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Based on inequalities derived from the partial ordering by majorization, some higher-order cri-
teria for the existence of nonclassical effects in photon statistics are introduced. These generalize
the well-known concept of two-photon antibunching to many-photon antibunching. The photon-
number distribution of the famous two-photon coherent state is used to illustrate these new criteria.

Nonclassical properties of a radiation field such as
squeezing and photon antibunching are currently of great
interest.! The intensive studies in this area thus far have
been focused almost exclusively on the lowest-order
effects. However, Hong and Mandel® recently introduced
the concept of higher-order squeezing of a quantum field.
Inspired by their work, we introduce in this paper the
concept of higher-order antibunching, which is also
called sub-Poisson photon-number distribution. The
correspondence between antibunching and sub-Poisson
distribution has been established by Mandel® through the
so-called Poisson transform. Therefore, we consider anti-
bunching and the sub-Poissonian distribution as
equivalent.

In this paper, we will consider the case of single-mode
radiation only.

Let the photon-number distribution of a radiation field
be described by p(n) which gives the probability of
finding n photons in the field; and let the mth moment of
the distribution be defined as (n™)= S>_,n"p(n).
Then, in a classical field, we always have

(n?)—(n)*>{(n). (1)

‘However, in a quantum field, it is possible to see the
direction of the inequality sign of (1) reversed. For a
coherent state with Poisson distribution, (1) becomes an
exact equality; so a coherent state stands on the border-
line between classical and nonclassical states. Therefore,
in 1979, Mandel* introduced a parameter defined as fol-
lows:

o=(n?)—(n)2—(n))/{n); (2)

Q <0 then implies the existence of nonclassical state.

In 1963, Glauber® and Sudarshan® independently intro-
duced the P representation that gives a quasiprobability
distribution in the phase space for a quantum state. It is
called a quasiprobability distribution because this P func-
tion can assume negative values, which would be non-
sense in the classical domain. Therefore our criterion for
a nonclassical state is that its P function is not positive
semidefinite.

The first step of our work is to establish the following
inequality for classical fields:

<n11+1)><n(m-—l)>2(n(H)(n(m))’ (3)
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with / > m, where (n'")=(n(n —1) - (n—m +1)) is
a factorial moment. After translating into the P repre-
sentation, we have

(n(”>(n”"'>=fdzmr*lP(a)laPI
X [d*gz~'P(B)IBI*"
=1 [d*ad?Br ?P(a,B)
X (la¥|BI*"+]al*BI*) ,
@)

where P(a,B)=P(a)P(f) is the symmetric joint proba-
bility distribution. We can also put {n'/*1V)(n" ~1) jn
a similar form.

According to the definition and notation of the theory
of majorization,” for I > m, we always have

(U+1,m—1%(m), (5)

which means the left-hand side majorizes the right-hand
side, which in turn implies

}a|2[+2|Bk2m-2+la|2m*2|/3|21+2
> lal|BlP"+[al*™BI . (6)

Therefore, as long as P(a) is positive semidefinite, in-
equality (3) must be true.

Then, if it ever occurs that the direction of the inequal-
ity sign of (3) is reversed, it implies that P(a) must as-
sume negative values somewhere in the phase space.
Therefore, the criteria for the existence of nonclassical
effects can be expressed as

(n(l+1)><n(m71)><(n(1)><n(m)> : (7)
or, to put it in normalized form,
R(ULm)=(n" ) (nm =) /(n ") (n'™)—1<0. (8

For the case of two-photon antibunching, in particular,
(7) becomes

R(L,D=[(n?)—(n))—(n)?1/(n)?<0, 9
which is a little different from Mandel’s Q parameter

given in (2). The definition for the Q parameter has at
least two advantages: (1) The numerical value is usually
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enhanced because the denominator is smaller. (2) For a
photon number (Fock) state with p (n)=9,, ,, which is the
extreme of nonclassical states, Q =—1, a simple con-
stant. Of course, we are hesitant to deviate from estab-
lished tradition. However, we feel that advantage (1) is
somewhat artificial; usually we measure the degree of de-
viation from equality of two numbers by comparing the
difference between the two numbers with one of them as
the reference, such as the common definition of percen-
tage error. Advantage (2) is very desirable. Unfortunate-
ly, there is no suitable simple expression that can main-
tain this advantage for higher-order antibunching. So we
decided to sacrifice these advantages for the sake of sim-
plicity in expression.

