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A theory is presented that describes radiative effects in beam propagation at interfaces separating
two (or three) self-focusing dielectric media. The nonlinear interface is formed by two media, both
of which are nonlinear, so that in both media the nonlinear wave packet representing the self-
focused channel (optical beam) may be described by a soliton solution of the nonlinear Schrédinger
equation (NLSE), the interface being a steplike inhomogeneity. Assuming the perturbation to be
small, we apply the perturbation theory for solitons based on the inverse scattering technique and
study adiabatic and radiative effects stipulated by the soliton scattering. In the adiabatic approxi-
mation the scattering is described by equations for the soliton parameters that correspond to a
motion equation for a classical particle in an effective potential. The reflection coefficient of the
beam (the NLSE soliton) is related to a radiation during the scattering, and calculated in the Born
approximation of the perturbation theory for the cases of a single and two nonlinear interfaces. An
analytical comparison with the scattering of a linear wave packet is carried out. In particular, it is
demonstrated that the nonlinear reflection coefficient may be sufficiently smaller than the linear one.
We predict also the nonmonotonic dependence of the single-interface reflection coefficient versus
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the beam power, and analytically describe the nonlinear resonant scattering by two interfaces.

I. INTRODUCTION

The scattering of light beams by interfaces between
two dielectric media is the important subject of modern
optics and has been intensively investigated in recent
years. In particular, the complete results have been ob-
tained for the case of two linear media, when an angle of
incidence is close to that for total internal reflection.'

Beginning with the well-known paper by Kaplan,” the
nonlinear case of the light-beam scattering in which one
of the dielectric media is supposed to be nonlinear, i.e., its
refractive index depends on the intensity (a Kerr-type
nonlinearity), has been investigated. For this case a
plane-wave theory explaining some effects was construct-
ed (see, e.g., Ref. 2) and some computer experiments tak-
ing into account an input Gaussian beam were carried
out.’> The first experimental observation of the nonlinear
interface effects was reported in the paper by Smith et al.*
The experiments showed the existence of the switch from
the total internal reflection of the input beam to its par-
tial transmission at some threshold intensity. Experimen-
tal data on beam reflectivity showed the existence of hys-
tereses (or jumps) in the form of the reflectivity versus in-
put intensity. There is, as of now, no generally accepted
explanation of this fact. Some data from experiments
showed good quantitative agreement with the plane-wave
theory and some did not (see, e.g., discussions in Ref. 3).
Additionally, for the case of the interface between linear
and nonlinear Kerr dielectric media, some particular
solutions, including the nonlinear surface waves, have
been obtained in a number of papers (see, e.g., Refs.
5-8).

In recent papers, the theory which describes the
reflection and transmission properties of nonlinear wave
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packets at an oblique angle to the interface separating
two nonlinear dielectric media was presented. The light
beam (self-focused channel) was represented as a soliton
of the nonlinear Schrodinger equation (NLSE) and the
equivalent particle theory for the soluton was developed.
In particular, the effective potential for the beam scatter-
ing was obtained and it was demonstrated that the
analytical theory was in good agreement with numerical
simulations of the problem.

However, the authors of Refs. 9 and 10 consider the
problem in the adiabatic approximation for solitons
(when the dynamics of an initial beam may be described
by simple equations for its parameters, e.g., its coordi-
nate) that admits a simple mechanical interpretation as a
particle motion in an effective potential relief stipulated
by the interface. The spectral density of radiation gen-
erated during such a scattering was not analyzed, because
the similar effects are beyond the particle theory of beam
propagation.

The purpose of the paper is the study of radiative
effects accompanying the nonlinear beam scattering by an
interface between two (or three) nonlinear dielectric
media. The similar effects are important for calculation
of the nonlinear reflection coefficient, which is deter-
mined by reflected wave packets only. We also study the
scattering in the adiabatic approximation and demon-
strate that the minimum point of the effective potential
for the beam corresponds to the exact surface wave along
the interface, which is a generalization of the solution ob-
tained by Tomlinson.’

For our theoretical analysis we take the well-known
model. In this model, a spatially localized optical beam is
described by the NLSE for an envelope of the electric
field, and the light beam corresponds to a soliton solution
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of this nonlinear equation. The medium inhomogeneities
induced by interfaces may be considered as perturbations
in the NLSE. We use the perturbation theory for soli-
tons!! 71* to describe the influence of interfaces on beam
propagation. In the framework of this approach a soliton
scattering by an inhomogeneity can be described in the
so-called adiabatic approximation as a classical particle
motion in the effective potential. Taking into account ra-
diative effects described by the next order of the pertur-
bation theory permits us to calculate such an important
characteristic as the reflection coefficient.!> The analysis
of the nonlinear reflection coefficient of the optical beam
in the region of the validity of the NLSE is the main re-
sult of the present paper. We demonstrate that the
reflection coefficient of a nonlinear wave packet (the
NLSE soliton) can be considerably less than that of a
linear wave packet. This result could be very important
from the viewpoint of the application of nonlinear inter-
faces in various optical devices, e.g., optical limiters, opti-
cal switchers, etc.

