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Higher-order criteria for nonclassical effects in photon statistics
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Based on inequalities derived from the partial ordering by majorization, some higher-order cri-
teria for the existence of nonclassical effects in photon statistics are introduced. These generalize
the well-known concept of two-photon antibunching to many-photon antibunching. The photon-
number distribution of the famous two-photon coherent state is used to illustrate these new criteria.

Nonclassical properties of a radiation field such as
squeezing and photon antibunching are currently of great
interest. ' The intensive studies in this area thus far have
been focused almost exclusively on the lowest-order
effects. However, Hong and Mandel recently introduced
the concept of higher-order squeezing of a quantum field.
Inspired by their work, we introduce in this paper the
concept of higher-order antibunching, which is also
called sub-Poisson photon-number distribution. The
correspondence between antibunching and sub-Poisson
distribution has been established by Mandel through the
so-called Poisson transform. Therefore, we consider anti-
bunching and the sub-Poissonian distribution as
equivalent.

In this paper, we will consider the case of single-mode
radiation only.

Let the photon-number distribution of a radiation field
be described by p(n) which gives the probability of
finding n photons in the field; and let the mth moment of
the distribution be defined as (n ) = g„"on p(n).
Then, in a classical field, we always have

(4)

where P(a, /3): P(a)P—(13) is the symmetric joint proba-
bility distribution. We can also put (n"+") (n™1~ ) in
a similar form.

According to the definition and notation of the theory
of majorization, for 1 ~ m, we always have

(I+ l, m —1) & (I,m), (5)

which means the left-hand side majorizes the right-hand
side, which in turn implies

with I ~m, where (n ) =—(n(n —1) (n —m+1)) is
a factorial moment. After translating into the P repre-
sentation, we have
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However, in a quantum field, it is possible to see the
direction of the inequality sign of (1) reversed. For a
coherent state with Poisson distribution, (1) becomes an
exact equality; so a coherent state stands on the border-
line between classical and nonclassical states. Therefore,
in 1979, Mandel introduced a parameter defined as fol-
lows:

( (I+1)) ( (m —1) ) ) ( (I) ) (

(m�)�)

(3)

Q & 0 then implies the existence of nonclassical state.
In 1963, Glauber and Sudarshan independently intro-

duced the P representation that gives a quasiprobability
distribution in the phase space for a quantum state. It is
called a quasiprobability distribution because this P func-
tion can assume negative values, which would be non-
sense in the classical domain. Therefore our criterion for
a nonclassical state is that its P function is not positive
semidefinite.

The first step of our work is to establish the following
inequality for classical fields:

iPi + iai iP (6)

Therefore, as long as P(a) is positive semidefinite, in-
equality (3) must be true.

Then, if it ever occurs that the direction of the inequal-
ity sign of (3) is reversed, it implies that P(a) must as-
sume negative values somewhere in the phase space.
Therefore, the criteria for the existence of nonclassical
effects can be expressed as

(n(I+1))(n(m —1)) & ( (I))( (m))

or, to put it in normalized form,

R (I, m)=—(n' +")(n' ")/(n'")(n' ') —1 &0 . (8)

For the case of two-photon antibunching, in particular,
(7) becomes

R(1, 1)=[((n ) —(n)) —(n) ]/(n) &0,

which is a little different from Mandel's Q parameter
given in (2). The definition for the Q parameter has at
least two advantages: (1) The numerical value is usually
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ed in knowing how widespread and how deep into the
nonclassical region the various kinds of antibunching
occur. Figure 2 shows plots of borderhnes for the ex-
istence of antibunching; we notice that line c and line d
are almost indistinguishable, and we also notice that
lower-order antibunching is always a little more
widespread than higher-order one. Figure 3 shows the
depth of antibunching; we see that the higher-order ones
are deeper than the lower-order ones, the case of
R2(2, 2) —= (n' ') /(n' ') —1 is especially noteworthy.

From Figs. 2 and 3, we see that the lower-order anti-
bunching is only a little more widespread than the
higher-order one; but the latter goes much deeper than
the former. Therefore, if a single example can give any
reliable clue, we would speculate that, perhaps, the
higher-order antibunching is more prominent.
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