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Phase operators and phase states are introduced in the Hilbert space H»+, associated with the
SU(2) group. The phase operators obey the SU{2) algebra and play a dual role to the standard
angular-momentum operators. A finite Weyl group plays a fundamental role in those ideas. In the
SU(1,1) case the exponential of the phase operators is nonunitary, and the phase states form an over-
complete set which is used to formulate an analytic representation.

I. INTRODUCTION

Phase operators and phase states have been studied in

the harmonic-oscillator context in Ref. 1. Here we ex-
tend these ideas in the context of SU(2) and SU(1,1).
Both of these groups play an important role in many
quantum-optics problems, e.g., in the study of squeezed
states, parametric amplifiers, frequency converters, inter-
ferometers, etc.

The diSculties with hermiticity that phase operators
have in the harmonic oscillator disappear in the context
of the compact SU(2) group. In Sec. II we consider the
standard (2j+1)-dimensional Hilbert space associated
with the usual angular-momentum operators J„J+,and
J . We show that there are three phase operators t9„
8+, and 8 which obey the SU(2) algebra and play a dual
role in relation to the J„J+,and J . We also show that
the phase states ~8;jn ) form an orthonormal basis and

play a dual role in the standard angular-momentum basis
for which we use the notation ~J;jm ). An arbitrary
state can be expressed in terms of the

~ J;jm ) basis or in
terms of the ~8;jn ) basis, and this leads correspondingly
to the J and 8 representations; the two are related
through a finite Fourier transform. An essential role in
those arguments is played by a finite Weyl group similar
to the one studied in Ref. 2 in a general context. Here we
use this group in our own context and explain its impor-
tance for the angular-momentum Hilbert space.

In Sec. III we study a group of unitary phase trans-
forms which contains as a subgroup the finite Weyl
group. This generalizes considerably the phase transfor-
mations which have been used in Ref. 3 in a different con-
text and which extended the work of Ref. 4. The present
framework, which is based on a finite-dimensional Hil-
bert space, is much more suitable for the exposition and
generalization of these ideas.

In Sec. IV we study phase states and phase operators in
the context of the noncompact SU(1,1) group. The asso-
ciated Hilbert space is now infinite dimensional. We ex-
press the SU(1,1) generators in terms of a "radial" opera-
tor K„and the "exponential of the phase" operators E+
and E . The E+ and E are nonunitary and they are
similar to the ones used in the harmonic-oscillator case.
The eigenstates of E for the harmonic-oscillator case
have been studied in Ref. 5 and have been called phase
states. Here we extend these arguments to the SU(l, l)

case. We show that our phase states form an overcom-
plete set of states and that they can be used to define an
"analytic representation" in which each state

~f ) is
represented by a function f (z) which is analytic in the
unit disc ~z~ (1. Analytic representations are very useful
because they can exploit the very powerful theory of ana-
lytic functions. Bargmann has developed an analytic
representation for the harmonic-oscillator Hilbert space
using the overcomplete basis of coherent states. Here we
study an analytic representation for our Hilbert space us-

ing the overcomplete basis of phase states. We conclude
in Sec. V with a discussion of our results and comments
concerning applications to specific quantum-optics mod-
els.

II. SU(2) PHASE STATES

& J;jm ~Z;Jn ) =S „. (3)

Let J» J+ =J~+iJ~, and J =J„—iJ~ be the usual
generators of the SU(2) algebra.

[J„J+]=+J+, [J+,J ]=2J, .

We shall introduce later the 8„8+, and 0 operators
which will also obey the SU(2) algebra. For this reason
we use the notation

~ J;j rn ) for the usual basis,

J IJjm & =j(j +1)lJ;jm &,

J, IJ;Jm & =mlJ;jm &,
(2)

J+ ~J;jm ) =[j (j+1) m(m+ I)]—' ~J;jm +1),
J ~J;jm ) =[j (j+1)—m(m —1)]' ~J;J'nt —1),

and we shall use the notation ~8;jn ) for the analogous
basis with respect to the 0 operators. The j takes integer
values (and we shall refer to them as the Bose sector) or
half-integer values (Fermi sector). In order to simplify
the notation, we allow m to take all the integer (or half-
integer) values modulo 2j + 1, (e.g. , ~ J;jj + 1)
=~J;j —j), etc.).

