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Close-coupling calculations are carried out using the R-matrix method for the excitation of a
number of states of boronlike carbon, nitrogen, and oxygen by electron impact. The ten lowest LS
states of C* and the eight lowest states of N2* and O®* are considered in the eigenfunction expan-
sions. Including fine structure the collision strengths are calculated for all transitions among the
states 2572p (°P{ 3 3 2), 252172(4P1/2,3/z.5/2»2D3/z,5/2yzsl/z’zpl/z,s/z), 2p%(*S%,2,°D3 2,525 2,30)s
25235 (%S, ), and 25%3p (*P$, 3 ») for C* and among all states of N** and O*" excluding the n =3
configurations. Resonance structures in the collision strengths are delineated at a large number of
energies and are found to have a substantial effect. A number of selected results are presented, in
particular for the fine-structure transition 2P¢,,-*P$,, and the resonance transition *P°-*D in all

three ions.

I. INTRODUCTION

The R-matrix method has proved to be very successful
for an accurate and extensive treatment of a variety of
atomic processes, both radiative and collisional.! In the
past five or six years the radiative applications have re-
ceived particular attention in order to calculate stellar
opacities with state-of-the-art atomic physics.> The radi-
ative work has involved extensive calculations for the os-
cillator strengths and photoionization cross sections for
all astrophysically abundant elements and their ions. The
R-matrix method, initially developed by Burke et al. (see
Ref. 1), has been considerably extended and modified for
more optimal computations for radiative and collisional
work. In the present report we have applied the new R-
matrix package for comprehensive close-coupling calcu-
lations for electron scattering with the first three ions in
the boron isoelectronic sequence: C*, N2*, and O3*. A
prime motivation for the selection of these ions is their
considerable astrophysical significance. Other important
reasons for their study are that experimental measure-
ments may soon be available for absolute cross sections
for several transitions in C* (one set of measurements is
already available), and that a few previous calculations
have been carried out by other workers for all three ions.

The collision strengths have been calculated in the LS
coupling approximation, as well as in a pair-coupling
scheme, for the transitions among the fine-structure sub-
levels. Calculations are carried out at a large number of
energies in order to study the detailed effects of autoion-
izing resonances.

II. THEORY

The close-coupling method entails a numerically exact
solution of the many electron Schrdodinger equation for
the electron + ion system, subject to the constraint that
a finite (usually small) number of ionic states are included
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in the eigenfunction expansion. For each SL the total
(electron + ion) wave function is represented as
V(E)=A

N M
2 X0+ X @, (1)

i=1 j=1

where E is the total energy, ), are the ion (target) states,
the 6, represent the free electron, N is the number of
channels corresponding to the given eigenstates of the
ion, and A is the antisymmetrization operator. The
second term on the right-hand side (rhs) includes (elec-
tron + ion) bound-state wave functions, referred to as
bound channels, which are included to satisfy ortho-
gonality constraints on the free-electron and the bound-
electron orbitals and also to include additional short-
range correlation; the c; are variational coefficients and
M is the number of bound-channel terms.

The bound-channel term in Eq. (1) often plays an im-
portant role in the proper representation of the total
electron-electron correlation in the problem. The num-
ber of such terms is essentially arbitrary. However, in
practice one includes all such ®; functions that can be
constructed from the various combinations of the ionic
states and the free electron (i.e., from their associated
spin and orbital angular momenta). Thus, typically there
are a large number of bound-channel terms included in
the close-coupling calculations. However, the individual
®; functions may not all be represented equally well, in
particular if they correspond to the so-called correlation
configurations, which in some instances may include
pseudo-orbitals (scaled to provide suitable correlation for
the primary target, ion terms X;). In cases where a large
amount of e-e correlation is needed, the number of
bound-channel functions is quite large and some of the
states may appear at incorrect energies giving rise to
pseudoresonances in the cross sections. Usually, howev-
er, the pseudostates lie fairly high in energy, relative to
the ion threshold energies, and one may remove the effect
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of these in one of several ways as we shall describe later.