The classical inequality (3) is the most elementary or ir-
reducible type of inequality. We can easily extend it to
unlimited number of inequalities. For example, we have

<n(1+2)><n(m*2)>_<n(1)><n(m)>
= (DY (nm =2y — (pUHDY (pim=D)Y]
+[{(a"TY(n DY —(n DY (n'™)]1>0 . (10)

Therefore, using the same reasoning, we can extend the
criteria for nonclassical effects as follows

Rk(l,m)E<n(l+k)>(n(m*kl)/(n(1)><n(m)>__1 <0 .
(1

The above criteria are still not the most general ones,
because they are confined within products of two factori-
al moments. The concept of majorization can provide
inequalities involving products of unlimited number of
factorial moments. But we doubt about their practical
significances.

As an illustration, we present the many-photon anti-
bunching of the famous two-photon coherent states intro-
duced by Yuen.® Using Yuen’s original notations, the
two-photon coherent states |3), are eigenstates of the
“annihilation” operator b with eigenvalue f; i.e.,
b|B),=BIB),, where b=pa +va' with |p]2—|v]*=1
and a (a') is the photon annihilation (creation) operator.

The photon-number distribution for a two-photon
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FIG. 2. Magnified “map” (with stretched y axis) of the bor-
derlines of antibunching regions of two-photon coherent state
characterized by line a, R(1,1); line b, R(2,1); line ¢, R(3,1); and
line d, R,(2,2). Note that lines ¢ and d are almost indistinguish-
able.

coherent state is known to be

(n)= 1 Lt"ex 2z%zt —(z*?+z)t?
P 2t P 1—¢2
XH,(z*)H,(z) (12)

where t =|v/ul, z=B/V2uv, and H,(z) is the Hermite
polynomial.

We first try to determine where antibunching might
occur by carrying out a three-dimensional plot of R(1,1)
over the complex plane z=x +iy at a fixed value for
t=0.5, with the positive-value part clipped off, as given in
Fig. 1. It is obvious that there exists symmetry between
positive and negative x and also between positive and
negative y. From Fig. 1 we can see that antibunching
occurs in the neighborhood of the x axis. We have also
tried the same thing for R(2,1), R(3,1), and R,(2,2); the
situations are all very similar.

We then focus our attention along the positive direc-
tion of the x axis. We compare four criteria: R(1,1),
R(2,1), R(3,1), and R,(2,2), corresponding to lines a, b, c,
and d, respectively, in Fig. 2 and Fig. 3. We are interest-

FIG. 1. Three-dimensional plot of R(1,1) (for two-photon
coherent state) over the z-complex plane at t=0.5 and with the
positive-valued part clipped off; the “ditches” along both direc-
tions of the x axis are where antibunching occur.

FIG. 3. Depth of the antibunching effects of a two-photon
coherent state, occurring along the positive x-axis, indicated by
the negative values of line a, R(1,1); line b, R(2,1); line ¢, R(3,1);
and line d, R,(2,2).
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ed in knowing how widespread and how deep into the
nonclassical region the various kinds of antibunching
occur. Figure 2 shows plots of borderlines for the ex-
istence of antibunching; we notice that line ¢ and line d
are almost indistinguishable, and we also notice that
lower-order antibunching is always a little more
widespread than higher-order one. Figure 3 shows the
depth of antibunching; we see that the higher-order ones
are deeper than the lower-order ones, the case of
R,(2,2)=(n®) /{n?)2—1 is especially noteworthy.
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From Figs. 2 and 3, we see that the lower-order anti-
bunching is only a little more widespread than the
higher-order one; but the latter goes much deeper than
the former. Therefore, if a single example can give any
reliable clue, we would speculate that, perhaps, the
higher-order antibunching is more prominent.
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FIG. 1. Three-dimensional plot of R(1,1) (for two-photon
coherent state) over the z-complex plane at t=0.5 and with the
positive-valued part clipped off; the “ditches™ along both direc-
tions of the x axis are where antibunching occur.