Besides the analysis of a single interface, we consider
analytically the beam scattering by two interfaces and
study nonlinear interference effects. In particular, we
show that all interference effects disappear in the non-
linear case when the width of the beam is less than (or
comparable to) the distance between two interfaces. The
most interesting result is the nonlinear interference. The
latter follows from the condition that the distance of the
beam motion between interfaces is proportional to the
wavelength of the internal nonlinear oscillations of the
beam. There is no analog of this effect in linear theory.

The paper is organized as follows. In Sec. IT we briefly
describe the model of interaction of an optical beam with
a nonlinear interface and obtain the perturbed NLSE.
When the interface is absent the initial beam is a simple
one-soliton solution of the NLSE. Inhomogeneities will
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FIG. 1. Interface configuration and coordinate system for a
single interface.
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affect the soliton dynamics. In Sec. III we present gen-
eral results of the perturbation theory for solitons paying
more attention to the calculation of radiative effects and,
in particular, to the reflection coefficient of the beam.

In Sec. IV we analyze the beam scattering by a single
interface. In particular, the results of Refs. 9 and 10 fol-
low directly from the adiabatic approximation of the per-
turbation theory for solitons, and the nonlinear reflection
coefficient is defined by the radiation propagating in the
backward direction from the interface. We obtain the
general formula for the reflection coefficient of a soliton
and compare it with the reflection coefficient of a linear
wave packet that has the same envelope. As a result, the
nonlinear reflection coefficient can be considerably less
than that for the linear case.

In Sec. V we analyze the case of two nonlinear inter-
faces separating three Kerr nonlinear optical media. In
this case, the interference phenomena are of the most in-
terest. We also calculate the nonlinear reflection
coefficient and analyze the influence of Kerr nonlinearity
on the interference phenomena. In Sec. VI we present
the validity conditions of our approximations. Sec. VII
concludes the paper.

II. FORMULATION OF THE PROBLEM

Let us consider the propagation of a collimated beam
of light at two adjoining nonlinear dielectric media. The
geometry is sketched in Fig. 1, which shows the beam in-
cident at a small angle to the interface separating the two
neighboring nonlinear dielectric media. The light chan-
nel will propagate close to the z axis and will be bounded
in the transverse x dimension. We anticipate that the
light channel may be scattered by the interface, i.e., it has
the reflected and transmitted parts after the scattering
(see Fig. 1). Two optical media differ by refractive in-
dices; we assume them to be of the Kerr type, i.e., to de-
pend on the electric field E as follows:

n1+a1|E|2, x <0

2y=
n(x, E) n,+a,lEl%, x>0.

(1)

The propagation of the transverse electric wave in the
x-z plane of optical medium is described by the scalar
wave equation

E | IE _
EZT‘F?——HI(%E , (2)

where k, is the free space wave number. Supposing that
the phase varies fast along the interface,

E(x,z)=F(x,z)exp(iBkyz) ,

we obtain the following propagation equation for the
slowly varying envelope F(x,z) of the optical field:
oF | &°F

2Py o+ 25—

2 T 32 kOB —mF=0.

Making the change of variables x'=kgx, z'=kyz and
dropping the primes we finally obtain the following equa-
tion:
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Each optical medium has its own equation (3) with

—n)F=0. (3)

different refractive indices of the form (1). Making the
transformations
— —i(B2—ny)t
F(x,z)=\/2/a,\1/(x,t)e , @

t=z/28,

we reduce the initial Eq. (3) to the dimensionless equation
which coincides with the well-known NLSE,
QY Y = U, 2 (5)
at  ox
Two equations for each medium can be considered as a
single one, but with the steplike potential

w2 = 0, x<0 P
U(X,| ' )“ A_A|\I/|2, x>0 , ( )
where A4 =2(a,/a;—1), A=n,—n,. Equation (5) is

written as a usual NSLE, however, it is necessary to
remember that the time ¢ plays the role of the coordinate
z along the interface in our problem. The potential U has
a more complicated form as considered by us earlier for
other problems,'>!® since there is a jump of not only the
linear but also the nonlinear term in the perturbed NLSE.

At U =0 Eq. (5) has an exact solution in the form of a
NLSE soliton

exp[ —2iéx +id(¢)]
cosh{2n[x —X,()]} ’

Y (x,t)=2in @)

where 27 and 4§ are its amplitude and velocity, respec-
tively, 8(¢)=4(&>—n?)t is the phase, and X,(t)= —4£&t is
the coordinate. In thlS paper we will consider a nonlinear
input beam as a NLSE soliton. In the previous variables
the solution may be present in the following form:

21'17(2/a1)]/2

E =
) Sh 2mkolx —(26/B)2]]
X exp | —2i&kyx
zko
[4§ ?)+B+n)l| . ©®

The velocity of the soliton envelope 2£/f3 appears to be
proportional to the sine of the beam angle of incidence
Y;, siny; =2£/f3, and its amplitude, to its power,

P=f_°°

where N =47 is the value of the integral motion of the
NLSE, which has a meaning of a number of photons
bound in the soliton as a bound state.

