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An algorithm for calculating the time-resolved evolution operator of a multilevel system dipole
interacting with a Gaussian-shaped laser pulse is developed through use of a compound Magnus ex-
pansion in compliance with Maricq’s convergence criterion. In conjunction with the Leverrier-
Bateman resolvent method, the algorithm allows the frequency spectrum for the interaction of the
multilevel system with a train of identical phase-coherent Gaussian-shaped laser pulses to be readily
evaluated. Furthermore, the algorithm renders possible the expeditious averaging of operator ex-
pectation values over the spectral bandwidth of the laser field. A prescription for gauging the accu-

racy of the algorithm is provided.

I. INTRODUCTION

A recent investigation' of the dependence of multipho-
ton excitation of polyatomic molecules on laser intensity
underscores the need to consider explicitly the shape of
the pulse when comparing experimental data obtained us-
ing high-energy fluences with computer-simulation re-
sults which, however, are usually generated on the as-
sumption that the pulses are rectangular in shape. In
fact, real pulses are generally “bell shaped” and therefore
do not have a constant intensity as when the pulses are
rectangular. The expedience in taking the pulse to be of
fixed intensity is generally justified on the basis of a slow-
ly varying amplitude approximation? (SVAA) in which,
for sufficiently long-duration pulses, the raising-on and
switching-off times are so short relative to the pulse
length that to all intents and purposes the pulse may be
considered to be rectangular in shape. With ultrashort
pulses® the number of optical cycles sustained throughout
a pulse’s tenure is small and the raising-on and
switching-off times can represent a significant fraction of
that epochal duration thereby invalidating the SVAA.
At most, the absorbed energies calculated within the sud-
den approximation must be considered' an upper limit to
their true values.

Elsewhere* I have promoted the usage of the
Leverrier-Bateman resolvent method® (LBRM) in calcu-
lating the transition probabilities for the excitation of
multilevel systems dipole interacting with a continuous-
wave (cw) or Gaussian-pulsed laser field. In contrast to a
previous treatment*® I now apply the rotating-wave ap-
proximation® (RWA)-in which one discards all rapidly
oscillating contributions to the transition rates—in con-
junction with the LBRM to provide a tractable algorithm
for evaluating the evolution operator of a multilevel sys-
tem interacting with a train of identical phase-coherent
Gaussian-shaped laser pulses. The importance of a
Gaussian pulse derives from the fact that, in principle
and in practice, it represents’ the idealized transform-
limited output from a perfectly mode- and phase-locked
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laser. In formulating this algorithm in Sec. II, I also in-
voke the Magnus approximation,® a unitarity-preserving
perturbative approach to the calculation of the evolution
operator; the algorithm is contingent upon the conver-
gence of the Magnus expansion in compliance with
Maricq’s criterion.®” Both the RWA and the Magnus
approximation are valid for all but ultraintense fields and
their joint use has proved useful in providing generaliza-
tions of the Rabi formula®® for the single- and multiple-
photon excitation transition probabilities of an isolated
and an aligned®® *® two-level system by a Gaussian-
shaped pulse, and in the calculation®® of the single-
photon fluorescence signal with attendant optical Ramsey
fringes from a two-level system following its interaction
with a train of phase-coherent Gaussian pulses. Also in
Sec. 11, a simple prescription for gauging the accuracy of
the algorithm is provided and the requisite averaging of
operator expectation values over the spectral bandwidth
of the laser field is discussed. The paper closes with a
concluding summary in Sec. III. Atomic units are used
throughout the paper.

