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We present a scheme of interpreting the generalized e expansion encountered in the
renormalization-group analysis of D-dimensional self-avoiding tethered manifolds embedded in d-

dimensional external space. Owing to the nonlinear nature of the parameter e, O(e) results of previ-

ous studies of the e expansion are somewhat ambiguous. Our scheme resolves ambiguities and gives

optimal numerical results to every order in e. The O(e) optimal values of the radius-of-gyration ex-

ponent v are calculated for polymers in two and three dimensions, and for membranes in various di-

mensions. The optimized polymer exponents are better than the O(e) results obtained from the
traditional e expansion. The exponent for two-dimensional membranes embedded in high-

dimensional space, i.e., for D =2 and d ~ 00, is 4/d in agreement with the Flory exponent. We fur-

ther explore the e-expansion properties in the limit d, D~O and find multiple-body excluded-
volume interactions to be relevant. We show that these interactions cannot be ignored in the physi-

cally relevant case of two-dimensional membranes in three-dimensions.

One of the major challenges in theoretical physics to-
day is to understand the properties and behaviors of sur-
faces and membranes. ' There are appreciable interest
and applications of this new branch of physics in fields
ranging from cell membrane interactions in biology to
world-sheet dynamics in string theory. Progress in stud-
ies of these surfaces has been limited, however, due to
enormous mathematical complexities. To gain more in-
sight and knowledge, we investigate the macroscopic
properties of membranes in equilibrium. A simple model
for interacting membranes is the self-avoiding tethered
manifold (SATM); this model describes systems such as
polymerized membranes in solution. A formalism based
on renorrnalization-group analysis has been
developed, and some universal properties of the mern-
brane, e.g., the radius-of-gyration exponent v and the di-
rnensionless second-virial coe%cient g are calculated in a
generalized e expansion to 0 (e). One-loop renormaliza-
bility of the SATM theory has been recently proved, and
the O(e) results are verified via direct calculations. In
this paper, after providing a brief account of the motiva-
tions for the SATM model, I will discuss in detail some
aspects of the generalized e expansion which have not
been fully appreciated in previous studies. Some new nu-
merical estimates for the exponent v are obtained as a
consequence. As will be seen, these estimates are good
for membranes embedded in high-dimensional space, but
they fail when the dimension of the embedding space is
reduced because multiple-body excluded volume interac-

tions become relevant.
A good starting point to study self-avoiding tethered

membranes is the Edwards model, ' which has been very
successful in describing self-avoiding linear polymers. "'
By extending the one-dimensional internal connectivity
of polymers to two dimensions, we have the following
partition function

Z= "r x exp —— x r x
1

2

——Jd x,d x25 [r(x, ) —r(x2)]

describing a self-avoiding tethered membrane embedded
in d-dimensional space. Here the first term is the
entropy-generated elasticity, and the second term is the
two-body excluded-volume interaction whose strength is
parametrized by v.

It is clear that the interaction term in Z is badly diver-
gent as x, ~x2, so that a microscopic cutoff is required.
Renorrnalizations must then be used to extract macro-
scopic properties that are independent of microscopic
cutoffs. For polymers, it was shown' that an e expansion
exists below a critical dimension of 4. However, such an
expansion fails to exist for membranes described by (l)
because the corresponding critical dimension is shown to
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be at d = ~. This problem is circumvented by generaliz-
ing the internal connectivity of the network from 2 to D,
i.e.,

Z = f2) r(x)exp ——f d x[Vr(x)]
1

2

——fd x,d x25 [r(x, ) —r(xz)]

The 0 (e ) terms are contributions to v from subleading
terms of one-loop interactions, as well as from leading
terms of two-loop interactions which have not yet been
calculated. In this study, we will concentrate only on
0 (e) results.

If our interest lies only in the numerical values of the
exponent v, then we can simply use the Flory expres-
sion' for the exponent as a guide,

D+2
F a+2

Such a partition function describes a D-dimensional self-
avoiding tethered manifold; D = 1 corresponds to a
linear polymer, D =2 to a polymerized membrane, and
D = 3 to a gel.

Naive dimension counting of (2) has

2D+d(2 Di2

suggesting that self-avoidance begins to be relevant at the
line of critical dimensions 4D =d(2 —D). Indeed, a
direct calculation of the two-point correlation function
from perturbation series gives to one-loop order

([r(x)—r(x')] }
x —x'' D

So(2 D)—
I2 /[I] +(d/2)I2 ]

X 1+ I +—I —"I(lx—x'I"'
2

with

(3)

e(d, D) =4D —d (2 —D),
and the constants So =2m. /I (D/2)
E =SD[SD(2 D)/4n] —The integr. als are