The
~
J;jm ) form an orthonormal basis in a (2j + 1)-

dimensional Hilbert space that we call H2-+ I,
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In our notation the symbol 5 „ is equal to 1 if m is equal
to n modulo 2j +1. We shall study in this paper various
interesting properties of the space Hi~+i (with fixed j)
and of the operators acting upon it. The Casimir opera-
tor is (Schur's lemma)

j—1

J+ = g [j(j+1) —m (m+1)]' lJ;jm+1)(J;jm l,
m = J

j—1

[j (j +1)—m(m+1)]' 'lJ;jm && J;jm+ll,
m= —j

J'=J,'+ ,'(J+—J +J J+)=j (j +I)I . (4) (9)

We replace the "Cartesian" operators J+ and J with
the "radial" operator J„and the "exponential of the
phase" operator E

J =(J J )'

JE= y lJ;jm+I&&J;jml.
m= —j

m= —j
It is clear that the J„ is a Hermitian operator which corn-
mutes with J„J . The "cosine" and "sine" operators are
defined as

C =
—,'(E+E '), S = (E—E')—,

1

21
Unlike the harmonic-oscillator case, the E is here a uni-
tary operator, C +S =I, [C,S]=0

(10)

J
E '=E+-= y IJ;jm&&J;jm+II.

m= —j
We can now prove that

J+ =J„E
J =E+J„,
[J„,J, ]=0,
J„lJ;jm ) =[j (j+1) m(m ——I)]'~ lJ;jm ),
J„=[j(j+1)I—J~+J, ]'~~ .

An easy way of proving (8) and other similar relations is
to express all the operators in the l J;jm ) (J;jn l basis,

and are Hermitian operators.
In order to find the eigenstates of E we consider sepa-

rately the Bose sector (j =1,2, . . .) and the Fermi sector
(j=

—,', —,', . . . ). In the Bose sector the eigenstates of E are

l8jn)=(2j+1) ' g exp i nm lJ;jm),2m'

2j+1

where n is an integer modulo (2j+1). We have used the
notation l 8j n ) because we will see that they are eigen-
states of the operators 8 and O„which are introduced
later.

In the Fermi sector the eigenstates of E are

l8 jn) =(2j+1) ' g exp i (n+ ,')(m+ —,'—) lJ;jm ),2'
2j+1

(12)

where n is a half-integer modulo (2j+1). The fact that
the n of Eq. (11) and the (n +—,') of Eq. (12) take integer
values is essential for proof that these states are eigen-
states of E. The —,

' of the (m+ —,') in Eq. (12) is not so
essential in the sense that it only gives an overall phase
factor to the state (12). On the other hand, it simplifies
the notation and makes it easier to see the duality be-
tween the J and 0 operators later. We refer to the states
(11)and (12) as phase states. We can show

J
(2j+1) ' g exp[i8„(m —m')]=5

n= —j
(16)

The phase states of Eqs. (11) and (12) form an orthonor-
mal basis in Hzj+],

in the Fermi sector.
A useful equality that is needed in the proof of a lot of

the relations given below is

El8jn ) =exp( i8„)l8j—n ),
Cl8;j n ) =cos8„

l 8;jn ),
Sl8;jn ) =sin( —8„)l8;jn ),

(13)
(8jnl8jm ) =5„

J
y 18;jn&&8;jnl=l .

n= —j

(17)

where
27Tn

2j+1
in the Bose sector and

27r(n + —,
'

)

2j+1

(14) It is now easy to invert Eqs. (11)and (12) to get

J
lJ;jm ) =(2j+1) ' g exp i l8j—n ),2j+1
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lj;jm ) =(2j+1) in the Bose and Fermi sectors, respectively. It is easily
proved that

2~X g exp —i (n+1/2)(m+1/2)2j+1

xle;Jn &, (19)

in the Bose and Fermi sectors, correspondingly.
We next give the following relations for the phase

states:

E2j +1

F2j+1

The unitary operators

EkF I . 2 ITPtl

2j+1 k I PlEZ2. ~&

(28)

