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A systematic construction of exactly solvable models of interactions between the measuring ap-
paratus and the particle whose position is to be measured is shown. The two types of root-mean-
square errors are calculated for these models and many new models with better statistics than the
standard von Neumann model are found. The best among them is the model which has been
shown to circumvent the standard quantum limit for the position monitoring. A feature of the
models similar to Bondurant's improvement of the interferometric position measurement is also
pointed out.

Since von Neumann posed a quantum-mechanical mod-
el of an interaction for a position measurement, ' that
model has been the only available model for rigorous
analysis until quite recently. The recent revival of the
study of the von Neumann model has emerged as a result
of the interest in the gravitational-wave detection and
has revealed considerable features of the model. Contrary
to the consensus among most researchers that those
features of the model represent the most conceivable prop-
erties of position measurements, however, the possibility
of a different kind of statistics of a position measurement
was presented previously;6 the von Neumann model
satisfies the standard quantum limit (SQL) for monitor-
ing the free-mass position2 but a model which circumvents
the SQL has been successfully constructed. (See Ref. 7
for a complete and rigorous discussion about the SQL.)
Although the new model realizes Yuen's idea to break
the SQL in rigorous calculations, we have known the de-
tails of the statistics of position measurements about only
these two models so far. From such a state of affairs we
can hardly judge whether the new model is an exceptional
one or whether these two are only two of many different
possibilities. Thus, for the purpose of theoretical con-
siderations on precision-measurement technology, it seems
to be an important task to list all possible models of posi-
tion measurements, because the less mathematical models
give us the poorer physical intuition. The present Rapid
Communication is a step towards this program. I will give
a list of exactly solvable linear coupling models of position
measurements which fulfill certain reasonable require-
ments for their statistics to be good position measure-
ments. The list will give a full interpolation between the
von Neumann model' and my previous model. The cal-
culations of the previously introduced types of the root-
mean-square errors of these models will demonstrate that

there exist continuously many coupling models of position
measurements which give still better statistics than the
von Neumann model, and that the model in Ref. 6 is the
best among them.

Consider a one-dimensional, nonrelativistic, quantum-
mechanical system called an object, with position x,
momentum p ([x,p] ih), and Hamiltonian H,b;, the
caret stands for the operator on a Hilbert space corre-
sponding to an observable. The object is coupled with a
measuring apparatus designed to measure the object posi-
tion x. The measuring apparatus is supposed to consist of
two parts called the probe and the detector. The probe is
also supposed to be a one-dimensional quantum system
with canonical variables X and P. The object is directly
coupled with the probe, which can be regarded as the first
stage of the macroscopic measuring apparatus. The
detector is a macroscopic system and, after the micro-
micro coupling between the object and the probe, the
probe is coupled with the detector as subsequent stages of
the measuring apparatus. The micro-macro coupling be-
tween the probe and the detector makes an arbitrarily pre-
cise measurement of the coordinate X of the probe. The
outcome of the measurement of x is recorded as the out-
put X of the detector, which is the outcome of the mea-
surement of Xactually carried out by the detector.

The object-probe coupling is turned on from time t 0
to t r. The total Hamiltonian for the object and the
probe is taken to be

Jh

Htpt Hpbj +Hp p+ KH

Jl

~here H, b, and Hp are the free Hamiltonians of the ob-
ject and the probe, respectively, H is the interaction, and
K is the coupling constant. We assume for mathematical
simplicity that the coupling is so strong (K» 1) that the

1735 O1990 The American Physical Society



1736 MASANAO OZA WA

Z~
y

—a (3)

For suitably chosen E and r, the case where a 0 and
P-0 is reduced to the von Neumann model' and the case
where a I, P —2, and y 2 is the model discussed in

Ref. 6; in the sequel we shall refer to this model as the
(1, —2, 2) model.

By the Heisenberg equations of motion, we have

dx(t)/dt -K(ax(t)+PX(t)), (4)

dX(t)/dt -K(yx(t ) —aX(t) ) .