The R-matrix method for the solution of the close-
coupling equations involves dividing up the configuration
space into inner and outer regions, where the inner region
envelops the target atom or ion, i.e., the bound-orbital
functions of the ion decay down exponentially to negligi-
ble values at the boundary of the R matrix. In the outer
region the wave function is described by the asymptotic
behavior of the free electron in the various channels, i.e.,
by the Coulomb phase plus the phase due to other de-
tailed electron-ion interactions. New, more efficient,
asymptotic routines have been developed and incorporat-
ed in the extended R-matrix package (Ref. 1).

The R-matrix solutions, in LS coupling, for the basis
functions to represent the total wave function W(E) are
obtained upon diagonalization of the electron + ion
Hamiltonian for each total symmetry, i.e., total spin and
angular momenta, SL 7 where $=8,+4, L=L;%l;, and
T=( —1)2’1’; the S; and L, refer to the target states of
the ion, /; to the orbital angular momentum of the free
electron, and  is the parity of the whole system.

In order to treat the fine-structure transitions, one may
further make an algebraic transformation from the LS to
a pair-coupling scheme,

S,+L,=J;; J;+I,=K;; K;x1=J.
The set of reactance matrices {KS-7} is transformed to
{K’™} as (the symbol for the reactance matrix is not to be
confused with the one for the angular momentum)

K™K, T {1 K S E)

= S C(SLJ,S,L.J;LK,)
S,L,m

XKSE™(T, s, T/ s;E)
XC(SLJ,S/L;J};l/K]) ,
where the recoupling coefficients C are given by
C(SLJ,S;L,J;,l;K;)=W (LI;S;J;;L,K)W (LJS;s;;SK)
X[(2S +1)(2L +1)(2K;+1)

X (2J,+ 1)), 2

where W is the Racah coefficient (I'; refers to the target
terms).

The collision strengths may be calculated from the T
matrix

IT=1—-S=2K(1—-iK)™",

where S is the scattering matrix. Further details are de-
scribed by Saraph.® The formulation may also be extend-
ed to incorporate quantum-defect theory as given by
Seaton,* in particular to include a procedure to average
over autoionizing resonance structures, referred to as
Gailitis averaging (see, for example, Pradhan’).

An alternative formulation that leads to numerically
more convenient and exact results is to apply the pair-
coupling transformation (2) to the T matrix rather than
the K matrix. The advantages of this approach are that

(a) the unitarity condition is satisfied more precisely, lead-
ing to numerically more exact values; for example, all
partial fine-structure collision strengths for transitions
among the fine-structure sublevels between two LS terms
add up exactly to the LS collision strength; (b) the matrix
computations are simplified since the T matrix is initially
obtained in LS coupling with considerably fewer channels
than in pair coupling; and finally, (c) the branching ratios
for the fine structure to multiplet collision strengths

OT,S;L,J;—T';.SyLyJ;)
Q(riSiLi_Fi'Si'Li') ’

(3)

for cases when either the total S =0 or total L =0 is nu-
merically closer to the exact value

(27,4 1)/[(2S;+ DL +1)] .

In the present work the calculations were carried out us-
ing both the K-matrix and the T-matrix formulations and
the latter was eventually adopted due to the reasons
given. For some other applications, such as the detailed
analysis of pole positions and residues of the resonances,
it might be more desirable to employ the K matrices as
they have the advantage of being real and symmetric.

An advantage of interfacing the pair-coupling formula-
tion with the R-matrix method, not considered in earlier
works, is that the fine-structure collision strengths can be
obtained at a large number of energies where the LS cou-
pling calculations are carried out.

III. COMPUTATIONS

A. Target states

The accuracy of the close-coupling calculations de-
pends critically on the representation of the target states
wave functions Y; in Eq. (1). Configuration-interaction-
type (CI) wave functions are obtained for the x; by carry-
ing out a number of atomic structure calculations for the
target ion. These calculations for the boron sequence
ions are described in detail by Luo and Pradhan® who
considered the radiative problem for a number of carbon-
like ions, within the same formulation and the same tar-
get data, and calculated a larger number of oscillator
strengths and photoionization cross sections.