(29)

(30)

(C) =(ejn lClejn ) =cose„,
ac'=(c') —(c)'=o (J ) =o

J
b,J, =(2j+1) ' g m

m= —j
(20)

where Z~J+, is the set of integers modulo (2j+1), form a
discrete, finite Weyl group similar to the one that has
been studied in Ref. 2 in a different context. Indeed, us-
ing (6), (13), (11), (26), (12), and (27) we prove

(C) =(Jjm lClJjm ) =0,
&C'=(C') —(C&'=-' (J &=m

(J„)= [J(J+1)—m (m —1)]', (J„)=0,
(J, )=o.

(21)

We see that the states
l J;jm ) have a definite value of J,

(bJ, =O) and an indefinite value of the angle (AC%0);
the states

l 8;jn ) have a definite value of the angle
(b,c =0) and an indefinite value of J, (b,J,XO).

It is clear from (13) that

J
(J„)=(2j+1) ' g [j (j+1)—m(m —I)]'~~,

m= —j
(J„)=cose„(J„), (J ) = —sine„( J„) .

These relations provide an insight into the nature of the
phase states and should be compared and contrasted to
the following relations for the states

l J;jm ):

E"IJ;jm &=IJ;jm+k),
E"le;jn ) =exp( ik—e„)le;jn ),
E"J,E =J,—kI,
Ekg E —k

I9

F'l J;jm ) =exp(ile )lJ;jm ),
F'lejn)= 8jn+I),
F'J F '=J
F'0 F '=0, —lI,

(31)

(32}

(33}

(34)

FE =E Fexp i . lk
277

2j+1 (35)

where e„and 8 are given in Eqs. (14) and (15) for the
Bose and Fermi sectors, respectively. Using (31)—(34) we
easily prove

J
E = g exp( i 8„)le;jn—) (8;jn

l
.

The phase operator 0, can be introduced as

J
e, = y nle; jn & (e;jn I,

(22)

(23)

If the above group were continuous, infinitesimal k and I
in Eq. (35) would lead to [J 8, ]=iI This is. , however,
not the case, and the [J„e,]=i I cannot be inferred. At
the end of this section, we will calculate the [J„e,] and
show explicitly that it is not equal to i I.

In analogy to Eq. (8) we introduce the operators

and clearly has the le;jn ) as eigenstates. The relation
between E and 0, is

2KE =exp —i 0,2j+1 (24)

(25)

in the Bose and Fermi sectors, respectively.
We introduce the operator F which is dual to the

operator E as

t9~ =O„F,

0 =F+8, ,

8„=[j(j+1)I—8, +8, ]'~

Using (36) and (34) we can prove

8+le jn ) =[j(j+1) n(n + I)]'~ le jn—+1),
8

l ejn ) =[j (j +1)—n (n —1)]'~ lejn —1),
which we use to prove

(36)

(37)

2'F =exp i J,2j+1 (26)
[8~,8 ]=28, ,

[8„8+]=+8+.
(38)

2~
2j+1 2j+1 (27) We see that the 8 operators obey the SU(2) algebra. The

corresponding Casimir operator is
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8 =8, + —,'(8+8 +8 8+)=j(j+1)I . (39) and (iii)
' 1/2

It is clear that there exists a duality between the 0 opera-
tors and their eigenstates and the J operators and their
eigenstates.

Let IS ) be a state in the Hilbert space H~ + ~. In the
"J, representation" this state is represented by the
(2j + 1) complex numbers a =

& J;jm IS ); in the "8,
representation" it is represented by the (2j+ 1) complex
numbers b„=&e;jnls). The two representations are re-
lated through the Fourier transform,

r

J
a =(2j 1) '~~ g b„exp i

2l +1

a =(2j+1) ' g b„exp i (n+ —')(m+ —')2m

ln= —j
(41)

I
8;z & =( I+ Izl')-~y (2j)!