Therefore, the nonlinear light-beam scattering by an

EPdx=2 [ [WPax=—2N, ©
1 —

a Ko
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interface between two media is reduced to motion of the
NLSE soliton in the potential [Eq. (6)]. We will assume
that the transmitted beam is also a soliton, i.e., the
scattering is small. The new beam has other parameters,
so that a portion of the incident energy in the form of
linear wave packets is emitted in the backward direction
(the reflected light beam, Fig. 1). We define the reflection
coefficient as a ratio of the incident beam power P; to the
power of the reflected beam P,,

R= P _ N (10)
PN,
The transmission coefficient T is
T=1—R . (11)

If the media differ weakly from each other, i.e., the
conditions A, 4 <<1 are valid, the potential (6) can be
considered as a small perturbation affecting to an initial
soliton of the NLSE. The perturbation theory, used un-
der such a condition, permits us to investigate a number
of radiative effects accompanying the light beam scatter-
ing by the interface, and also to calculate and analyze the
reflection coefficient (10) in the nonlinear case.

III. FORMALISM OF THE SOLITON
PERTURBATION THEORY

If in the perturbed NLSE of the form

ii‘li+a‘l’+2|w|2w €R(W) (12)
ot  ox?

the parameter € turns out to be small (e << 1), the soliton
scattering can be studied by means of the perturbation
theory. In this paper we use the soliton perturbation
theory based on the inverse scattering technique (IST)
(see, e.g., Refs. 11-15).

The slow change of soliton parameters can be de-
scribed in the framework of so-called adiabatic approxi-
mation, assuming that the beam shape is still defined by
the expression (7) but its parameters are changed (particle
approximation). The corresponding equations for the
NLSE soliton parameters can be obtained both by means
of the regular perturbation theory, if we keep terms of
the order of €, and as a result of the Hamiltonian ap-
proach based on the Hamiltonian for the perturbed equa-
tion (12).13

The next step of the soliton perturbation theory is to
calculate the first correction to the adiabatic shape of the
soliton solution; it consists of terms of two types: the first
type is the localized functions moving with the soliton
(the distortion of its form), and the second type is two
dispersive wave packets propagating in both directions
from the interface (radiation). The reflected wave packet
defines the soliton reflection coefficient from the inhomo-
geneity. The IST gives us the corresponding expression
for the spectral density of emitted quasiparticles N (see,
e.g., Ref. 13),
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nrad(k,t)ziw(k,t)lz, lb(A1)|2<<1 (13) Qﬁgt‘—”l=4iﬂb(x,z>

b(A,t) being the so-called Jost coefficient. The spectral
parameter A appearing in the IST is connected with the
wave number k(A) and frequency w(A) of generated
linear waves by the relation w(A)=k2(A)=4A2%. The
influence of a perturbation leads to a change of the IST
spectral parameters including the Jost coefficient b(A,t),
which at € <<1 can be written in the form of the equation

te f_: dx[R(W)®{(x, ;M) (x, ;1)
—R*(W)®V(x,1;1)
X oM (x,t;0)],

where d)(lf%(x,t ;A) and <I>(f%(x,t ;A) are the components of
the Jost functions. For the one-soliton solution this equa-

(see, e.g., Ref. 13) tion takes the form'>!*
]
- —2ikx +4ifx +2ib
OB _ gia2h(a, )+ ——— |2 [ dx R(¥,) 2
ot [(A—&)+n°] —w cosh“Z
— [T dx R*(¥,)e ¥ (A—E—intanhZ)? | , (14)
[

where Z =279(x — X, ) If before s_ca.tFering the‘beam cor- gg A 7 An’
responds to a pure soliton (7), the initial condition for Eq. a2 h2(2mX) - h2nx) (18)
(14) should be taken in the form b(A,t =— o )=0. Hav- cosiendo)  coShEENTo
ing integrated this equation, one can find the radiative d&§ _, ., , A
density after the scattering with the help of formula (13), dt —HE 2 [1+ tanh(27Xo)]

where it is necessary to take the limit t — + .

In this paper we consider the scattering of a fast soli-
ton, i.e., we calculate the radiation in the so-called Born
approximation. It means that in Eq. (14) the additional
dependence of the soliton parameters in time, connected
with their change during propagation at the inhomo-
geneity, may not be taken into account. Then the
reflected beam power (the emission in the backward
direction) appears to be proportional to €. We should
note that all A <0 correspond to the reflected beam and
A>0 to the transmitted one. The reflection coefficient
(10) should be written now as!?