In Table I we give the calculated energy levels for C*,
N2*, and O** and compare these with the experimental
values. For C* we include ten LS states; the 2s23s(2S)
and the 2s23p (2P°) lie between other states of the n =2
complex and were therefore also considered. However,
for N** and O’" the n =3 states are more clearly
separated from the n =2 states and were excluded.

The CI expansion required for an accurate representa-
tion of C" states was considerably larger than that for
N?* and 03" —23 configurations for C* as opposed to
13 tor the other two.

B. Electron + ion symmetries

The spin and angular momentum of the target states
S;L; for the three ions are 2P°, *P, ’D, 1S, 2P, *S°, 2D°.
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TABLE 1. Energy levels of C*, N2*, and O°" (in rydbergs).

C+ N2+ 03 +

State E(expt) E(calc) E(expt) E(calc) E(expt) E(calc)
2522p (2P°) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
252p*(*P) 0.3918 0.3790 0.5209 0.5020 0.6482 0.6291
2s2pX*D) 0.6824 0.6917 0.9196 0.9280 1.1545 1.1619
252p2(2S) 0.8789 0.9011 1.1927 1.2212 1.4955 1.5192
252p*(*P) 1.0080 1.0284 1.3289 1.3516 1.6438 1.6659
25235 (%8) 1.0616 1.0679
2523p (2P°) 1.2000 1.2060
2p3(*S°) 1.2939 1.3244 1.7012 1.7196 2.1052 2.1240
2p(*D°) 1.3708 1.4006 1.8505 1.8791 2.3230 2.3517
2p3(2P°) 1.5373 1.5785 2.0986 2.1804 2.6315 2.7090

With the incident partial waves truncated at /; <6 we ob-
tain the following total symmetries SL 7 where S=§,;+1,

L=L,%l; and 1r=(—1)2' !

b

L3s,P,D,F,G,H,I)*° ,
and
5(S,P,D,F,G)*° ,

for a total of 38 SL 7 states; the e and o refer to even and
odd parities.

It might be noted that not all of the quintet symmetries
are required for the transitions between the *P and the
45° states in LS coupling; however, such SL7’s are still
needed for the pair-coupling transformation given by Eq.
().

The ten-state C* calculations were carried out with the
number of symmetries given above. For N2 and O3*
however, we employed an eight-state target and con-
sidered a much larger set of SL states:"">° (L =0,12)%%
this enabled a partial wave summation up to /; < 10.

C. Top-up for allowed transitions

The electron + ion SL 7 states given in Sec. III B refer
to partial waves with / <4. While for the forbidden tran-
sitions this summation should be adequate, for optically
allowed transitions one needs to include much higher
partial waves. The usual practice in the past has been to
complete the partial wave summation for the allowed
transition employing the Coulomb-Bethe approximation,’
in conjunction with the close-coupling calculations.®
However this approach is not very precise in that one
does not exactly obtain a match between the total angular
momenta states L, the incident angular momentum /, and
the / values included in the Coulomb-Bethe summation.
The problem is significantly more exacerbated when the
pair-coupling transformation is made and it is required to
complete the summation for the optically allowed fine-
structure transitions.

Burke and Seaton’ have recently developed a pro-
cedure to “topup” the partial wave summation of col-
lision strengths for allowed transitions in LS coupling
taking account of the matching required between the to-
tal L and [ values included in the R-matrix calculations.

For the LS calculations reported in the present work we
have utilized the top-up procedure and the allowed tran-
sitions have been summed over for all incident / values.

D. Energy mesh

The energy mesh is chosen so as to delineate the reso-
nance structures with a high degree of resolution. As the
autoionization width decreases as n ~3, the resonances be-
come narrower and therefore a mesh with a constant en-
ergy interval would rapidly lose revolution even for fairly
low n states. It is thus preferable to establish a mesh
determined by a constant interval in the effective quan-
tum number in order to enable the same resolution for all
the resonances to be considered. In addition, the mesh
should reflect the convergence of the Rydberg series of
resonances on to the target thresholds included in the
eigenfunction expansion.