II. ALGORITHM

A. Asymptotic solution

Within the resonance-constrained global RWA, %< the
interaction picture state amplitude matrix c¢(¢) of a mul-
tilevel (N, say) system evolves in accordance with the
Schrodinger equation

c()y=C(t)e(t) , (1a)

where ¢(t) is an N-vector whose components
¢, (1)={(m|W(z)) are the probability amplitudes for the
stationary energy eigenstates |[m ), m =1,2, ..., N of the
isolated system and the N X N proresonant coefficient ma-
trix C(¢) is given by
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In Eq. (1b), E® is the field strength of the semiclassical
laser field which is polarized in the z direction and is of
carrier frequency o, and has a Gaussian pulse envelope
f()=exp(—mt?/7}) of epochal duration 7, and full-
width-at-half-maximum (FWHM) spectral bandwidth
Aco=4(‘n'ln2)1/2/‘rp; B,y =0, — O is the frequency de-
tuning from the level separation w,,,=w,, —®,, where
the eigenstate |m) has energy o,, and pu,,
={(m|u,|n)=p,,, is the dipole transition matrix ele-
ment coupling the states |m ) and |n), u, being the z
component of the dipole moment vector. One may as-
sume the p’s to be real. If the states are of definite parity
the diagonal entries in C(¢) vanish since y, is an odd
operator. Also, if |m ) and |n ), say, are degenerate then
the phase factors exp(—i®,,,t) and exp(i®,,,t) are both
replaced by 2 cos(wgyt), with the retention of the counter-
rotating phasor of the field, as in the case of the diagonal
entries in C(?).

The Magnus® asymptotic solution to Eq. (1a) for the in-
itial conditions ¢(— o ) is

J

Haonexp(—idy,t)
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where the evolution operator U( « ) is given by the cumu-
lant expansion

U(wo)=exp[M(x)] (3a)
and with
M(o)= 3 M, (), (3b)
k=1
M (=)= [""dic (3c)
and
Moo)==1[""ar [" aricn,cun],  Gd

while for k 23, M , () is generally a sum of integrals of
k-fold nested commutators of C(¢).

Using Eq. (1b) in (3¢) and (3d), it is straightforward to
evaluate the entries in M ,(®)=(M,,) and
Mz( LY )=(M2,kl) as

M, (0)=i7,E°u;8,,exp[ —(wqr, ) /4m]+ éprOpk,( 1—8,,)exp{ —[sgnay, 7, 1* /4m) (4a)

and

N
M, ()= HT1,E®/2)* 3 M Opmbmi(1— 8, )exp{ — [wj+ (sgnd,, )17} /4m)

m=1

X {erfli(wy—sgnad,,; )Tp/2(27r)1/2]—erf[i(wo+sgn&)m, )7, /2(2m)1?]}

+y‘km( 1 —Skm ):u'mlsmlexp{ —[w(2)+(sgnzakm )2]712) /477';

X {erfli (wy+sgn@dy,, )7, /2(2m)' 2] —erf[i () —sgndy,, )7, /2(2m)'/?])

F W (1 =8 Wy (1 =8, Jexp{ — [(sgndy,, 7, )2+(sgn&‘)m,7'p )21/417)

Xerf[i(sgndy,, —sgnd,,; )7, /2(2m)' 7],

respectively, where §,,,=08(w,,,0,)=1 if v, =w, and
6, =000,,,0,)=0 if 0,7 0,, sgnd,,, =o,,, if m >n
and sgn®,,, = — @, if m <n for m,n=1,2,...,N, and
erf(z) is the error function at an arbitrary point in the
complex plane. The & factors in Eq. (4) account for the
possible presence of state-specific permanent dipole mo-
ments and/or level degeneracies in the system, both of
which require the retention of the counter-rotating pha-
sor of the field.

The LBRM [Refs. 4, 5(a), and 5(b)] gives U( ) in Eq.
(3a) as

U(o)= Y exp(A )N, (5)
K

(4b)

where the A’s are the unique eigenvalues of M(« ) and
the N’s are NXN generalized*® Bateman coefficient

matrices®® with the projection, idempotent, and sum-
rule properties
N,N,=0 if m#*n , (6a)
N, =N, forn any positive integer , (6b)
and
SAWN,,=M"x) for n any integer , (6¢)
m

respectively. The summations in Eqgs. (5) and (6c) are
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over the distinct eigenvalues of M ( o0 ) which must be cal-
culated numerically and the corresponding N’s are exped-
itiously evaluated using Leverrier’s algorithm.*)5@)5(b)
The properties given in Eq. (6) serve to gauge the numeri-
cal performance of this scheme for evaluating U( ) as
Eq. (5), subject to the supply of a suitable approximation
to M( o). Formally, as the integral matrix for Eq. (1a),