(j+m )!(j —m )!
z'™Ie;jm &,

z = —tan( —,'f)e
(47)

We next calculate the matrix elements & J;jm Ie, I J;jn ).
Using (23), (11),and (12) we get

8 „=&J;Jmle, lJ;Jn &

l
g k&Jjmlejk)&ejklJjn)

k= —j

=(2j+1) ' g k exp[iek(m n)]—
k= —j

in the case of the Bose and Fermi sectors, respectively.
As an example of the J-8 duality we present the SU(2)

coherent states and their dual counterparts. The SU(2)
coherent states can be introduced by one of the following
equivalent definitions: ' (i)

0 ifm=n,
rj+„'+ (r „—1) ' if mAn,

r

2%r „=exp i . (m n)—
2j+1

(4g)

I J;PP& =exp(aJ+ —a'J )I J;j —j),
a = —

—,'ge '~, 0&) &m. , 0&)&2m.

J.IJ;A &
= —jlJ;gp&,

n = (sinl( cosP, sing sing, cosf),
J =(J„,Jy, J, ),
J„=nJ

or (iii)

IJ;z) =(I+lzl') 'g (j+m)!(j—m)!

xz'+ IJ;jm),

1/2

(42)

(43)

(44)

where ek has been defined in (14) and (15) and w is 0 and
—,
' in the Bose and Fermi sectors, respectively. We see

that all the diagonal elements are equal to zero. This
should be compared and contrasted with the
& J;jmlJ, IJ;jn ) where all the nondiagonal elements are
equal to zero. We can now easily calculate the matrix
elements of the operator [J„e,],
& J;jml[J, 8, ]IJjn & =(m 'n)& J'jm le, l J;jn & (49)

This confirms that the [J„e,] is not equal to iI The .8
operators and the phase states for j =

—,', 1 are given in a
matrix form in Appendix A.

III. UNITARY PHASE TRANSFORMATIONS

Ie;pp) =exp(ae+ —a*e )lei i&—
p&y&~ 0&/&2~

(45)

z = —tan( —,'g)e

It is clear from (43) that just as the
IJ;j—j ) is the eigen-

state of J, with eigenvalue —j, the IJ;gp) is the eigen-
state of J„with eigenvalue —j. And of course for /=0
we have IJ;/=0, $)=IJ;j—j).

We call the above states J-coherent states, and it is
clear that we can define analogous 0-coherent states as
follows: (i)

J
U„(r)= g exp(iy +k )IJ;jm +k )& J;Jml (50)

In this section we introduce more general operators
than the E,F. In the sum of Eq. (6) we introduce a phase
factor to each of the terms and get more general opera-
tors. In a different context, something similar has been
done in Ref. 3, as a generalization of the work of Ref. 4.
The present context, which uses a finite-dimensional Hil-
bert space, is much more suitable for the extension of
these ideas.

We consider the (2j + 1) unitary operators

e„le;yy&= —Jle;A &,

n = (sing cosg, sing sing, cosP),

8=(e„,ey, e, )

g„=nO,

(46)
U„(r)U„'(r) = U„(r)U„(r)=I,
U„(a)U, (r) = U„,(s =a+r),

(51)

where 5 =8 + I is the set

where k = —j, . . . ,j and r=[y +k Im = —j, . . . ,j]»
a set of (2j + 1) real numbers. We can easily prove
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Ism+k+I, m I m+k+I, m+1

+y +( Im= —j, . . . ,j} .

V„(I =I) =kH })=E",

v, (r=o)=F'.
(64)

(53)

U„,(r =o)=)). ,

U„-'(r) = U„'(r),

U„(B)[U,(1 )U (6)]=[U„(B)U,(I )]U (b, ) .

(54)

We recall that in our notation the m + l, m +k + I, k + l,
etc. , are defined modulo (2j+1). The [Uk(l )} form a
group. Indeed, we see from (52) that the product of two
elements of this set belongs to the set, and it is easy to
prove that

The operators Uk(I ) do not commute with the operators
Vt ( b, ). There is no simple expression for the

U„(I )V, (b )U. '(I )V, '(b );

only in the special case of the operators E and F' do we
have the result (35). Next we discuss two applications of
the operators Uk(I ) and Vt(b).