Employing the relation

2
6=E—%;, )
v

i

where & is the energy variable in the region below the
threshold at energy E; and corresponds to the effective
quantum number v; calculated relative to E;. For exam-
ple, we may choose Av;=0.025, with v; <v_,,; all reso-
nances up to vp,, are then resolved with approximately
40 points in each interval where v; changes by unity. If
Vmax 18 taken to be 10, then this corresponds approximate-
ly to resonances with n <10. The mesh interval is
different for different ions and some experimentation is
needed to determine the optimum parameters.

In the region just below the convergence of a resonance
series limit (i.e., near the corresponding target state), the
resonances are very narrow and it is impractical to
resolve the resonance structures in detail. We employ the
quantum-defect theory averaging procedure due to Gail-
itis (see Ref. 5) in the region just below each threshold. A
special feature of the method incorporated in the present
work is that while we obtain the resonance averaged
values for the resonances belonging to a given threshold,
the resonance structures due to the higher thresholds are
not affected. This is necessary since the latter correspond
to low-n values and are usually broad. In Sec. III E some
examples are given of the detailed and the averaged cross
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sections and associated resonances. In general the choice
of an energy mesh depends on the problem under con-
sideration and both the constant AE or the Av types of
mesh may need to be employed.

E. Scattering calculations

The new R-matrix package for electron-ion scattering
calculations consists of several stages of separate codes,
preceded by the atomic structure codes ClV3 or
SUPERSTRUCTURE (Ref. 1). The target CI calculations
are carried out using either of these codes and the set of
one-electron orbitals are input to the first stage STGI
which calculates the radial matrix elements required to
represent the target states. The second stage STG2 is em-
ployed to calculate the necessary algebraic coefficients in
order to set up the electron-ion Hamiltonian matrix, and
to carry out the matrix diagonalization, in the third stage
STGH. The R-matrix obtained in STGH is input to a con-
tinuum electron code STGF which calculates the asymp-
totic electron wave functions, at the chosen mesh of ener-
gies, and the collision strengths. The top-up procedure
for the allowed transitions is also implemented in STGF.
The pair-coupling transformation is carried at a subse-
quent stage, with input from STGF in the form of the
reactance matrices at all energies and all the total SLm
states necessary to complete the transformation.

IV. RESULTS AND DISCUSSION

Collision strengths were calculated for all 45 inelastic
transitions among the ten states of C* and 28 transitions
among the eight target states of N>* and O°*. In addi-
tion, fine-structure collision strengths were also obtained
for transitions between all fine-structure substates. The
algebraic transformation from the LS to pair-coupling
scheme employed in the present work neglects the fine-
structure energy differences for the term splittings in the
target states, which are assumed much smaller than the
LS term differences.

The lowest few transitions in boronlike ions are be-
tween the states 2s22p(2P")—>232p2(4P,2D,zS,2P). The
first transition from the ground state to the quartet state
is spin forbidden but the next three transitions to the
doublet states are optically allowed. The three states D,
2S, and 2P lie relatively close together and it is expected
that the coupling between transitions to these states
should be strong. Based on a comparison of the oscillator
strengths for transitions from the ground state 2pP°, one
would expect the 2P°2P collision strength to be the
strongest one, followed by the 2P°-2D and the 2P°-2S tran-
sitions. (An interesting feature is that the “resonance”
transition 2P°2D is weaker than a higher one.) A com-
parison is made with the experimental measurements for
the cross section of the 2P°-2D transition and with other
theoretical values.

The spin-forbidden transition 2P°-*P is of particular
importance in astrophysical application, as the line inten-
sity from the *P state is dependent on electron density.
The line ratio I(:D—2P°)/I(*P—?P?), for example,
may be employed as a density diagnostic. A selected
sample of the results for several transitions in the three
ions is presented and described below.