(4)

and

I = 1 2 D~dg g
i+—~r2 1 2 D 1 2 +0—

( o)
2 2D 0 e 2D ed

(Sa)

f dg (D —
1 f d D —1((2 D+ 2 —

D) dl2 — (S—b)
2 0 0

""
For d, DAO, the leading e divergence of I, can be easily
extracted

I, =—J(d)+0(e ),1

where

J(d}= I
8 4

dr—
2

(d, D)
2 D+ 1 e(d, D) +—0(e )

2d 1+J(d) (6)

In the limit of large ~x
—x'~, the correlation function (3)

becomes &[r(x)—r(x')]2) —Ix —x'I '. The universal ex-
ponent v is (2—D)/2 in the ideal region a&0. But in
physically relevant cases where e) 0, we have

(This has been shown' to agree very well with all avail-
able best numerical estimates and exact results for poly-
mers; the Flory exponent for tethered membranes is also
close to some numerical estimates. ) However, the Flory
expression cannot be extended to study other universal
quantities; nor can it be used to calculate scaling func-
tions, determine relevances of other interactions, etc. ,
which can be studied systematically using the e expan-
sion. In this paper, we use the exponent v as a case study
to explore the e expansion properties of all universal
quantities. %e then use the Flory exponent as a guide
against which we check results of the e expansion.

It is important to recognize that, as in all renormaliz-
able theories, the expression for the correlation function
in (3} is merely a reorganization of the perturbation
series. And the small parameter e, which emerged natu-
rally from perturbative calculations, is nothing more than
a mathematical convenience which can be exploited to
organize the expansion of exponents. Normally e is a
linear function of the spatial dimension d only, for in-
stance, a=4 —d in the theory of polymers. Expansion in
powers of e is therefore conceptually very simple. In our
case, however, we find that by generalizing the manifold
dimension to D, we are left with an e which is a nonlinear
function of d and D. Since a universal quantity such as
the exponent v is some arbitrary function of d and D, it
usually cannot be written in terms of e(d, D) alone. If we
still want to take advantage of the expansion parameter e
we need to make a transformation of variables from
d, D to e=e(d, D), 5=5(d, D), such that v(d, D)
=vs(e(d, D), 5(d, D)). The subscript 5 is a reminder that
the function v will depend on the form of 5(d, D) used.
In this way, v can be written as a double expansion in e
and 5.

While the form of e(d, D) is given by (4), we have at
our disposal an infinite number of invertible transforma-
tions 5(d, D), all of which will lead to the same values of
exponent v(d, D). This freedom in choosing 5(d, D) was a
cause of concern in previous studies, and the e expansion
was thought to be ambiguous at least to first order since
diff'erent forms of 5(d, D) should lead to diff'erent values
of v at 0(e). I will show in the following that it is exact-
ly this freedom that provides us with a guide to resolve
the apparent ambiguities.

We would like to choose a transformation 5(d, D } that
is either physically meaningful or mathematically con-
venient. One very simple choice is to have the point of
interest, say (d, D ), be on the line 5(d, D) =0. In this case
vs(e, 5) becomes a single power series in e We limit our.
discussion to 5(d, D)'s such that 5=0 are straight lines in
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FIG. 1. Lines e(d, D)=0 and 5(d, D)=0 in the (d, D) plane.
The path of the traditional e expansion is marked by the arrow.

I

0

the (d, D) plane. [We will soon see that a straight line is
all we need for O(e) calculations. ] Suppose the straight
line 5(d, D)=0 intersects the curve e(d, D)=0 at (d', D')
as shown in Fig. 1, then the transformation 5(d, D) is

completely specified by the point (d', D') for a given
(d, D), i.e.,

5(d, D) =D(d' —d )
—d(D' —8)+D'd Dd', —(8)

with 4D*=d*(2 D'). Th—e point (d*,D') is called the
expansion point. Since d' (or D') serves as a parameter
in 5(d, D), we write v(d, 8)=Vd+(e(d, D), 5(d, D)=0).
Note that the case d'=4D/(2 8) (or D—'=5, see
dashed line in Fig. 1) corresponds to the traditional e ex-
pansion.

Equations (4) and (8) can then be inverted, with

D(e, 5=0 =}D* +e
D *(D' 5)—

(D" ) (d' d)+2(D'd —d*8)—
(9)

0.650
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and a similar expression for d: d(e, 5=0)
=d'[1+0(e)]. Substituting these expressions for d and
D into (6) and keeping everything to O(e), we can com-
pute the value of exponent v(1,8)=V +(e,5=0) as a

function of the parameter d '. The results for
(d, D =(3,2), (3,1), and (2,1) are plotted in Figs. 2(a) —2(c).
As is clear from these figures, v is not a monotonically
decreasing function of d *, in contradiction to a finding in
Ref. 5. There, D(e, 5)=8 was inadvertently used [in-
stead of Eq. (9)] in evaluating v. Due to the nonlinear
form of e(d, D), it is easy to see that in general

(De, 5}WD to O(e), except in the special cases when
d*=d or d" =4D/(2 —D).