N, 1

N 49 Yo

and will be used for calculation of the radiative effects
below.

R =

Mg — MM, (15)

IV. BEAM SCATTERING 3Y AN INTERFACE

A. Adiabatic approximation

We start to analyze the scattering of a nonlinear light
beam (a NLSE soliton) by an interface between two non-
linear media. The perturbation in force should be chosen
for a soliton in the form (6) and the parameters A, 4 are
to be taken small (A, 4 <<1). The adiabatic approxima-
tion gives us the following equations for a slow change of
soliton parameters (cf. Ref. 15):

dn _

=0, (16)
Ko 4 1
el (17)

—37*A[2+ tanh(27X,)— 4 tanh’(29X,)] . (19)

Equation (16) does not mean that the shape of a soliton
scattered by the interface is not changed, since there are
also localized corrections not described by our adiabatic
approximation.
Equations (17) and (18) can be considered separately
from others and transformed into a single equation
d’X, oW

dt2 aX() ’

which is that for a classical particle motion in the exter-
nal potential

W (s)=A(1+ tanhs)—29°4 (2+ tanhs — 1 tanh’s) ,

(20
s=2nX, .

The analog “soliton as classical particle” is well known,
and the potential (20) coincides with the accuracy of con-
stants with potentials obtained in Refs. 9 and 10. The
general form of the potential is determined by the only
parameter y =A/2n°A. For 0<y <1 it has a minimum
and a maximum at points tanhs,==+Vv'1—y (see Fig. 2).
Their existence means the possibility of the capture of a
soliton by the interface, i.e., the transformation of an in-
put self-focused channel into a trapped stationary non-
linear surface wave (NSW), and a minimum, which for
A >0 is at the point s, >0, that corresponds to a stable
one. The condition ¥ <1 gives us the critical amplitude
N, =(A/2A)!"? above which the existence of NSW is
possible. It is important to note that, except the thresh-
old power 7, for the existence of surface wave there
must also be a critical angle &, below which an input
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beam will be captured by the interface due to radiative
losses of beam intensity during its propagation. These
values cannot be determined within the adiabatic theory
and radiative corrections must be taken into account.
The scattering of a beam in the framework of the adia-
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FIG. 2. Shapes of the effective potential (20) for various
values of the parameter y =A /27 4: (a) ¥ <0, (b) 0<y <2, (¢
I<y<l,@@y>1.

batic approximation will now be studied for the case
A>0. The case A <0 corresponds to the particle moving
from the right medium to the left or to the turning over
the potential. Various shapes of the potential (20) for
A >0 are shown in Fig. 2. For large y (or small 5% the
maximum value of this potential is at s = + o0

2

W(+ o)=2A
3y

It decreases with the growth of % At y =1 the local
maximum at point —s, appears,

Wmax=%(l—‘/1—'}’)2(2‘/1“y+l), 21)

and for y < $ it becomes larger than W (+ « ). The con-
dition of transmission of a beam through the interface
may be determined in terms of the soliton parameter £2,
i.e., in terms of the incident angle

862> maxW = max{W(+ o), W, ..} -

The refractive angle v, (see Fig. 1) is determined by the
simple expression

siny, = %g ,

) (22)
=g g W(+ew) =g~

% +14 7.

Let us consider this process for a fixed incident angle,
i.e., fixed §,=Bsiny; /2. The change of the incident
power 1 means the change of the form of the potential
(20). For £3> A /4 the beam is always transmitted by the
effective potential and in the opposite case there is a
threshold power, above which the beam is transmitted to
the new medium. The latter is determined either by the
condition 8£3=W (+ ) for A/36 <£3<A/4,i.e., the re-
sult is

Antzhr —3 4§6
=311 ,

(23)

or by the condition 8£3=W,,, for £3<A/36. In this
case we have

A "7:2}"

A =4{(—128%+12£+1)

+(— 1282+ 126 +1)P = 226+ 1)]V/2} !
(24)

where £=4£3/A. In the latter case the transmitted beam
in the right medium can appear only at an angle larger
than some definite value 2 =£3— LW (+ o, 7,) (see Fig.
3). The refractive angle is determined by Eq. (22). Its
dependence on the beam intensity for the fixed incident
angle &, is depicted in Fig. 3. The similar curve as in Fig.
3(b) was obtained in Ref. 3 for the case of the interface
between linear and nonlinear media and the Gaussian in-
put beam.
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The same problem may be considered for the fixed in-
tensity that means the fixed shape of the potential (20)
and varying incident angle, i.e., £&. This also leads to the
existence of the threshold value £, above which the
beam is transmitted to the new medium. The result is

A
4

2

3y

3

’ 7’>7

2 =
thr

A y oy (25)
= (1—-V1- —v+ <3,

247/( yIQvi—y+1), y<3

The dependence of the refractive angle (~£) on the in-
cident angle (~§,) is determined by expression (22). In
the latter case the transmitted beam may also appear at

3
/A
(a)
0 n/A7A
13
/A
(b)
N VA/D /A7A
§
/N
7| (c)
ad
7
/ |
/ |
0 Nyne/A7A n/A7A

FIG. 3. Angle of a transmitted beam as a function of its input
power in the framework of an adiabatic approach for various
values of the input beam angle: (a) £>A/4, (b) A/36
<E3<A/4,(c) E3<A/36.
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an angle above some critical value.