A e+C*

With a relatively large number of excitation thresholds
included in the scattering problem, the resonance struc-
tures become quite extensive as one has many interacting
Rydberg series of autoionizing states converging on to
the ion states in question. In order to delineate the reso-
nances in detail we have carried out the calculations at a
fine energy mesh ranging from the 2s2p2(*P) threshold to
the highest 2p3(?P°) threshold. The number of reso-
nances thus obtained is too large to be able to identify all
of them, however, a few of the most prominent, low-lying
ones have been identified.

In Fig. 1 we plot the collision strength for the inter-
combination transition 2P°*P. The transition has a
significant amount of collision strength and although the
background is not quite discernible, the resonances
perhaps account for about 50% enhancement in the
near-threshold region. The lowest resonances are
identified as due to the state 2D 3s; however, slightly
above this resonance the structures begin to overlap con-
siderably and a precise identification becomes difficult.
The irregularity in the overall collision strengths, in a res-
onance averaged sense, is an indication of the varying
strengths of coupling to the various thresholds of excita-
tion.

In Figs. 2(a)-2(c) we have plotted the collision
strengths for the three optically allowed transitions
Q(2P°’D), Q(*P°-’S), and Q(*P°-?P). Although the reso-
nance structures remain basically the same as in Fig. 1,
the resonance enhancement relative to the background is
less for the allowed transitions than for the forbidden
ones. However, there is a strong feature at 0.82 Ry in
Q(?P°-D) that should make a significant effect on the
collision strength in this region. As one might expect for
the collision strengths of allowed transitions, the back-
ground rises with increasing energy for all three transi-
tions. In an approximate manner one might estimate
from Fig. 2 that Q(*P°-2D) is about 2.5 times larger than
Q(*P°-2S) and about 30% smaller than Q(’P°-?P). These
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FIG. 1. Collision strength for the intercombination transi-

tion 2P°-*Pin C™*.
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factors are not explained by simple calculations based on
the Gaunt factor formula. The gf values for the 2D, 28,
and 2P transitions from the ground state are 0.7487,
0.7752, and 3.1007, a proportion unrelated to the approx-
imate proportion of the three collision strengths. It is
clear that the coupling effects are rather strong and an
accurate calculation can not be made without explicit
consideration of the couplings and resulting resonance
structures.

In Fig. 3 we have compared the cross section for the
2p°.2D transition with two sets of experimental data by
Lafyatis and Kohl'® and several theoretical calculations.
The present theoretical curve appears to lie within the er-
ror bars of the experimental points (the first measured
value is at an energy below threshold); however, the ex-
perimental uncertainties are rather large and a detailed
comparison with the features in the theoretical results is
precluded by the paucity of experimental data. For ex-
ample, the large feature due to the cumulative effect of
several resonances just below 12 eV is not covered by any
experimental data point. Also, the experimental data do
not extend into the higher energy region to determine the
form of the cross section as it decreases with energy.

The two-state close-coupling calculations by Magee
et al.!! are shown by open squares in Fig. 3 and appear to
lie about 20% above the background of the present re-
sults. The Coulomb-Born calculations by Magee et al,!!
with and without exchange, are also shown and are about
a factor of two higher than the background cross sections
from the present calculations (as expected, the weak cou-
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FIG. 3. Theoretical and experimental cross sections for the
2P°2D transition: present (solid curve) and absolute measured
cross sections (solid circles) and relative cross sections normal-
ized to the point at 14.75 eV (solid triangles), both from Lafyatis
and Kohl. Also shown are the two-state close-coupling values
by Magee et al. (squares) and Coulomb-Born values with ex-
change by Magee er al. (asterisks) and without exchange
(crosses), also by Magee et al. The Gaunt factor estimate is in-
dicated by the dashed curve. The threshold cross-section value
measured by Lafyatis and Kohl is (1.1+0.3)X 107'® cm?, in
nearly exact agreement with the present calculated value of
1.1X10" " cm?
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pling approximations tend to overestimate the cross sec-
tions as they do not allow for loss of flux into other open
channels). Also for comparison we reproduce the Gaunt
factor estimates given by Lafyatis and Kohl; the g formu-
la (with §=0.2) gives values that are approximately a
factor of 2 lower than the present results, underscoring
the point made above that the Gaunt factor formula,
which is often used by astrophysicists, is not a reliable in-
dicator of the actual cross sections even for resonance
transitions.