There is now an apparent ambiguity in values of v due
to its dependency on d'. To find the "optimal" v to
0 (e), we recall that v(d, D ) is independent of the choice
of 5(d, D). Therefore Bv(1,8)/Bd'=0. It follows that

Bvd ~
v pt vd where

'M

We see that ambiguity in v may be removed to a large de-
gree by choosing the extremum value of vd, . This is
readily applied to higher orders in e and more complicat-
ed curves 5(d, D)=0. In the latter case, if the curve is

P
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8

FIG. 2. Numerical results of v + for (a) membranes in three

dimensions, (b) polymers in three dimensions, and (c) polymers
in two dimensions.

specified by n parameters p„.. . ,p„, then there will be n

conditions Bv/dp;=0 to fix every parameter. However,
to O(e), the dependence of v on p s comes only from its
dependence on D (E,5) in (6). Suppose
D =D'+f, (d', p, )e+O(e ), then Bv/Bp; =0 implies
that BD/Bp; =0, or f&(d,p; )=f(d ). Hence straight
line (8) is the only family of curves needed to be searched
for the optimized value of v to 0 (e).

Applying our optimization scheme to the exponent
values plotted in Fig. 2, we find the O(e) estimate for
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TABLE I. Values of the exponent v calculated by (a) the op-
timization method described in text to O(e) {d is the optimal ex-
pansion point), (b) the traditional e expansion to O(e), (c) exact
calculation or numerical estimates, and {d) the Flory expression.

v in the region of interest, we need to go back to the full
expression with I, and I2 in (5), and extract the relevant
divergences in them. This has been done in the Appen-
dix, with the result

(d,B)

(3,2)
(4,2)
(5,2)
(6,2)

(7,2)
(8,2)

(d ~ ~x), 2)

4.3
5.3
6.2
6.9
7.7
8.4
d"

(a)

0.556
0.517
0.484
0.454
0.426
0.401

4/d

(b) {c)

0.80 0.800
0.667
0.571
0.500
0 AHA

0.400

I, = +0= 2 d
eD e

4/d we have

Combined with

1 2 —D
D

(3,1)
(2, 1)

3.2
2.2

0.567
0.650

0.562
0.625

0.591
0.750

0.600
0.750

2 —D e I2+—
2 4 d

1 2 2

=1————+O(5e, e,5 } .
5 e 2 2

2 8

The above expression clearly shows that v%1 at 5=0
for any nonzero e, underestimating the exact result v=1.
The dependence of v(e, 5=0) on e will persist even if all
higher-order e terms are included. We thus have to con-
clude that the partition function (2), from which we ob-
tained the correlation function (3} and the above expres-
sion for v, does not fully describe the self-avoiding mani-
fold in the region 5=0. A moment of reflection suggest
that as the dimension of the embedding space approaches
that of the manifold dimension, the manifold is
"squeezed" and n-body excluded-volume interactions of
the form

V n

1 n
dnx dnx

X5~[r(x, )
—r(x2)] 5 [r(x„,)

—r(x„))

become increasingly important. These terms should be
included in (2) for 5—+0; they will then tend to "stretch"
the network and increase v.

Dimension counting of the n-body interaction tells us
that v„ is relevant if

nD (n —1)v—(d, D)d & 0 . (10)

Since v(d, D) ~ 1 for any d and D, then at d =D we al-
ways have n (n —1—)v&0. There, all U„'s are relevant,
and it is not surprising that (2) underestimates v.

To estimate the region of validity for (2), we use the
Flory expression for v(d, D} in (10). We find that the
three-body interaction v 3 becomes relevant for
D & 4d l(6+ d). So the calculation for polymer ex-
ponents in two and three dimensions are valid, but for
membranes below six dimensions, the three-body interac-
tion must be taken into account. According to the Flory
exponent (7),

2(n —1)d
271 +6f

is the line when n-body interaction v„becomes relevant
(Fig. 3). For membranes in three dimensions, the Flory
exponent vz =0.80 is known to agree with numerical esti-

tethered membranes in three dimensions to be
v(d=3, 8=2)=0.556; the optimal expansion point [the
maximum in Fig. 2(a)] is at d =4.3. The exponents for
membranes in higher embedding spatial dimensions are
also obtained by this method. Their values are listed in
Table I. The corresponding exponent values as calculat-
ed from the Flory expression (7) are also listed for ease of
comparison. For polymers in three and two dimensions
[Figs. 2(b) and 2(c)], two extrema are present. We choose
the maxima values since the exponent values are underes-
timated in both cases these results are again listed in
Table I. Since d44, we discover that the traditional
a=4 —d expansion for polymer is not the "optimal" ex-
pansion; our scheme is thus an improvement over the
traditional method.