)= 3¥_,ci(w)e], where the ¢ ;’s are the linearly
independent solutions of Eq. (1a) corresponding to the in-
itial conditions e, =(8y), j=1,2,...,N. The LB
decomposition of U(w) in Eq. (5) gives the ¢ ,’s as
cilw)=T73 exp(A,, )N e, ie, the resultant of the
nonunitary rephasing of the Bateman projections of e ,
over all the unique eigenvalues of M( « ).

Use of the RWA and the Magnus approximation in
providing M( o) must now be justified. While criteria
for validating the RWA are available®® ~ %% in the case
of the cw excitation of multilevel systems, it is not until
recently that the convergence of the Magnus expansion
for periodically perturbed two-state systems received
much attention,®¢’ 781 although earlier comparative
studies'® of particularized systems against corresponding
perturbative treatments have been made. Maricq’s
criterion—Eq. (5) of Ref. 8(1)—for the convergence of
the Magnus expansion is equally valid when the perturb-
ing field is modulated by a pulse envelope. Joint use of
the RWA and the Magnus approximation amounts to a
compound Magnus expansion since the former is in
fact®? equivalent to a first-order Magnus approximation.
One must first justify use of the RWA and further justify
the use of a subsequent Magnus approximation. If any
two-level subsystem, |m ) and |n ), say, of the multilevel
system violates the convergence criterion for application
of the Magnus expansion, Maricq conjectures®" that the
expansion should not hold for the full system either. Ap-
plying Maricq’s criterion to Eq. (1a) for the two-state sys-
tem, but with retention of the counter rotating phasor of
the Gaussian-pulsed laser field in C(t), requires that
|t E®7,| <7 for the RWA to hold throughout the en-
tire duration of the pulse. Again applying Maricq’s cri-
terion to Eq. (la), but this time with C(¢) being given
within the RWA by Eq. (1b), yields the requirement
it E°7,| <27 so that if use of the RWA is justified,
then so also is a subsequent Magnus approximation. Im-
plicit in the practical applications of the Magnus expan-
sion is its assumed rapid convergence whereby only a few
low-order terms have a nonnegligible contribution to the
sum. The conservation of probability is not a suitable in-
dicator of such convergence since if C'(t)=—C(t), a
truncated Magnus expansnon assures a unitary estimate
of U( ), while if Ct(¢)% — C(t), as when one requires to
admit a dissociation (or ionization) channel through the
uppermost level by ascribing to it the phenomenological
natural width yy so that its energy is @y —iy, /2, one
does not wish to forego use of the Magnus approxima-
tion I have previously shown*® that the eigenvalues

=|Alexp(i27A), where

=(1/2m)tan” [Im(A)/Re(A)],

of the exact U( ), irrespective of whether or not it is un-
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itary, satisfy the relations
N
IT (A (0)[=1 (7a)
k=1
and
N N
S Aylw)=(7,E°2m)expl — (o7, /47] 3, s -
k=1 =1
(7b)

Thus for the additional effort required to evaluate the ei-
genvalues of the approximate U( ), the extent to which
these eigenvalues fulfill the conditions in Eq. (7) serves as
an indicator of the quality of the second-order Magnus
approximation and may suggest the need to proceed to
even higher orders in the expansion. One can explicitly
show that Eq. (7) holds exactly for the two-state
system”®~%¢ within both the first- and second-order
Magnus approximations.