Thus the solution is given by

x(t) a~ ~(l)x+a~2(t)X,

X(t) a2~(t)x+aq2(t)X,

(s)

(7)

a~~(t) a~2(t)
exp(KtZ) .

The determinant of Z is
~
Z

~

—(a +Py). The explicit
forms of the solutions are as follows.

(a) The case ~Z~ 0. In this case Z is nilpotent and
hence exp(KtZ) I+KtZ, where I is the unit matrix.
Thus the solution is obtained by

a~~(t) aKt+1,

a/2(t) -pKt,

a2~ (t) yKt,

azz(t) -—aKt+1.

(b) The case
~
Z

~
& 0. In this case Z has eigenvalues

~ v' —1D, where D
~
Z ~'t . The solution is periodic and

given by

a
~ ~ (t) (a/D) sinDKt+ cosDKt,

a ~2(t) (P/D) sinDKt,

a2~(t) (y/D) sinDKt,

a22(t) ( —a/D) sinDKt+cosDKt .

(c) The case
~
Z

~
(0. In this case Z has eigenvalues

~ E, where E ( —
~
Z

~
) 't . The solution is obtained by

a~ ~(t) (a/E) sinhEKt+ coshEKt,

a ~2(t) (P/E) sinhEKt,

a2[ (t) (y/E) sinhEKt,

a22(t) ( —a/E) sinhEKt+coshEKt.

(io)

A

free Hamiltonians H, b, and Hz„can be neglected and

that the duration r of the coupling is so small (0 ( t «1)
that we can choose EC~—1.

We suppose that, possibly by the linear approximation,
the interaction Hamiltonian is given by

Ht, t K[a(xp —XP)+PXp+ yxP1,

where a, P, y E R. We shall write

Assume now that the probe is prepared in a fixed pure
state with normalized wave function p(X) just prior to the
measurement (t -0). For simplicity, we assume

(v ~
X ( v ) -0 and v (X) -v ( —X) . (i 1)

We shall write ~ (+~X ~p)'t for the uncertainty of
the prior probe coordinate. Let y(x) be the normalized
wave function of the object just prior to the measurement.
Then, just after the object-probe interaction (t r), the
joint wave function of the object and the probe is given by

%'(x,X) y(dx —bX)p( —cx+aX),

a a/)(r), b a/2(t), (i2)

c a2~(r), d a22(r) .

The probability density to obtain the outcome X of this
measurement for the object prior state y is given by

P(Xi lJ ) -„ i e(x,X) i'Zx. (13)

The conditional wave function yx(x) y(x ~X) of the
object just after the measurement, given the outcome X, is
obtained (up to normalization) by

&(x ~X) -p(X~ &) 't'~(x-, X) (i4)

Let G(X,x) be defined as

I&(d '(cx —X)) I ifd&0,

,b(cx —X) if d 0.
Then from Eqs. (12)-(13)and assumption (11)we have

(is)

p(gi y) -„G(X,x) i y(x) i'Zx. (i6)

This shows' that if the object position is x just prior to
the measurement, then the conditional probability density
of the outcome L of this measurement is given by
G(x,x).

In Ref. 6, the following two measures of the noise of the
measurement are introduced. The precision e(y) of the
measurement for the prior state y is defined by

e(y)'- „e(x)'
~ y(x) ~'Wx,

o(ry) '- o(X) 'p(g ( y)~,

o(X)'-„(x—X)'i y(x iX) i'&z.

Then an ideal position measurement with p (X
~ y)

( y(X) ) and ( y(x (X) [ b(x —X) is characterized
by the quantitative condition e(y) o(y) 0 for all y. In
the case of the von Neumann model we shall see e(y)

cr(y) hX for all y and in the case of the (1, —2, 2)
model we shall see e(y) 0 and o(y) ~for all y. It is
shown " that the SQL holds for measurements with
0'(i@i) e(l//2) for all I/Ii, p2.