The fact that the transmitted beam angle is equal to
zero for & <&, (or 7 <7y,) does not mean that there is
no field in the right medium at all. In the adiabatic
theory we can predict only the propagation of the main
self-focused channel—a beam of the solitonlike form.
When this main beam is reflected by the interface, a por-
tion of its energy is transmitted by it, but when
A, A ~e<<1 as it is in the adiabatic approach, its power
is of the order of €’ and turns out to be small quantity.
These effects will be described in Sec. IV C as radiative
effects.

Finally, the condition that the soliton is fast can be for-
mulated. It is valid if the kinetic energy of a soliton like a
classical particle (~£2) is much more than the maximum
of the effective potential energy [Eq. (20)],

8£3>> maxW = max[ W (+ ), W, ]. (26)

B. Nonlinear surface waves

In this section we consider a special type of self-
focused channel-—a nonlinear surface wave (NSW).
These waves are well known and have been investigated
both experimentally and theoretically, especially for the
case of an interface separating linear and nonlinear
media.’ They propagate along the interface and, thus,
the incident angle of such a wave is equal to zero. The
method of computing of such waves is well known.’
First, we must solve Eq. (5) for the envelope of this wave
for two media taking into consideration the solutions of
the form (7) with £=0. For arbitrary A and 4 > —2
they have the forms

5 exp(4init) 0
, x <
" cosh[27(x —X )] x
Vi, 0= —_ expl4in3t —iAt) @7
2in,V2/(2+ A) >0.

COSh[27]2(x _Xz)] 0 X

The four parameters 7;, 7,, X, and X, are not indepen-
dent because they should be connected by the condition
of equality of the internal frequency in the channel which
gives us

A
m=n+ vy (28)
and the continuity of ¥ and W, for NSW at the interface,

2m, sech(29,X,)=V2/(2+ A) 43+ A)'/?

X sech[(43+A)' X, ],
4m? tanh(27, X, )sech(21,X,)=V2/(2+ A) (43 +A)
X tanh[(413+A)/2X, ]
X sech[(4n3+A)2X,] .

Solving the latter conditions for X, and X,, we can find
that
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172
X‘=j:—1—arctanh 1— A2 R
27’1 27]1A
(29)
22724 —A) |72
X,=*————7,;arctanh | | —————
(4n7+A) A(4ni+A)

In order to have real solutions we must demand
2ni4 —A 2(2m34 —A)
0<——5——<1, 0<——75——<I1
211 A A(4ni+A)
Besides this, the following conditions should be taken
into consideration. First, 73> 0 gives us
ani+A>0.

Second, in order to have the proper sign in the nonlinear
term in NLSE, we must take 4 > —2. The combination
of all these conditions implies conditions on 7, and inter-
face parameters, namely

A
213 A4

0< <l1. (30)

Therefore, NSW can exist only when its power is more
than some critical (7,),, =V A/24.

We can see that there are two types of such waves with
peaks at either X, or X,. One of them is stable and one is
not. The stability analysis may be made as follows. One
needs to present small deviations from the exact func-
tions (27). This leads to addendum to the effective coor-
dinate X; —X,=y. The simple, but rather cumbersome
calculations give an effective Hamiltonian of the system
as a function of the effective coordinate y. Stable solu-
tions correspond to small oscillations near the stable
points. As a result, the solution with a maximum at X, is
stable for 4 <0. The shape of the stable NSW is present-
ed in Fig. 4. The condition (30) and the values of equilib-
rium points are in complete agreement with the results
obtained above in the framework of the perturbation
theory, when A and A are small. Indeed, for A, 4 <<1
from Eq. (29) we have
172

tanhX, ~ — tanhX, = |1——
214

the latter being the relation for the extrema of the
effective potential (20).

C. Reflection coefficient

We now calculate radiative effects accompanying the
scattering of the nonlinear light beam by an interface be-
tween two dielectric media. Substituting the perturbation
of the form (6) in Eq. (14) and integrating the latter, one
can obtain the emitted density as follows:

2 24 2 22
Prag(M)= = [a— AL | AET LD
2%¢* 3 an’¢
2
« |1+ 4§(4§2—l)2
[(A—&)*+n°]
2| T 24,2 g2
— (A +7n— . 31
X sech 41’5(7» n—¢ )‘ (31)

lw|?
(a)

[v|?

|
|
|
|
.