A metastable state, due to its relatively longer lifetime,
may be collisionally excited to higher levels, hence the
dependence of its line intensity on electron density. In
Fig. 4 we show the collision strength from the transition
4p-%S°, the most likely transition for the upward excita-
tion of the metastable *P state. As may be seen, the
Q(*P-*S°) is quite large and much larger than the Q(*P°-
“P). Based on these relative collision strengths one may
be sure that the *P state stands a good chance of being
quenched even in a moderately dense plasma.

The fine-structure transition between the substates of
the ground state, P¢ ,-*P; ,,, is an important coolant in
the interstellar region and the atmospheres of cool
stars.!? In Fig. 5 we present Q(2P¢ ,-2P$ ;) with associat-
ed resonance structures. A few of the resonances shown
could be identified according to their LS designation.
The detailed collision strength is in good agreement with
the previous close-coupling calculations by Hayes and
Nussbaumer'® (HN). The first resonance is in fact a dou-
blet 252p3('D°>D°) and is at the same position as that of
HN but differs somewhat in shape. The HN calculations
were carried out in a five-state close-coupling (5CC) ap-
proximation, including the states 2p°, *p, 2D, %8, and %P.
In addition to including twice as many states, the present
calculations are at a much larger number of energies and
therefore significantly more resonance structures are ob-
tained. We employed the quantum-defect theory averag-
ing procedure (Gailitis averaging) in the region just below
the *P threshold. The resonance averaged values join
smoothly with the resonance profile corresponding to the
252p?(2D)3s state just above the *P. As mentioned ear-
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FIG. 4. Collision strength for the dipole allowed excitation
of the metastable 252p%(*P) to 2p3(*S°) in C™.
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FIG. 5. Fine-structure collision strength for the transition
2s2p (2P ,-*P3,,) in C*.

lier, the resonance average is carried out only for the
threshold of convergence in this case all resonances of
the type *P nl are averaged over but resonance structures
due to higher thresholds are retained, leading to a smooth
continuation at the *P threshold.

Earlier calculations for electron-impact excitation of
C™" were also carried out by Lennon et al.'* in an 8CC
approximation, excluding the 2p° states. They, as well as
HN, have reported Maxwellian averaged collision
strengths of transitions. A detailed comparison of rates
with the present work, along with some astrophysical ap-
plications, will be given in a subsequent publication.

B. e + N2+

The n =3 states 2s23s and 2s23p were excluded from
the scattering calculations for N?* and O3*. Collision
strengths were calculated for all remaining transitions at
an energy mesh different from that for C* since the reso-
nances get narrower with increasing ion charge.

In Fig. 6 we present the collision strength for the inter-
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FIG. 6. Collision strength for the intercombination transi-
tion *P°-*Pin N2*.
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FIG. 7. Collision strength for the resonance transition >P°-2D
in N2+,

combination transition 2P°-*P. It is different from the
corresponding one for C* (Fig. 1) in that the resonances
are narrower and the background does not decrease ap-
preciably over the energy range considered (the forbidden
transitions become stronger with Z at a much faster rate
than the allowed transitions).

Figure 7 shows the resonance transition in N**. Again
comparing with Fig. 2(a) for C*, we see narrower reso-
nance structures but equally strong features in the near-
threshold region, up to the *S° threshold. There appears
to be a rather large feature just above 2.0 Ry; however, it
would not be accounted for by resonances converging on
to the higher 2P’ state since the coupling with the ground
state, also 2P, is likely to be weak. It is perhaps a mani-
festation of the bound-channel pseudoresonances de-
scribed in Sec. II. We shall discuss this further in Sec. V.