Now we shall consider the criteria which should be

e(x) '- „(X—x) 'G(X, x)arX,

and the resolution o(y) of the measurement for the prior
state y is defined by

t OO
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satisfied by any plausible object-probe interaction for po-
sition measurements. Our first criterion is that the noise
of the measurement should be unbiased in the sense that
the mean value of the outcome should be identical to the
mean position of the object just prior to the measurement;
i.e., we should require

XP(Xi y)m-&tt ix i tl &.

From Eq. (12) [or Eq. (7)] and assumption (11), for the
present model, we have

&pQ'I y)ak-c&y~ x [ tit&. (20)

a c 1 andb d —1. (23)

The obvious physical meaning of the second and third cri-
teria is that if the probe coordinate just prior to the mea-
surement could be precisely prepared at 0, then the mea-
surement would be an ideal one.

Now we shall consider the case where these criteria are
satisfied so that a c 1 and b d —1. In this case every
model is characterized by a single parameter d which
determines the errors of the measurement as e(y)-

~
d

~
~ and a(tit) -~ for all y. This simple result has

the following remarkable conclusions: (i) These errors do
not depend on the prior object state tlt. (ii) The resolution
is the same for all d for a fixed probe preparation. (iii)
The (1,—2, 2) model corresponds to the case d-0 and
has the best possible errors ta(tit) 0, a(ttt) hXj among
all d. (iv) There are continuously many different possibil-
ities ( ~

d
~

& 1) of position measurements still better than
the von Neumann model which corresponds to d l.

In order to clarify conclusions (iii) and (iv), we shall
determine, from Eqs. (8)-(10), all Z that clears condi-

This requires c 1. Our next criterion is that if ~ tends
to 0 then e(y) should converge to 0 for all y. By Eqs.
(15) and (17) and assumption (11),we have

s(y) ' - (1 —c ) '&
hatt i x '

i tlt&+ d '(~) ' . (21)

This requires also c l. Our last criterion is that if ~
tends to 0 then a(ttt) should converge to 0 for all tit. By
Eqs. (14), (16), and (18) and assumption (11),we have

o(tlt)'-(a —c)'&pi x'i y&+ (b —d)'(~)'. (22)

Thus the last criterion requires a c. According to the
fact that ~exp(KtZ) ( 1 for all t, we have ad bc —1

and hence these criteria require

tion (23).
The case

~
Z ) 0: We have d 1, Kz I/y, and

e

0 0Z~
Ks 10 (24)

Thus this case is reduced to the von Neumann model.
This case (Z( )0: We have —3 & d & 1, cosDKr

=(1+d )/2, and
e

1
—d 2(d —1)

d —1
z- (2S)

2sinDKr,

Thus all models with
~
d

~
& 1 are included in this periodic

case. In particular, the (1, —2, 2) model corresponds to
the case d 0.

The case
~
Z

~
& 0: We have 1 & d, coshEKr

(1+d)/2, and

E 1-d 2(d-1)
2sinhEKr,

(26)

Since cr(ttt1) ~& dbX e(titz) for all tttt, tttz, all models

in this case satisfy the SQL and hence they are less in-

teresting than the other cases.
Thus all values of d with —3 & d is obtained from the

coupling of Eq. (2). In particular, the periodicity of the
solution for the case ) d ( & 1 is an interesting conclusion.
In this connection, Bondurant' proposed an improvement
of the interferometric position measurement with a Kerr
cell and a feedback loop and realized a position measure-
ment similar to our periodic case (~ d

~
& 0). Indeed, for

the case [d [ & 1, we have Ax(t)/Zt —K (Z [x(t)
Thus our model appears to have a feedback force propor-
tional to x(t), which is achieved by the optimal adjust-
ment of the Kerr cell in the Bondurant model' if we
neglect the detection noise.

In view of the recent development of the generation of
squeezed states' with ~&& gati/J2, we can conclude that
the eff'ort to realize the measurement similar to the models
with ~d ~

&&1 will achieve much more precise measure-
ments than the presently supposed standard quantum lim-

it.
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