0 X

FIG. 4. Shapes of a nonlinear surface wave for the cases: (a)
A4 <0,() 4>0.

Using formula (15), it is easy to calculate the reflection
coefficient of the nonlinear light beam from the interface.
Making the change of variables y =A/§, a=n/§, we
finally obtain

T © An? (yr+a*—1)?
=t dy |A— 1+
R 210a§4 fO y 3 4a2
2
% 4(4+y)
[(y +1)*+a?]
X sech? la(y2+a2—1) . (32)

We may also calculate the asymptotic expansion of Eq.
(32) for the fixed incident angle and for

—,ié 2

<1
A

a<<l, o

that corresponds to the so-called light soliton'? or a small
power beam. The result is

2.2
R=~R, (1+a2)——1§6——A—%*g~(1+%a2)
244 4
N AAgjza 3§4+21449 . ] , 33
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where R, =A?/2%*. When the nonlinear jump is absent
(A =0), this expression can be compared with that for
the scattering of the linear wave packet.

In the limit 7—0 the soliton delocalizes and corre-
sponds to a plane wave with a wave number k =k,
= —2&. The reflection coefficient of a linear wave with a
wave number k from a steplike potential U =A6(x) has
the form

Ry(k)= (34)

k _(kZ_A)l/Z 2
k +(k2—a)!7?

In the limit k%>>A that corresponds to Eq. (26) it takes
the form

Ro(k)=A%/16k* . (35)

A narrow linear wave packet

Wx,0= [ dk 4 k—:—25 eilx =ik’ 36)
where
_ i
A(2)= 2 cosh(mz /4) B

is to correspond to the soliton [Eq. (7)] with finite but
small 7 (see Ref. 13).

It is easy to calculate the reflection coefficient of such a
wave packet from the potential U =A6(x) with the help
of Egs. (34) and (35). According to the well-known for-
mula of linear scattering

_ T [
R-——z—n—f—wdkRo(k)!A(k)lz, (38)

where R (k) corresponds to the scattering of the linear
wave and is determined by Eq. (35). For a <<V A/£<<1

R/R,

FIG. 5. Dependence of the beam reflection coefficient on the
parameter a=7/£ in the case of a single interface with 4 =0
(solid line), R, being the reflection coefficient of a linear plane
wave with the wave number k, = —2£. The dashed line is the
same for a linear wave packet [Eq. (36)], see Eq. (39) (arbitrary
units).
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FIG. 6. The same as the curve in Fig. 5 (solid line) but for
A0, with (a) 4£2/A=0.5and (b) A£*/A=0.15.

the coefficient (38) has the asymptotic form
R=R,(1+%a?), 39

where R, =R (26)=A?/28* Let us compare this result
with the reflection coefficient of the nonlinear beam (33)
for the case 4 =0. As it follows from Egs. (39) and (33)
at A =0, the reflection coefficient of a soliton with small
amplitude is less than that of the linear wave packet (see
Fig. 5).

It follows from Eq. (33) that there are two types of
curves R (a) for small @ and 40, because increasing
the reflection coefficient with the growth of @ changes to
decreasing (see Fig. 6).

The case of a “heavy” soliton (larger power beam) is
characterized by exponentially small emission due to a
large bound energy of a soliton. The asymptotic expan-
sion follows from Eq. (32) for a >>1,

3r -0.2
o 2T
o
<
o
0.5
"
05 5 &/

FIG. 7. The same as in Fig. 5 (solid line) but as a function of
the input angle of the beam with fixed power. The values of the
parameter 4n*/A are indicated near the curves.
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— 2
TV'2 —ma/2

= 29§4a1/2e

The general dependence of R (a) for 470 is plotted in
Fig. 6. Its characteristic feature appears in the existence
of a rather strong minimum which corresponds to a prac-
tically transparent region for propagation of a beam at
the interface. This effect may be useful for applications
of nonlinear interfaces in various optical devices.

In Fig. 7 we present the reflection coefficient R as a
function of &, i.e., the incident angle at fixed 7. The simi-
lar maxima may be observed too.

A_Aa4§2

R 12

(40)

V. BEAM SCATTERING BY TWO INTERFACES

The problem of nonlinear beam scattering can be also
considered for two interfaces (see Fig. 8) which have
different refractive indices,

n,+a,lEl?, x<0
n(x,|E|1*)= {n,+a,|E|>, 0<x<a 41)
n3+a3IE|2, X >a .

As far as we know, previous papers have dealt only
with nonlinear waves propagating along the interface, as
well various bifurcations and stability of such surface
waves (see, e.g., Refs. 5-8 and 16). Scattering by inter-
faces [Eq. 41] has been investigated in Ref. 10 numerical-
ly but interference effects have not been discussed. We
pay attention to these very interference effects and study
the dependence of the reflection coefficient on the
effective distance between interfaces.