The collision strength for the fine-structure transition
Q(*P$ ,-2P$ ), is shown in Fig. 8. The prominent reso-
nance doublet 252p3('D°,3D?) in Fig. 5 for C* is now a
pure bound state for N>*. The resonances due to the 2D
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FIG. 9. Collision strength for the intercombination transi-
tion 2P°-*Pin O3*.

nl series could be identified unambiguously and are
marked. The region just below the *P threshold contains
a large resonance 2s2p2(*D)3d and it lies in the region of
Gailitis averaging over the *P ni-type resonances. Simi-
larly, just below the 2D threshold we have a prominent
feature due to a resonance belonging to the 2P threshold
252p%(*P)3p; again the resonances of the type 2D nl have
been averaged over, leaving the structures due to higher
thresholds intact.

C. e +03*

Q(2P°*P) is shown in Fig. 9 and appears to be similar
to the corresponding ones for C* and N** except that
the resonances are now very narrow. In particular, the
resonances above the 2P threshold are very weak and the
background collisions strength can be clearly determined.

Figure 10 shows Q(*P°-D) with a broad feature which
is closer to the excitation threshold than for the other
two ions. However, the effective resonance enhancement
of this collision strength due to resonances is significantly

15.0
12.04
=
()]
c L
© 9.0
)
c
o
2
°
O

2p 2g 2p 4g0  2p0 2p0
0.0 1 L ¥ v ']
0.8 1.2 1.6 2.0 2.4 2.8
E(Ry)

FIG. 10. Collision strength for the resonance transition 2P°-
Din O*,
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less than for C*. The overall values of Q(*P°-2D) and the
Q(?P°-*P) appear to agree fairly closely with the five-state
calculations by Hayes;'> however, the detailed shapes of
the resonance structures are not as well resolved as in the
present work. A comparison of the present O°" rate
coefficients with the ones calculated by Hayes is in pro-
gress.

In Fig. 11 we show the fine-structure collision strength
Q(*P$ ,-*P$ ) which still shows some rather large reso-
nance features. The resonances 2s2p%(*D)3s("3D), ob-
tained for N2", are now bound states, but the (D)3d res-
onance, just above threshold, is quite prominent. It
should be noted that most resonance states manifest
themselves in a number of different SL# states, with
slightly different positions and shapes, and may add up to
a large feature. For example, in the case of the (2D)3d
resonance we expect contributions from total (electron +
ion) symmetries with L =0,1,2,3,4 and (2S5 +1) values of
1 and 3, a total of ten SL 1 states of even parity. With in-
creasing ion charge the energy separations also increase,
broadening the resonance feature. At approximately 0.6
Ry we have the 252p%(?P)3p set of resonances in the Gail-
itis averaging region. It is found that this feature makes
a noticeable contribution to the Maxwellian averaged
effective collision strength even at temperatures slightly
higher than 20000 K.

V. BOUND-CHANNEL RESONANCES

The close-coupling method is a low-energy approxima-
tion for electron-ion collisions, usually employed for exci-
tation of the few lowest levels of the target ion. As de-
scribed in Sec. II, however, it is necessary to include a
number of correlation functions in order to accurately
represent the wave functions of the ion states in the
eigenfunction expansion. In general, the larger the set of
principal configurations, dominating the terms in the first
sum of Eq. (1), the larger the set of bound correlation
configurations in the second sum of Eq. (1). We therefore
encounter a fundamental problem inherent in the close-
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FIG. 11. Fine-structure collision strength for the transition
2po 2po 3+
P3{,,-*P%,,in O°™.

coupling approximation. As one increases the number of
principal ion states one needs to carry out the calcula-
tions at higher energies where the bound-channel eigen-
values, often constructed from nonspectroscopic pseudo-
orbitals, are likely to be present, leading to pseudoreso-
nances. The problem is also exacerbated if one attempts
to improve the ion representation by including a large
number of correlation configurations. To put it simply,
one runs into these problems with the close-coupling
method at intermediate energies. Thus, while present day
supercomputers allow the inclusion of a large number of
states, and solve the resulting coupled channel equations,
many of the higher-lying eigenvalues and corresponding
eigenfunctions are not obtained accurately.