If the system interacts with a train of n=1,2,...,
identical phase-coherent pulses, ! then its state amplitude
matrix is given through use of Egs. (5) and (6b) in Eq. (2)
as

" Zexp(nkk) we(—o0) . (8a)

Equation (8a) cascades the state amplitude matrix of the
multilevel system over the duration of n identical pulses
using the Leverrier-Bateman decomposition of U( ), as
given in Eq. (5), for the first pulse in the train. Indeed,
one may view E(% (8a) as the pulse train’s analog of the
Floquet form'>~!* of the state amplitude matrix for a
multilevel system interacting with a cw laser field in
terms of the Lyapunov and characteristic exponent ma-
trices, both of which are obtained by evaluating U(wgt)
over the initial 21 /w, period of the Hamiltonian opera-
tor. Essentially, the idempotency of the Bateman ma-
trices for the initial (and successive) pulse(s) in the train is
the counterpart of the periodicity of the Lyapunov ma-
trix over the initial (and successive) optical cycle(s) of a
rectangular-shaped pulse.

On using Eq. (6a) in (8a) it follows that for all unique
eigenvalues A,, of the Magnus operator
N ,.¢"()=exp(A,, )N "~

m=

New), n=1,2,... (8b)

where ¢©(0)=c(— ). Thus the nth pulse causes a
Bateman projection of ¢'" () to evolve to its current
value through the action of the corresponding rephasing
transformation. Equation (8a) gives ¢'™( ) as the resul-
tant of n-fold rephased Bateman projections of ¢(— ).
Similarly, a summation of Eq. (8b) over all the unique ei-
genvalues of M( ) and use of Eq. (6c) gives ¢"( ) as
the resultant of the rephased projections of ¢ (o).

The induced transition probability PiP(wg, )
=|ci"( 0 )|? for excitation to the state |k ), following the
interaction of the system with the train of n identical
phase-coherent pulses and for the most interesting case in
which the ground state is initially fully populated, is
given by
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Pi(wg, 0)="3 exp[n(A, +A%)INiy mNE m 9
m,m’

and the dissociation probability in the event that the up-

permost level has energy wy —iyy /2, where yp is the

phenomenological radiative width, is given by

N
PP (0g, 0)=1— 3 PP (g, ) . (10)
k=1
The mean number of photons of energy w, absorbed by

the system following its interaction with the train of
pulses is

M, ()= i‘TpEoﬂklaklexp[ — (w7, /47]
X

i _ L
+ZTPE0‘uk1(1—8k, Jexp[ — (sgnay, 7, )* /4w ]{ 1 +erf{ 7' /Xt —i sgndvy 5 /2m) /7, ]}

and

N
(wpl o))"= 0P wg, ©)/wy . (11)
k=1

B. Time-resolved solution

So far it has been assumed that only the value of the
evolution operator at the completion of the initial pulse is
of interest. Actually the time-resolved entries in M ()
and M ,(¢) are given by

(2+erf[m! /(2 —iwoff, /217')/‘rp]+erf[7r”2(t +iw07§ /2m) /7, 1}

(12a)

N
MZ,kl(t): %(EO/Z)z 2 ykmﬁkmuml(1—5,,,1){[I(wo,sgncT)m,,t)-l-I(—wo,sgn&‘)ml,t)]

m=1

—[1(sgn®,,;,wq,t)+1(sgnad,,;, —wy, )]}

Fliem (1= 8 Wi Ot { LI (5gND .y 00, )+ T (5gNDy,,, , — 00, 1) ] — [ (@, S8NB, , 1)+ I (— g, SEND 15 2)]]

+:u‘km( 1 _Skm ),uml( 1 _6m1 )[1(Sgnmkm’Sgn&)ml’t)_I(Sgna)mlysgna)km 7t)] ’

(12b)

respectively, for k,/ =1,2,..., N and they reduce to Eq. (4) in the long-time limit. The I’s appearing in Eq. (12b) are

defined by

I(a,b,t)=f_t dt’exp(—m’z/fﬁ-f-iat')f" dt"exp(—m

t"*/rh+ibt")

(12¢)

where a and b are constants, and while they do not have obvious closed-form representations they are easily evaluated
using standard Gaussian quadratures when expressed in the form

I(a,b,0)= Lrlexp[ —(a’+b?)1} /4]

X |1+erf[m"/ Xt —iar2 /2m) /7, 1+(2/7,) [ dt'exp —m(t'—ia? /27 /73]

which in the long-time limit reduces to

I(a,b, 0 )=1rrexp[ —(a’+b*)7} /4n]{1+erfli(a —b)T,/2(2m)'*]} .