There is clearly a trend in Table I: Estimates of ex-
ponent values for manifolds in high-dimensional embed-
ding space (d »8) are quite good; but it starts to devi-
ate from best estimate, exact results as embedding spatial
dimension d is reduced. Unfortunately, the physically
relevant situation of membranes in three dimensions is
the worst case. It should be noted that this trend is not
related to the value of e. For two-dimensional rnem-
branes, we have a=8 in any d, yet the 0 (e) estimate of v
is very sensitive to d. In fact, it is easy to see (at d" =d)
that v of (6) and vz of (7) have the same limit 4ld for
two-dimensional membranes embedded in very high-
dimensional space, i.e., for d ~~. (With a little algebra,
we can show that v, , also goes to the limit 4ld. ) This,
however, is not true for manifolds with DX2.

For manifolds embedded in low-dimensional space, can
the situation be improved if we are able to compute and
include higher-order terms in e? To answer this question,
we go to the extreme situation where d =D. It is known
on physical grounds that the manifold is "stretched, " i.e.,
v= 1 for d =D. Therefore, if we do a double expansion in
e(d, D) and 5(d, D) =d D, we expect to h—ave v(e, 5) be
independent of e at small 5. In particular, we must have
v(e, 5=0)=1 for all e. '

In the vicinity of a=0 and 6=0, we have to the lowest
order D =6+@/2 and d =26+@/2. We cannot simply
substitute these expressions for D and d into (6) to obtain
v because (6) is not valid in the limit d, D~0 To obtain.
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APPENDIX

0
0 10

We want to extract relevant poles in I, as e~O and
5~0. Let us first change integrations variables and split
the integrals into two parts:

I x x 1+E/2
y y

D 1 l +y2 D d/21

0 0

f g 1+ /2f *g yD 1((~y2 D) d/2

0 1

Let the first integral be I, and the second be Ib. We com-
pute I, first

FIG. 3. Different regions in the (d, D) plane where various

multiple-body excluded volume interactions are relevant (es-

timated using Flory exponents).

mate of Monte Carlo simulations (see Table I); the above
equation then tells us that we must consider up to five-

body interactions. In this case, we cannot obtain the
correct exponent values for membranes by working with
the two-body excluded volume interaction alone, even if
we are able to carry out the e expansion to all orders.
This leaves room for the possibility that membranes may
be Aat in three dimensions, as suggested by recent results
of molecular-dynamics simulations. '

To summarize, we attempted to calculate the radius of
gyration exponent v for tethered membranes embedded in
d-dimensional space by generalizing the Edwards model
for polymers. We are forced to consider a generalized
D-dimensional manifold, and associated with it, a gen-
eralized e expansion. We have presented a scheme of in-
terpreting this expansion. This scheme resolves ambigui-
ties and gives optimal numerical results to a given order
in e The O(e) .estimate of v for polymers is an improve-
rnent over the traditional @=4—d expansion. The esti-
mates obtained for membranes are good in high-
dimensional embedding space, but become not as good as
the embedding spatial dimension is reduced. In the phys-
ically relevant case of membranes in three dimensions,
multiple-body excluded-volume interactions may be im-
portant.

The next task is to develop a systematic way of incor-
porating these multiple-body interactions. Also, the
structure of the optimized e expansion awaits to be un-
derstood. For example, is it an asymptotic series as in
the case of the traditional e expansion, ' or is it a more
converging series? And finally, we would like to investi-
gate the possibility of applying this optimization scheme
to other problems that are presently treated by the tradi-
tional approach.

I would like to thank M. Kardar for initiating my in-

f dyyD1+ f dyyD1[(1+y2D)d/21]

We recall that D =5+m/2 and d =25+@/2. Then in the
limit a~0, the second integral above becomes

f, dyy' '[(1+y' ') '—1]
1

5f—dyy 'ln(1+y )= 5(n /—24),
0

while in the liinit 5~0, it is

f dy y
6/2 1 [( 1 +y 2 —e/2

)
—e/4

1 ]
0

1

dyy 'ln(1+y )= ——(ir /24) .
4 0 4

Therefore I, =1/(eD)+O(d/e)
To extract leading divergences out of Ib, we rewrite it

as follows:

dx ~
—1+@/2f "d D —1 —(2 —D)d/2

b J 0 1

—1+5/2

0

yyD 1 l+yD 2 d/2
1

1

Using the definition of e in (4), we easily find the first
term above to be 1/(eD). The divergence in the remain-
ing integral comes from the limit x ~0. If we again split
the integrals into two parts

dx x
—1+a/2

2 0

dyyD 1 1+y D —2 —d/2

1

f dy yD —
1[(1+ D —2) d/2 1]—

then the second part is well behaved in the limit x~0,
and the first part is easily worked out to be of order d le.

Combining all of the above results, we have

I1= +02 D
eD e
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