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Spatial and temporal evolution of the first-order phase transition
in intrinsic optical bistability
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Dynamical transient response and longitudinal spatial evolution of the first-order phase transition
are presented for intrinsic optical bistability of a system of interacting spatially distributed,
coherently driven two-level atoms. It is shown that a discontinuity in the nonlinear dielectric func-
tion is established internal to the medium due to transient response to a coherent, externally ap-
plied, time-dependent driving field, following the attainment of a critical value for the input intensi-

ty. If the externally applied field intensity reaches the steady state, beyond the critical value, the
discontinuity of the nonlinear dielectric function in the medium reaches a stable stationary condi-
tion and forms a spatial boundary between states of high and low polarization in the medium. Thus
it is shown that intrinsic optical bistability corresponds to a spatial as well as a temporal first-order
phase transition in light-rnatter interactions, far from thermodynamic equilibrium, where the spatial
boundary between different phases is established by transient dynamical response to the incident
field.

I. INTRODUCTION

Intrinsic optical bistability' (IOB) is optical bistability
that does not depend upon optical or hybrid feedback.
Experimental studies of IOB have been reported for a
number of systems. ' The origin of the different mecha-
nisms has been interpreted as due to either thermal ' or
many-body interactions ' of carriers in semiconductors.
The universal characteristic for IOB in these systems is
the existence of an intensity-dependent renormalization
of the low-field intensity resonance, or gap frequency.

Since IOB is a genuine example of a first-order phase
transition in a system of interacting light and rnatter, at-
tention has been focused recently upon the theoretical
analysis and interpretation of several fundamental proto-
type models. The characterization of IOB for a system
composed of a collection of laser field-driven nonlinear
oscillators has been formulated. Recently, this system
has been analyzed in further detail in terms of longitudi-
nal and transverse spatial effects and four-wave mixing.
Another model that has been analyzed in detail is that of
an externally driven collection of spatially distributed, in-
teracting, two-level atoms. ' In the case of each model,
under steady-state conditions, the existence and charac-
teristics of a sharp discontinuity, in the propagation
direction, of the nonlinear dielectric function in the ma-
terial has been discussed. '" The sharp boundary associ-
ated with the dielectric function is established in the
medium for values of the externally applied field intensity
which exceed the local IOB threshold at the input to the
nonlinear material. It has been shown that the appear-
ance of the discontinuity in the dielectric function can
give rise to a significant backward propagating field am-
plitude, which together with the forward propagating
field and the introduction of an incident probe field, re-

suits in four-wave mixing and phase-conjugate
reflectivity. Thus the phase-conjugate signal could be
used to study the internal switching characteristics of the
system.

The discontinuity in the nonlinear dielectric function
in the direction of the propagation forms a spatial bound-
ary between the regions of high- and low-polarization
states of the material, and is unique to IOB [this
phenomenon does not occur in systems that require opti-
cal feedback in a cavity to cause optical bistability (OB).]
Indeed, the boundary spatially demarcates two regions in
the material corresponding to the two separate phases of
the first-order phase transition which coexist at the
boundary, and thus characterizes IOB as a spatial, as well
as temporal, first-order phase transition.

It is important to study the time dependence of the
switching process and the dynamical buildup of the spa-
tially dependent polarization and/or excitation in the
nonlinear medium, which results in the spatial discon-
tinuity in the dielectric function in the steady state dis-
cussed previously. " The purpose of this paper is to
present an analysis and interpretation of the spatial and
dynamical transient and temporal evolution to the steady
state of the system of interacting, two-level atoms' '"
upon switching in IOB.

In Sec. II, we present the modified Bloch-Maxwell
equations derived previously, ' '" and discuss the associ-
ated conditions for IOB. Also, we introduce the scaling
procedure which is used to facilitate the spatial and tem-
poral numerical integration, the results of which are
presented and discussed in Sec. V. The slowly varying
envelope approximation (SVEA) is discussed in relation
to the modified Bloch-Maxwell equations in Sec. III and,
in Sec. IV, its degree of validity in the treatment present-
ed here is discussed in relation to the second-order
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Maxwell wave equation in the steady state. The dynam-

ics of the spatially dependent switching process is

presented in Sec. V in the SVEA. The final section is
used for a summary of results and conclusions.

to recast Eqs. (1)—(4) in dimensionless form by introduc-
ing the following set of scaled variables and parameters:

II. TIME-DEPENDENT EQUATIONS
FOR A TWO-LEVEL SYSTEM

I=IEI2,

We consider here a system composed of spatially ex-
tended, interacting, two-level atoms driven by an exter-
nally applied electromagnetic field at a frequency co. We
neglect here any transverse effects. The equations of
motion derived earlier by Ben-Aryeh et ctl. ' are given by
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In terms of these new quantities, Eqs. (1)—(4) can be
rewritten as