Repeating the reduction of the problem to the NLSE,
we obtain the perturbing potential U in the form

(ny—n,)—2a,/a,—1)|¥|?, 0<x <a

U(x,|¥|H)= 42)

(ny—n3)—2(a;/a;—1)|¥|% x >a .
This potential has two jumps at points x =0 and x =a.
In the particular case of an optical layer situated in the
medium with the refractive index n=n;+aq|E|[?
(ny=n,, ay=a,), the potential is not equal to zero only
for 0<x <a.

Using the perturbation theory based on the IST for the
NLSE soliton and the potential (42), we obtain the radia-
tion [n!2)(1)] density after the nonlinear beam scattering
by two interfaces (cf. results of Ref. 13),

n(rgc)i()")z[nrad(}")]l+[nrad(}")]2
+2[[nrad(}")]1[nrad(}")]2] 12

a
§

The first and the second terms in Eq. (43) describe in-
dependent scattering of light beam by each interface.
_

X cos | —[(A—E12+7n*] ]| . (43)
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2nd REFLECTED
BEAM

1st REFLECTED
BEAM

TRANSMITTED
BEAMS

n=n,¢cz||E|2
INPUT
BEAM

FIG. 8. Interface configuration and coordinate system for
two interfaces.

They are determined by formula (31) where we must sub-
stitute
A=A,

A=4,, i=12,

A1_=_nl—n2, AlEZ(az/al—l), (44)

A,=n,—n;, A,=2ay/a;—ay/a)) .

For a —0 the result [Eq. (43)] transforms into a density
of emission generated due to soliton scattering by a single
interface, which is characterized by the perturbative po-
tential with the values of jumps

A=A1+A2, A=A1+A2=2(a3/(11—1).

For a — o the scattering by two interfaces appears to be
independent. With that the emission densities are
summed up and n'2}=(n_4);+(n,4),- The third term
in Eq. (43) describes interference effects, appearing due to
the interaction of emission from two interfaces. Thus,
during scattering by two interfaces the nonlinear light
beam shows both corpuscular and wave properties.

In the particular case of a layer in a homogeneous
medium we have A,=—A, and 4,=— 4, consequent-
ly, (n ,4),=(n_4),, so that

n'rﬁé()»)=4[nmd()\.)]lsin2 . (45)

a £\ 2
2é[(k &) +n]

Furthermore we calculate the reflection coefficient (15)
of a beam scattered by two interfaces. Integrating Eq.
(43) over all A <0 and making the change of variables
a=n/§,y =A/&, we can represent the final result as

G,(y,a)G,(y,a)cos{d[(y +1)*+a?]}

RP=R +R,+—— ["d
1 2 zgaéA fo y

cosh?

o2 2
4o[(y-i—a 1)‘

) (46)
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A’ (y2+at—1)? 4(4+y)
G.(p,a)=A,— 1+ 1+ , i=1,2 (47)
e 3 4a? [y +12+a’]
d=ak . (48)
—

The first two terms in Eq. (46) describe independent
scattering by each interface, and they are determined by
the formula (32) where one must substitute the parame-
ters (44). The third term in Eq. (46) describes the in-
terference effect. The asymptote of expression (46) for
the fixed incident angle can easily be obtained under the
conditions a << 1, a’d << 1, a*( 4,E2/A;) << 1. Itis

cos(4d)

27¢

RP=R,+R,+ [A,A,F,(4ad)

+4,4,0**F,(4ad)
—(A A, + A, A4,)’E?
X F,(4ad)], (49)
where
Filx)= si:hx ’ (502)
FIZ(X):siTi}‘;( sinh2x —2x) , (50b)
Fy(x)= sir:1?5x [4x sinh®*x +6x —3sinh2x] .  (50c)

The expressions for R; and R, in Eq. (49) are determined
by the asymptotics [Eq. (33)] where in order to keep the
proper accuracy we should leave only the terms of the or-
der of 1. Therefore, the reflection coefficient of the non-
linear beam scattered by two interfaces oscillates as a
function of the parameter d =a§. The resonant relation
follows from the condition that the time of soliton motion
between interfaces (~a /§) is proportional to the inverse

RZ/2R,

FIG. 9. The beam reflection coefficient vs the parameter
d=ag in the case of an optical layer with 4 =0 and a=0.1.
The function R, is the reflection coefficient for a single inter-
face. The dashed line is for the scattering of the linear wave
(arb. units).

frequency of generated waves (~ & 2) (cf. Ref. 13).

Now we consider the particular case of scattering by a
layer in homogeneous medium. In this case the reflection
coefficient is simplified and take the form

__cos(4d)

276

R®=2R, [A}F,(4ad)+ A}a*E*F,(4ad)

where the functions F,, F,, and F, are determined in
Eq. (50). We should note that the reflection coefficients
from each interface are equal, and for a — « the result
[Eq. (51)] tends to zero.