In the present work, the eigenfunction expansion for
C™ is represented by a CI basis set that is approximately
twice as large as the one for N>* and O**. In addition,
we have employed the 3d and the n =4 pseudo-orbitals
4s, 4p, and 4d in a scaled hydrogenic potential. In the
e +C7 scattering calculations we found large variations
in the background collision strengths above all thresholds
included in the eigenfunction expansion. While some of
the bound-channel correlation eigenvalues also lie within
the energy range covered by the C* thresholds, the wave
functions in this energy range are predominantly deter-
mined by the continuum channel functions explicitly cal-
culated in the R-matrix method and thus the effect of the
bound channels is minimal in this region (i.e., the bound-
channel functions simply provide additional correlation
to the continuum channels).

In an effort to understand precisely the nature of the
bound-channel resonances, we carried out an atomic
structure calculation for neutral carbon employing the
one-electron orbitals as obtained from the CI basis for
C™ (this is exactly the way in which the bound-channel

TABLE II. Some eigenvalues of bound-channel states of
e +C™ system.

State Energy?®
2s2p23p ('P°) 1.5816
2p°3p(3S) 1.6068
2p°3p(3D) 1.6094
2p%3d(°D") 1.6287
2p33p('P) 1.6336
2p33s('P°) 1.6496
2p33p(3P) 1.6686
2p33p('D) 1.6803
2p34d (°D°) 1.7170
2522p3d (D) 1.7293
2s2p3d (°P°) 1.7554
25s2p3d (°D°) 1.8140
2p°3d CF°) 1.8303
2p33d ('S°) 1.8314
2p°3d (3G°) 1.8461
2p°3d ('G°) 1.8634
2p33d('P°) 1.8734
2p33p('S) 1.8968
2p°4d (\F°) 1.9035

“Relative to the ground state 2s?2p 2P° of C*. All energies are
in rydbergs.
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functions are constructed in the close-coupling formula-
tion). The CI basis for C° is then chosen to consist of the
configurations determined by the e +C™ system, given
the C™ states that have been included. The atomic struc-
ture calculation for C° yields a large number of states; in
the present problem we determined 156 states lying above
the highest threshold of C* (2p32P°. In Table II we
have given a few of these eigenvalues. It is therefore not
surprising that the collision strengths for e +C™* scatter-
ing, in the region above all thresholds, contain structures
due to the large number of bound channels present.

The problem may be circumvented in one of the fol-
lowing two ways: (i) a T-matrix averaging procedure de-
scribed by Burke, Berrington, and Sukumar;16 or (ii) car-
rying out the R-matrix calculations with a simpler target
ion represented by very few configurations. Method (i)
essentially entails the determination of a background T
matrix that includes in an average sense the rapid varia-
tions due to the bound channels. However, in practice it
may be difficult to employ this procedure, particularly
when a large number of bound channels are present. At
present we are using method (ii) to calculate the collision
strengths in the intermediate energy region with all chan-
nels open. Different basis sets for Cct, necessarily small,
are employed in the calculation to achieve reasonable
agreement with the full 10CC calculations at the highest
threshold 2p®2P°. The calculation of the rate coefficients
at high temperatures requires the collision strengths at
high energies, which would be obtained through the

simpler calculation. For N2 and O3", the problem of
pseudoresonances at high energies will also be considered
in the same manner.

VI. SUMMARY

R-matrix calculations are reported for a large number
of transitions in CT, N2*, and O*" due to electron im-
pact. An extended R-matrix package, recently developed
for the Opacity Project, is employed for the close-
coupling calculations. Fine-structure transitions have
been considered through an algebraic transformation of
the LS coupled reactance matrices to a pair-coupling for-
mulation. The problem of bound-channel resonances in
the close-coupling method in the intermediate to high-
energy range is discussed and calculations are under way
to obviate the problem. The calculation of rate
coefficients at representative temperatures for the pres-
ence of C*, N2*, and O*" in astrophysical and laborato-
ry plasmas will be undertaken subsequently. The dataset
with the detailed collision strengths may be obtained
from one of the authors (A.K.P.).
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