» Eqs. (1)-(4), (o, ) is the average atomic inversion
per unit volume, ( o+ ) is the average complex atomic
polarization per unit volume, and E is the positive fre-
quency part of the temporally slowly varying envelope of
the electric field [the slowly varying envelope approxima-
tion in time has already been used in deriving Eqs.
(1)-(4)]. The parameter p in Eqs. (1) and (2) is the abso-
lute value of the transition dipole moment matrix element
of each identical atom in the system. co is the frequency
of the incident field and n is the number density of atoms.
The rates yL and yT are the inverses of the population
relaxation time TI and the dipole relaxation time T2, re-
spectively. The detuning parameter b, is given by
(co —coo) and is the deviation of the applied field frequen-

cy from the atomic resonance frequency cop. The quanti-
ty e in Eqs. (1)—(3) is the frequency renormalization con-
stant caused by near dipole-dipole interaction in a dense
medium' given by
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The quantity k can be thought of as an effective wave
number and it depends on the density and the resonance
wavelength via the parameter nA, o Equatio. ns (9)—(12)
are the starting point for the analysis to be presented in
the remainder of this paper.

Under steady-state conditions we obtain the following
equations for the polarization, inversion, and the field
variables (obtained by setting all time derivatives equal to
zero),
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4coo

(5)

where p is the spontaneous decay rate which has the
value
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In a fully quantum-mechanical model yL and yT are
given in terms of P by
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The usual Maxwell-Bloch equations for gases or tenuous
media are recovered by setting the constant e to zero.

Before we begin our analysis it is useful and instructive

In Eqs. (13)—(16) we have labeled all steady-state values

by the subscript s. We note that the field equation is non-
linear since q depends on m which in turn is coupled to p
and E. We will return to a discussion of the steady state
in Sec. IV.
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III. SLOWLY VARYING ENVELOPE
APPROXIMATION

E + E+eikz+E+ —ikz
F B (17)

The time-dependent, nonlinear coupled equations
(9)—(12) for inversion w, polarization p, and field E are, in
general, difticult to solve even numerically. In this sec-
tion we study the application of the standard slowly vary-
ing envelope approximation for the spatial dependence to
simplify the equations. In Sec. IV we wi11 address the
question of the validity of the SVEA for the steady state.

We begin by decomposing the inversion, polarization,
and the field variables into forward and backward propa-
gating parts,
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Under steady-state conditions, Eqs. (28)—(30) become
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In SVEA we treat the variables EF, Ez, p&, wo, w&,
and pF as slowly varying and neglect all second and
higher derivatives of these quantities. In Eqs. (17)—(20)
we have introduced the superscripts + explicitly to indi-
cate positive frequency parts. Substituting Eqs. (17)—(20)
into Eqs. (9)—(12) and keeping only the leading spatial
frequency terms [in powers of exp(ikz) and exp( ikz)],—
we obtain the following equations for inversion, polariza-
tion, and fields:

dw = —(1+wo)+EF p~ +Es pg++EF pF +Es psdt

(21)

where we indicated all steady-state values by the sub-
script s. This set of coupled equations was analyzed ear-
lier by Ben-Aryeh et al. ,

' who showed the existence of a
spatial first-order phase transition characterized by a spa-
tial discontinuity in inversion from a value of w 0 to a
value of —1 and also a kink in the intensity as a function
of z for all values of e) 3 and intensities greater than a
threshold value. These authors suggested that this phase
transition caused by nonlinear atomic frequency renor-
malization in intrinsic optical bistability may be observ-
able in systems characterized by high density and high
oscillator strengths.

The validity of the SVEA and the neglect of the back-
ward wave contributions have not been investigated ear-
lier. In Sec. IV we address this question in some detail
and show that the SVEA is a reasonable approximation,
even though the reasons for its validity are different from
the usual ones suggested in the literature. The time-
dependent equations are then studied in the SVEA in Sec.
V to obtain switching times and dynamical transient
effects related to the time dependence of evolution in in-
trinsic optical bistability.
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and the intensity I is defined by
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In the special case when the backward wave contribu-
tions can be dropped the above equations reduce to the
following simplified set (obtained by setting ps, E& to
zero):

IV. STEADY STATE AND DEGREE
OF VALIDITY OF THE SVEA

In this section we study the behavior of the two-level
system under steady-state conditions. We solve Eqs.
(13)—(16) using second-order field equations as well as the
approximate set (31) using the SVEA and compare the
two.