In the linear limit (y—0) from Eq. (51) we obtain the
reflection coefficient of a monochromatic plane wave with
a wave number k =2£ from the steplike potential
U=A[0(x)—60(x —a)]. For k?>>Aitis

(51)

RY) =4Rsin’(ak) , (52)

where R,=A?/16k* is the reflection coefficient of this
wave from a single interface [see Egs. (34) and (35)]. Un-
like the linear case (52), the oscillations of the reflection
coefficient (51) of the nonlinear case disappear with the
increase of the distance between interfaces.

The other interesting case is when the jump of the non-
linear term in Eq. (42) can be neglected, i.e., 47? <<A.
Then the reflection coefficient of the beam scattered by
the optical layer has the form

4ad

sinh(4ad) cosdd) | .

R?P=2R, |1— (53)

In the limit a>>1 the reflection coefficients [Egs.
(46)-(48)] have the following asymptotic expansion:

cos[a’d +1arctany ]
(1+yHt/4

where ¥y =2aa&/m and R, and R, are the coefficients of

R®=R,+R,+2V'R,R, , (54

R?/2R,

d

FIG. 10. The same as in Fig. 9, but for a=1.
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FIG. 11. The same as in Fig. 9, but for a=3.

the independent reflection by the first and the second in-
terfaces, respectively. They are determined by formula
(40), where we should substitute Eq. (44). In this case the
reflection coefficient is exponentially small as a function
of the parameter a and oscillates as a function of the pa-
rameter a’d =n’a/E. If one considers this reflection
coefficient as a function of the parameter d, as it was in
Eq. (51), then the frequency of oscillations turns out to be
larger in the case @ >>1. The resonant relation is the fol-
lowing: time of the beam propagation between the inter-
faces (~a/&) should be proportional to the period of
internal oscillations of a soliton [Eq. (7)] which is now
proportional to 7~ 2 (cf. results of Ref. 13).

The reflection coefficient due to the propagation of the
nonlinear beam through a layer versus the parameter
d =a¢ is depicted in Figs. 9-11 for various values of .

V1. VALIDITY OF THE EMPLOYED
APPROXIMATIONS

We now discuss briefly the validity of the employed ap-
proximations. First of all, the NLSE is obtained from
more general field equations. Therefore, it is valid when
9°F /322 <<Bk,dF /3z. The latter has two inequalities
n<<p and £<<f so that the incident angle must be
small, (2§/B)=siny; << 1. Secondly, we assume that a
nonlinear interface is formed by two nonlinear media, but
most often the real systems consist of linear plus non-
linear media. This condition is surely convenient since
we can expect that in both media the localized beam is
described by a solitonlike solution of the NLSE. In this
end, we need A, 4 <<1. As a result we do not have the
case with strongly different parameters, e.g., if one medi-
um is linear then another medium must be slightly non-
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linear in the model. This limitation is very strong, but
some of our results give the similar predictions as numer-
ical ones for the above limit case (e.g., cf. Fig. 3 and re-
sults of Ref. 3).

At last, for calculation of radiative effects and the
reflection coefficient in Secs. IV and V we use the Born
approximation when the incident angle is not so small.
This leads to the condition £2>> 4% A.

VII. CONCLUSIONS

In conclusion, by means of the perturbation theory for
solitons we have investigated the adiabatic and radiative
effects accompanying the scattering of optical beams by
nonlinear interfaces. In the framework of the well-known
approach, the dynamics of the electric field in the self-
focusing dielectric medium is described by the nonlinear
parabolic equation for its envelope, i.e., the nonlinear
Schrodinger equation. The solution of this equation in
the form of the nonlinear self-focused channel is a soliton
solution, and an interface may be considered as a pertur-
bation. In the framework of the Born approximation of
the soliton perturbation theory we have calculated the
soliton reflection coefficient stipulated by the interface.
As a result, the reflection coefficient is a monotonic func-
tion versus the beam power and, in particular, exponen-
tially decreases with the growth of the intensity (a>>1).
Besides, when the interface parameters are changed, at
some finite value of the nonlinearity (a~ 1) there are re-
gions where the reflection coefficient is considerably less
in comparison with that of the scattering of linear wave
packets.

For the case of two interfaces we have analyzed the
influence of the Kerr nonlinearity on interference phe-
nomena and have shown that the interference disappears
when the characteristic beam width is considerably less
than the distance between the nonlinear interfaces. In
the case of a weak nonlinearity (a << 1) our formulas gen-
eralize the well-known results characterizing the interfer-
ence of a linear wave scattered by the optically inhomo-
geneous layer. In the case of a strong nonlinearity
(a >>1) the other type of interference is possible, the reso-
nant condition for it follows from the relation of the dis-
tance between interfaces and the frequency of internal os-
cillations of the nonlinear beam. There is no analog of
such scattering in the linear theory.

Described effects may be useful for building of all-
optical integrated devices using interfaces, e.g., optical
limiters, bistable switchers, upper and lower threshold
devices, etc.
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