(i) We consider all the states IS'& = Uk o(I )IS& of Eq.
(58) with k =0, fixed IS &, and variable I . As in Ref. 3
we also consider random uniformly distributed 1, in
which case we get a mixed state described by the density
matrix

Note that the operators (30) are special cases of the
operators (50). Indeed,

J
p= g IS,„I'-lJ;jm &&J;jml .

m — J

(66)

U„,(r[) .=ie. })=F',
U„(I =0)=E" .

(55)

(56)

J
ls&= y s. lJ;jm&

m= —j
is transformed into

(57)

The Weyl group (30) is a subgroup of the more general
group (50).

We next give some examples of these unitary transfor-
mations. The state

Measurements of J, cannot distinguish those states.
Indeed, for any function f (J, ), we can prove, using (61),
that the t,s'If (J, ) IS' & is independent of I and is equal
to Tr[pf (J, )] for the p of Eq. (66). This is something we

should have in mind when we use the results of quantum
measurements.

(ii) Evolution operators exp(iHt) with Hamiltonians H
which are complicated nonlinear functions H(J, ) of J,
are special cases of the operators Uk o(I ),

exp[iH(J, )t]=exp it+H(m)IJjm &(Jjml . (67)

J
Uk(I )ls &

= g s exp(iy~+k ~ )IJ;jm +k & .
m= —j

(58) Using (58) we easily see that the evolution in time of a
state like (57) is given by

A general operator

A =&a „IJjm&(Jjnl (59)

J
IS;t&= g S exp[itH(m)]IJ;jm & .

m= —j
(68)

m, n

is transformed into

Uk(I )AUk(I )= pa „exp[i(7' +k 1 „+k „)]
m, n

X J;jm+k &(J;jn+kl . (60)

Using (60) we show that the J, is transformed as

More generally, we believe that the operators Uk (I ) and

V&(h) can be useful in the study of the evolution of sys-
tems with nonlinear Hamiltonians and in the understand-
ing of current quantum-optics problems like the collapse
and revival of quantum coherence, the propagation in
nonlinear materials, etc.

IV. SU(1,1) PHASE STATES

Uk(I )J, Uk(1 )=J,—kl,
and the 0, is transformed as

(61) Let Ko, K+, and K be operators which satisfy the
SU(1,1) algebra

Uk(1 )O, Uk(r)=+8 „exp[i(y k
—y„k „)] [KO, K+ ]=+K+, [K,K+ ) =2K„. (69)

m, n

XIJ;jm+k&&J;jn+kl, (62)

where 0 „has been given in (48). The dual operators to
(50) are introduced as

The various representations of SU(1, 1) have been studied
in Refs. 8 and 9. Here we consider the so-called discrete
series of representations and introduce the usual basis

K'Ik;p&=k(k —1)lk, p&, KOIk, p&=plk;p&,

J
Vk(I )= g exp(iy +k )lojm+0 &(Ojm I

. (63)
K+ Ik;p&= fp(p+1) —k (k —1)]'"lk;p+1&,

(70)
K lk;p & =[p(p, —1)—k (k —1)]'~ lk;p. —1 &,

They also form a group which contains the Weyl group
(30) as a subgroup,

k =
—,', 1,—'„.. . , p=k+X,

where N is a non-negative integer. The set



1658 A. VOURDAS 41

t lk;p=k+N &lk:fixed;N =0, 1,2, . . . I (71)

forms an orthonormal basis in an infinite-dimensional
Hilbert space that we caH Hk

y Ik;k+N)&k;k+NI=I,
N=O

(k;k+Nlk;k+M ) =6
(72}

In this paper we study some aspects of the Hilbert space
H& (with fixed k). The Casimir operator is (by Schur's
lemma)

K =Ko —
—,'(K„K +K K+ )=k(k —l)3. . (73)

E+ = g lk;k+N+1)(k;k+Nl,
N=0

(74)

E =Et+ = g Ik;k+N)(k;k+N+ ll .
N=0

We now replace the "Cartesian operators" K+ and
E with the "polar" operators

K„=(K+K

of its subspaces; for example, the E+ maps H„onto
Hk —

I Ik;k ) ). The eigenkets of the operator E are

lz&=(1 —Izl )' yz Ik;k+N), Izl&1
N=0

(77)