Because of their nonlinear nature, the solution of the
coupled equations for inversion, polarization, and fields
can only be achieved numerically and we outline our pro-
cedure here. Consider the two-level system confined to a
one-dimensional box of length L (the transverse effects
have been neglected). The electric field, being incident
from the left, is assumed as given for all time at z =0.
The system outside the sample of length L is assumed to
be a vacuum. The fields outside are then of the form
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[see Eq. (34)].

FIG. 1. Plot of the inversion u(z) as a function of z for the
parameters F= 10, 6= —2, y T =0.5, Ei =3.0, and sample
length L =22.5. in the jth region is then constant and the field in the jth

region can be written as
i.q.(z —z, ) —iq (z —z

(34)
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where EI is the incident field and rEI is the reflected field

amplitude (the coefficient r is unknown). ET is the ampli-
tude of the transmitted field. The coeScients r, ET, and

Ez are unknown and have to be determined self con-
sistently so as to match the solution inside the medium.
Since the system is not confined to a cavity, the
coeScient Ez must have the value

where the coeScients C,D, , have to be determined us-

ing the boundary conditions, namely, the continuity of
the field and its first derivative at each boundary
(z =O,z, ,z2, z3, . . . , z„). The unknowns ET and Ea can
be related to EI and r by

ET El
(35)

where the matrix U is given by (h is the width of any re-
gion)

This situation does not arise for the SVEA which has
only first-order derivatives and hence the specification of
the incident field is sufficient [see Eqs. (28)—(30)].

Our procedure for solving the second-order field equa-
tions is as follows. We assume that m is a smooth func-
tion of z except for possible jump discontinuities. We
then divide the space 0 & z & L into n subregions in each
of which w is assumed to be constant. The quantity q (z)
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FIG. 2. Plot of intensity (dimensionless) I as a function of z
for the same parameters as in Fig. 1.

FIG. 4. Plot of the complex coef5cient D of Eq. (34) as a
function of z. The parameters are the same as in Fig. 1.
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t =200
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FIG. 7. Same as Fig. 6 except t =20.

FIG. 5. Plot of m(z) as a function of z at time t=1 for pa-
rameters 6= —2, @=10,y =0.5, q=0.001.
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The numerical calculation for the determination of r
proceeds as follows: we start with an initial guess for the
complex quantity r and solve for ET and ER. Since there
is no reflected component in region z )L we set E„ to
zero to obtain the condition

d C
dz

d D
dz

(41)

ters. We note that the results for the inversion are quite
close. The earlier prediction of the occurrence of the
boundary separating the two regions ~ ~ 0 and m ~ —1 is
therefore not an artifact of the SVEA but is indeed borne
out by the full second-order calculation of the field. The
results for the intensity do show some differences of the
order of 5—20%%uo, depending on the choice of model pa-
rameters. Most of the difference can be attributed to the
neglect of the backward wave contributions neglected in
the simplified set of equations (28)-(30). To see this as-
pect we plot in Figs. 3 and 4 the real and imaginary parts
of C and D . We note from these figures that C and D
are approximately constant except in the region of
discontinuity. This in turn implies that

Es =EI ( U2) + r U22 ) =0,

U22

(40)
which in fact is at the heart of the SVEA. In the upper
region (characterized by w 5 0) q (z) takes the value

q'=k

The resulting output value for r is then used as the next
trial value for r until the vanishing of Ez is satisfied to a
specified accuracy. In practice, to ensure convergence,
we use the average of the input and output values of r as
the next value for r. We have used the condition
~Ea /EI ~

~ 0.0001 for the determination of r The res.ults
for the model set of parameters a=10.0, b= —2.0,
y T =0.5, EI=3.0, and L =22. 5 are shown in Figs. 1 and
2 for the inversion and the intensity. In these figures we
also show the SVEA results for the same set of parame-

Thus the SVEA is expected to be accurate in the region
where w &0. In the region to the right of the boundary
the intensity is attenuated, Beer's law is approximately
satisfied, and the differences between the SVEA and the
second-order results are minor. Thus, even though the
sample size is not large compared to a wavelength at

25.0
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t = iO.O

O,O 196.0

0.0
0.0 196.0

FIG. 6. Same as Fig. 5 except t = 10.
FIG. 8. Plot of dimensionless intensity I at time t =12. The

parameters are the same as in Fig. 5.
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we study the time dependence of w as a function of time
at various spatial locations. In Figs. 11—13 we exhibit
the time dependence of w at locations z =76, 93, and 94.
The approach to the steady state is clearly seen in these
figures and takes approximately 10@1 ' —15yL ' depending
on the spatial location (hence the intensity value}. We
note from Figs. 11-13 that the switching time increases
dramatically at the discontinuity as z =94 is approached.
The figure for z =94 (Fig. 13) shows that at the boundary
it takes much longer for the system to settle into the
upper state characterized by the lower absorption
(w—=0). This is due to the well-known critical slowing-
down phenomenon.

