures which
one may use to process signals x (n), n = 1,2, . . . , having
a broadband power spectrum. Using numerically gen-
erated data from the Henon map and from the Lorenz
equations we have also demonstrated explicitly the feasi-
bility of our procedures. Processing a signal means that
from the time series x (n ) we do the following.
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Find an integer-dimensional embedding space of time
lagged d vectors

y(n)=(x(n},x(n+7.]), . . . , x(n+rd ])),
which fully expose the geometric structure of the attrac-
tor on which the data evolves. The attractor has dimen-
sion d„which may be fractional. Choosing the integer
d & 2d „+1 is guaranteed to be suScient for this purpose,
but smaller d may often work.

Find invariants of the evolution y(1),y(2), . . . , y(N) inI"—specifically, the Lyapunov exponent spectrum
A, „A,2, . . . , A, d and selected optimum moments
8„82, . . . , BG, of the invariant density p(y ), on the at-
tractor.

Use these vectors y(n} and invariants to construct a
parametrized map of R to itself y —+F(y, a), which mini-

mizes a certain constrained least-squares cost function
based on the residual errors of a nonlinear predictor

L

y(m + 1)= g Xk F"(y(m —k + 1),a },

involving iterates F of the map.
The output of the signal processing is the map

F(y, a)—both its form and the parameters a—and the
coeScients X in the predictor.

A map F(y, a) and a predictor which give very small
least-squares residuals when evaluated on the data we call
reliable. We have explicitly demonstrated in this paper
that even a reliable F(y, a) does not necessarily reproduce
invariants such as the A,, and the B„discussed by us.
The reason is that a least-squares tracking of a data set
y(n) by a map y(n+1)=F(y(n), a) does not necessarily
provide a good evaluation of the local tangent space map-

ping I,"=OF, (y)IBy . A map which is reliable and also

gives the correct invariants we call representational. Our
maps are representational because we constrain the
least-squares minimization by the invariants. A map
which closely tracks data but does not yield the dynami-
cal invariants misses the essential ingredients which clas-
sify or identify the dynamical system underlying the data.

Another way to state our constrained optimization
procedure is that the cost function to use in determining
the map should not be composed only of the square of the
residuals in the predictor. It should also contain terms
which measure the residuals in matching the invariants
determined by the data and the same quantity determined
by the maps. NpsoL and other contemporary optimiza-
tion routines do essentially this by a combination of
Lagrange multiplier and quadratic penalty terms added
to the least-squares cost function. This point of view sug-
gests that we should not focus on the size of C(X,a)
as our goodness of fit criterion but on C(X,a)
+g, (4A,, ) +g„(58„). In our Tables III and IV we

have reported the values of each of these quantities sepa-
rately, but the sum as noted should measure the merit of
our maps.

In practice, carrying out our signal processing program
raises a number of issues of importance in dynamical sys-
tems as well as in the present context. The first of these is
the determination of the dimension d of the embedding

space in which the phase-space reconstruction
x(n)~y(n) takes place. We have used the correlation
function Eq. (6), but the choice of a dimension at which
this stops changing is quite subjective. Establishing an
objective criterion would be most useful. Perhaps one of
the information theoretic criteria developed in statistics
for identifying the number of degrees of freedom in a data
set would provide a tool here. An objective criterion
for establishing the time delays v., would also be desir-
able.

Methods for determining the Lyapunov spectrum
A, &, . . . , A, d from the data are also quite important. These
are classifiers of the dynamical system and a representa-
tional map must reproduce them. This is not at all a new
issue as should be clear from the discussions in Sec. III.
Our own work in this area, which will be reported in de-
tail in a subsequent paper, uses local maps of the form of
our F(y, a) and fits the parameters a and cr to the tangent
map at every time step. The local tangent map
M(a(n)};~ takes groups of phase-space points in the
neighborhood of the orbit point y(n) into groups around
y(n+1). The dependence of M on y is sensitive to the
variation of M over the neighborhood of phase-space
points. When one has short data sets and thus sparse
neighborhoods, this dependence on y gives a better ap-
proximation to M(y) than a local constant matrix. 3 The
eigenvalues of the product of the local M's along the or-
bit yield the k, .

As should be clear from our discussion of the structure
of the parametrized map F(y, a), if we remain with our
general form (which we do not insist on), then properties
of g(y, y(n);a} are what we must address. Our choice in
this paper has been to use scalar products of y and y(n)
in forming g. These are insensitive to directional infor-
mation on the attractor. The structure of neighborhoods
of phase-space points near the orbit y(n) is not isotropic,
so much of the information in our data may be used in
our present choice of g. Since we want g to provide
direction sensitive weights, we might wish to build in
some of the local phase-space structure on the attractor.
Some of this information is contained in the correlation
function among points in the neighborhood of the orbit.
If an orbit point y(n) has Nz neighbors y~(n) within v'0,
the correlation function is

B

W,, ( )n= g [y~(n) —y(n)];[y~(n) —y(n)], .

Following a suggestion of Fukunaga we would use the
local correlation matrix in our g(y, y(n);a) by making the
replacements

d

~y y(n )~
—g [y —y(n)]; W;, '(n)[y —y(n)]

and
d

y(n) (y y(n))~ g. (—yn), 8; '(n)[y —y(n)]
i j =1

This now emphasizes directions in phase space along the
attractor where the correlation is larger.

In addition to these improvements in our ability to per-
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form each element of our signal processing program, the
application of methods established here to laboratory and
field data would be quite productive. The applications
would be both to classification by dynamical invariants of
observed broadband signals and to prediction on those
signals. Further having a clear idea now of the geometric
setting in which the signal processing takes place in time
domain, we can begin exploration of these methods to
control of nonlinear systems.

Finally, there is the matter of noise, extrinsic noise,
which contaminates our broadband signal x(n). Many
conventional methods for identifying signals in noise rely
on the distinct spectral characteristics of the two. That
tool is absent for us, and we must use alternative tactics.
We do not have a contribution to this important issue
which we have tested out in any quantitative way. A nat-
ural framework will be the distinct dynamical charac-
teristics of noise and chaotic motion embodied in
differing d„(finite for a chaotic attractor and filling any
dimension for noise), invariant density p(y) (structured
for chaotic time series and homogeneous for noise), and

other similar attributes. We will report on our tested
ideas in this matter in future articles.
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