We refer to them as phase states. Similar states have
been studied in Ref. 5 in the harmonic-oscillator context.
For k =

—,
' the states (77) are identical to the SU(1,1)

coherent states; but for k =1, —,', . . . , they are different

from the SU(1,1) coherent states. The requirement Izl & 1

is essential for the normalizability of the states Iz).
There are no eigenkets of the operator E+. The states
Iz ) form an overcomplete set. This can be easily seen if
we consider all the states llzle'~) with fixed zl &1 and
0&/&2m-, multiplication of both sides of Eq. (77) by
e ' ~ and integration lead to expressions for all the
Ik;k+N) in terms of the Ilzle'~). A stronger result
concerning the overcompleteness of the Iz) states is

given in Appendix B.
Let If ) be an arbitrary (normalized) state in the Hil-

bert space Hk,

The I( „ is the "radial" operator and the E+ and E are
the "exponential of the phase" operators. We can prove
that

If)= g fjvlk;k+N); g Ifgl'=I .
N=0 N=O

(78)

K+ =K„E+, K =E K„, E+E =1—Ik;k ) (k;k I,
E E+ = 1, K„=K02 —Ko —k (k —1)3. , [K„,KO] =0 .

Ko=yplk;p&&k, pl,

K+ =y[p(p+1}—k (k —I)]'"
I k;p+I & & k;p I,

K =g[p(p+ I)—k(k —1)]' Ik;p)(k;p+ 1l,

K„=g[p(p—1)—k(k —I )]'i'lk;p) (k;pl,

(76)

An easy way of proving Eqs. (75) and other similar rela-
tions is to express all the operators in the

I k; p, ) ( k, v
I

basis

We define the "analytic representation*' by mapping the
state If ) into

f(z)=(1—Izl') '"&z'If &= & fez
N=O

(79)

limf(z =pe' )= g f~e' =f(8)
p~[ N=0

(80)

exists and it is called the "boundary function. " The in-
tegral

The sum in (79) converges for Izl & 1. The factor
(1—

Izl )
'i cancels the nonanalytic factor (1—Izl )'

of Eq. (77) and the function f (z) is analytic in the unit
disc D =

I lzl & I ). We give two examples: the state
Ik;k+N) is represented by the function z and the
phase state Izo ) by the function (1—

zzo)
The fact that +tv I fN I

=1 implies that the limit

IM=k, k+1, . . . . f If(8) d0= g IfNI'=1
0 N=O

(81)

We see from (75) that as in the harmonic-oscillator case, '

the E+ and E are not unitary operators. We should
like to emphasize, however, that the E+ is an isomet-
ric operator, i.e., it preserves the scalar product. Indeed,
the E E+ = 1 easily leads to the result
(S, IE+E+ IS2 ) = (S, IS2 ) for any states IS& ), IS2 ). In
finite-dimensional Hilbert spaces the concept of isometry
is equivalent to the concept of unitarity. In infinite-
dimensional Hilbert spaces the former is a weaker con-
cept and the E+ is an example of an isometric but
nonunitary transformation. ' A unitary transformation
maps a Hilbert space onto itself. An isometric but
nonunitary transformation maps a Hilbert space onto one

f(z=re' )=f "
.&d0.f (g}

1 —re' (82)

also exists, and for wave functions like (78) which are
normalized to 1, is equal to 1. The functions f (z) that
have those properties belong to the so-called Hardy space
H2(D). Hardy spaces have some very powerful proper-
ties and for this reason they have been studied extensively
by mathematicians (e.g. , Ref. 11). We next point out two
basic properties of the Hardy spaces.