VI. CONCLUSION

l. 4

-1.4
0.0 5.5 I I.O

z =94

l6.5 25.0

%e have used the modified Maxwell-Bloch formulation
derived previously' '" to analyze the dynamics and spa-
tial dependence of the switching process in IOB. The re-
sults, in the steady state using the SVEA, were compared
with the corresponding results using the second-order
Maxwell equation in the propagation spatial variable
(SVEA in time only}, and the comparison is quite good
for our case, as shown in Fig. 1. The equations in the
SVEA were integrated temporally and spatially, using a
step-function input pulse of intensity above threshold,
and the dynamical evolution of the nonlinear dielectric
function spatial discontinuity is depicted in Figs. 11-13.
The dielectric boundary is established in the medium,
through transient evolution, corresponding to the point z
at which the local intensity I is at the lower bistable
threshold. The boundary occurs as a limiting steady-
state condition through the dynamical transients of the
switching process. Critical slowing down is indicated in
Figs. 11-13 as z approaches the critical value in the
medium. Different shaped pulses will cause different fluc-
tuation and oscillation patterns in the transient response,

FIG. 13. Same as Fig. 11 except z =94.

but the steady state will always be the same. The use of
four-wave mixing could be used to monitor and study the
fluctuations and oscillations associated with the spatial
and temporal buildup of the internal boundary between
the two states of polarization. The emergence of the
backward wave is a reflection of the presence of the inter-
nal boundary induced by the highly nonlinear interaction
of the laser beam with the system. No additional scatter-
ing eFects are expected in the present framework. We
feel that this feature of IOB is of sufBcient fundamental
interest to warrant further theoretical as well as experi-
mental investigation.

ACKNOWLEDGMENTS

R.I. acknowledges support from the National Research
Council.

'On leave from the University of Wyoming.
'Y. Ben-Aryeh, C. M. Bowden, and J. C. Englund, Phys. Rev. A

34, 3917 (1986); B. Ritchie and C. M. Bowden, ibid. 32, 2293
(1985);C. M. Bowden, in Quantum Optics IV, edited by D. F.
Walls and J. D. Harvey {Springer, Berlin, 1986), p. 139, and
references therein.

L. A. Lugiato, in Progress in Optics XXI, edited by E. Wolf
(North-Holland, Amsterdam, 1964), p. 89.

J. Hajto and I. Janossy, Philos. Mag. B 47, 347 (1983);D. A. B.
Miller, A. C. Gossard, and W. Wiegmann, Opt. Lett. 9, 162
{1984);M. Dagenais and W. Z. Shar5n, Appl. Phys. Lett. 45,
210 (1984).

4K. Bohnert, H. Kalt, and C. Klingshirn, Appl. Phys. 43, 1088
(1983); H. Rossmann, F. Henneberger, and H. Voigt, Phys.
Status Solidi B 115, K63 (1983); F. Henneberger and H.
Rossmann, ibid. 121, 685 (1984).

~C. M. Bowden, C. C. Sung, J. W. Haus, and J. M. Cook, J. Opt.

Soc. Am. B 3, 1206 (1986).
H. E. Schmidt, H. Haug, and S. W. Koch, Appl. Phys. Lett. 44,

787 (1984).
7C. M. Bowden, in Quantum Optics IV, Vol. 12 of Springer

Proceedings in Physics, edited by J. D. Harvey and D. F.
Walls (Springer-Verlag, New York, 1986), p. 139.

SJ. A. Goldstone and E. Garmire, Phys. Rev. Lett. 53, 910
(1984); C. Flytzanis and C. S. Tang, ibid. 45, 441 (1980); B.
Ritchie and C. M. Bowden, Phys. Rev. A 32, 2293 (1985); E.
Liu and J.-M. Yuan, ibid. 29, 2257 (1984).

J. W. Haus, Li Wang, M. Scalora, and C. M. Bowden, Phys.
Rev. A 38, 4043 (1988).

' Y. Ben-Aryeh, C. M. Bowden, and J. C. Englund, Phys. Rev.
A 34, 3917 (1986), and references therein.

' Y. Ben-Aryeh, C. M. Bowden, and J. C. Englund, Opt. Corn-
mun. 61, 147 (1987).
J. A. Fleck, Jr., Phys. Rev. B 1, 84 (1970).