(i) Using the analyticity property we easily prove that
the boundary function f (8) uniquely determines the f (z)
in the whole disc
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(ii) In the Fourier expansion (80) of the boundary func-
tion f (8), the N takes only non-negative values. This is
associated with the fact that the f (z) of Eq. (79) is an an-
alytic function. This should be compared and contrasted
with the Fourier expansion of a general periodic function
P(0) in L [0;2n.],

y(g) y y
&xe

N = —oo

is identical to a thermal distribution with temperature
T =( —lnlzl )

' (in units of ks =h'= I). Note, however,
that the state (77) is a pure state; the density matrix
lz ) (zl contains the diagonal elements associated with the
distribution (89) and also nonzero off-diagonal elements.
Only if the phase P=arg(z) becomes random with a uni-
form distribution between (0.2m), do the off-diagonal ele-
ments become zero and we have a mixed state described
by the thermal density matrix,

where E takes both positive and negative values. The
function P(8) of (83) is not a boundary function in the
Hardy space H2(D). The so-called "analytic projection"
of P(8) defined as"

p= I Iz)(zl

=(1—Izl') y Izl'"lk;k+N) &k;k+Nl .
.V =0

(90)

P, (8)= g P e'
N=0

(84) We conclude this section by briefly introducing operators
analogous to those of Sec. III. Let

is a boundary function in H~(D). An alternative way of
expressing this property is that the boundary function

f (0) must obey the

f f (6)e' d0=0, N =1,2, . . . . (85)
0

U (I )= g exp(iy~+M~)lk;k+N+M)(k;k+N
N=0

(91)

The importance of this property for phase operators has
been pointed out in Ref. 12.

It is clear that the function f (z) can be used to de-
scribe the general state

If ) of Eq. (78). The scalar prod-
uct of two such states is

&fig)= I f*(~)g(~)= gfggN
27r N=0

(86)

(I —lzl')'"&z'IE+
If ) =zf(z) .

The operator F. is represented as

(1—
Izl )' (z*lE

ff ) =z '[f (z) —fo] .

(87)

(88)

The subtraction of f0=f (0) ensures that the result is an
analytic function.

An interesting property of the phase states (77), is that
the distribution

The function f (z) is in some sense the analog of the 8
representation of the SU(2) case, which we studied in Sec.
II. The 0 basis there was orthonormal and it could be
easily used. The lz) basis here is overcomplete but it
leads to an analytic representation which could be useful
for phase studies. For example, the phase operator E+
can be easily represented as multiplication by z,

where I = Iy~+M ~. N =0, 1, . . . I is a sequence of real
numbers. For M =0 the above operator is unitary; for
M =1,2, . . . , it is isometric but nonunitary. For I =0
we get

U, (r=o) = I, U (I =0)=E (92)

These operators could be used in arguments similar to
those of Sec. III and Refs. 3 and 4. For example, the
Uo(I ) could be used on the SU(1,1) coherent states

lw)=exp(wK+)(1 —lwl ) 'exp( —w'K )lk;k)
1/2

=(,
I

I2)k ~ r(N+2k)
I (2k)N!

Ik;k +N ) (93)

where lwl (1 to give the "generalized" SU(l, l) coherent
states

(94)

1/2

Uo(l )lw) =(1—lwl )
' g I (2k)N!

X W exp(iy~~)fk;k+N) .

P =l(k;k+Nlz)I —= Izl (1 Izf ) (89)
They are "ordinary" SU(1,1) coherent states with respect
to the operators [use Eq. (76)]

z,'= U, (rye, U,'(r) =e, ,

K' =Uo(I )K Uo(I )=g[p(@+I)—k(k —1)]' exp[i(y
& z &

—yz v)]lk;k+N+1)(k;k+Nl,

K' =Uo(I )K Uo(I )=g[p(@+I)—k(k —1)]' exp[i(yves —yz+, z+&)]Ik;k+N)(k;k+N+ll,

p=k+X,
in the sense that
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I

Uo(I )lw & =exp(wK'+ )(1—lwl ) 'exp( —w' E' }lk,k & . (96)

This generalizes into SU(1,1) the ideas of Refs. 3 and 4.

V. CONCLUSIONS

H =co)a &a, +co2a2a2+A, a&a2+A, a,a2 (97)

that has been used in connection with frequency convert-
ers, ' interferometers, ' etc. , can be studied with the
Schwinger representation of SU(2), '

We have considered phase operators and phase states
in the angular-momentum Hilbert space H2J. +&. The
phase operators 8„8+, and 8 obey the SU(2) algebra
and play a dual rule in relation to the angular-momentum
operators J„J+,and J . The phase states l 8;jn & form
an orthonormal set which is dual in relation to the
l J;jm &. The

l 8;jn & are states with a definite value of
the angle and an indefinite value of J, (i.e., b, C =0,
58, =0, and EJ,AO); the lJ;jm & are states with a
definite value of J, and an indefinite value of the angle
(i.e., bJ, =0, b, CAO, and b8, %0). The finite Weyl group
(30) plays an important role in these arguments. The J-8
duality leads to the SU(2) 8-coherent states of Eqs.
(45)—(47).

We have also considered the SU(1,1) group and ex-
pressed its generators in terms of the "radial" operator
j'„and the "exponential of the phase" operators E+ and
E . The E+ and E are not unitary and the phase
states (77) form an overcomplete set of states. These
states have been used to introduce the analytic represen-
tation of Eq. (79).

The emphasis in this paper has been on the fundamen-
tal ideas but it is clear that this formalism can be applied
to many quantum-optics problems. The two-mode Ham-
iltonian

APPENDIX A

We present here the 8 operators in a matrix form for
the simple cases j =

—,
' and 1. The calculation is based on

(48) and (37) and it is lengthy but straightforward. Using
the standard basis

0
'2 2 1

(Al)

we express the 8 operators as

0 —1
8 =——1 0

—1 —1
0+ 2 1 1

(A2)

—1
0 —1

and the phase states as

same spirit, it would be interesting to investigate the
harmonic-oscillator case as the limit j~~ of our SU(2)
model. Concepts like the Inonu-Wigner group contrac-
tion' might be helpful in this direction.

Phase operators have been used in various optics prob-
lems such as the analysis of squeezed states, ' the analysis
of phase measurements, etc. , and we hope that the ideas
of this paper will be useful in pursuing further those stud-
ies.

J~ =a]a, , J =a]az, Jg =-, (a]a] azaz), —

J =[—,'(a, a]+azaz)][ —,'(a, a, +azaz)+1] .
(98) l8. ] ]

& 2
—1/2

~ 2 2

1
8. ] ]& 2

—]/2
1

(A3)

The number eigenstates lN, =j+m, Nz= j—m & corre-
spond to the states

l J;jm &, and all the relations of Secs.
II and III can be applied to this model.

The SU(1,1) group has been used in connection with
parametric amplifiers, ' interferometers, ' squeezing, '

etc. It has been explained in Ref. 16 that for the two-
mode Hamiltonian

For the j = 1 case we again use the standard basis

0

and express the 0 operators as

0

(A4)

H =co&a ~a
&
+N2a 2a2 +Aa

~
a 2+ A, 'a ~a (99)

0=3 ' —i 0Z

i —i 0
the number eigenstates lN]=N+2k —1, Nz=N& corre-
spond to the states lk;k +N & and therefore the relations
of Sec. IV can be applied to this model.

An interesting approach to the harmonic-oscillator
phase states has been developed in Ref. 17 where a
cutoff'-number eigenstate lS& has been used in order to
avoid the difficulties associated with the unitarity of
E+,E; all the results are calculated as a function of S
and the limit S~~ is considered at the end. In the

+

.2n
A, =exp i

3

2k A. + 1 A, +A,

1+k 2 1+A.'
A, '+A, A, +1 2A, *

(A5}
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and the phase states as

i8' I 1)=3 '
1

1

1

(A6)

APPENDIX B
In this appendix we prove the powerful statement that

if z& is a convergent series to some point zo of the unit
disc D =[~z~ (1], then the set [~z~) I of phase states is
overcomplete. The proof is similar to that of Ref. 21 for
ordinary coherent states and it is based on the theory of
zeros of analytic functions.

If a state
~f ) is orthogonal to some phase state ~zo ),

then f (zo) =0, i.e., the point zo is a zero of the analytic
function f (z). We know that, apart from the trivial case
where f (z) =0 everywhere in the unit disc D, the zeros of
the function f (z) are "isolated" points. This means that
there is no state

~f ) which is orthogonal to all [ ziv) I

and this proves that this set is at least complete. In fact,
it is overcomplete because the same argument is also val-
id even if we omit a finite number of terms from the se-
quence z~.
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