Xerf[w'*(t'—ibtl /2m) /7,] | , (12d)

(12e)

The time-resolved U(¢) is evaluated through its Leverrier-Bateman decomposition in the form given by Eq. (5) where
the A’s and the N’s are now implicit functions of time. The accuracy of the computed U(t) can be assessed by the ex-

tent to which it fulfills the inequality'4®

O()<I+N"'Mifexp[Nd(1)]—1]} ,

(13a)

where the caret on U(t) signifies that one takes the modulus of its matrix elements, II is the Vandermonde matrix, and

the scalar function ®(¢) is defined by

o= [" ar||C(n)|| < L7, E% 1 +erf(m' 2t /7,)1||ps, | -

=3Tp

(13b)

Additionally, since the eigenvalues of the exact U(?) also satisfy the generalization of Eq. (7) as
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N
II A ()]=1 (14a)
k=

and
N N
,21 Ak(t)Z(TpEO/STr)exp[—(wo'rp )2 /4m]{2+erflm! /(¢ —iwo'rf, /277)/‘rp]+erf[17”2(t +iwo7',2, /2m) /7, ]} kélukk

(14b)

for all ¢, the degree to which the approximate U(¢) fulfills these relations is an indicator of its quality.
The time-resolved transition probabilities P{}(wg,?), the dissociation probability P4\ (w,?), and the mean number of
photons absorbed {w,(¢))'" throughout the duration of a single pulse are given by the analog of Egs. (9)—(11), respec-

tively.

C. Spectral bandwidth averaging

The time-resolved and asymptotic operator expectation values, while they fully include the temporal variation in the
field strength throughout the pulse duration, should strictly be further averaged over the pulse’s spectral bandwidth.
Thus, for example, the bandwidth-averaged asymptotic transition probability for excitation to |k ) at the mean carrier
frequency w is

Pl @, )= [ " "dw F(E ()P0, o )/ [ TdoFEW), (15a)

where the Fourier spectrum of E (¢) is given by

F(E (1))=17,E°{exp] —(0—wy)*1} /4m] +exp[ — (0 +w,) 75 /47 ] }exp é(n——l)coT csc(doTsin(lnwT) , (15b)

f

T being the time delay between contiguous pulses. initial optical cycle (27 in the variable wgyt), following
George and co-workers'® have addressed the necessity of  which the Floquet theorem permits one to cascade the
properly including the time variation of the field and  evolution operator over an arbitrary number of optical
their calculations indicate that single-photon collision  cycles of the field. If the Hamiltonian operator is also
cross sections in a multimode laser field can be consider-  self-adjoint and the quasienergies are discrete and bound-
ably different from those in a single-mode field of the  ed, Hogg and Huberman!” have shown that the state am-
same average intensity. The choice of Ny, Gauss-Hermite  plitudes, or any bounded operator, are almost periodic
quadrature points {u,, } and weights {a, | for the band-  and return arbitrarily close to their initial values infinitely
width averaging amounts operationally to convoluting  often. Recent significant advances in the practical utility
PiM(w, ), say, with an Ny-mode laser field;'*"!3®>16 of the Floquet formalism are Tietz and Chu’s most prob-
these N, modes are adjacent axial modes of a single  able path approximation'®® and Chang and Wyatt’s use
transverse mode and have nonfluctuating amplitudes and  of artificial intelligence techniques'®®"!8¢) for pruning
phases whose photons are Gaussian distributed about @, the order of the Floquet matrix, each employing selection
at frequencies wy+Awu,, containing fractional photon criteria that are dependent upon both resonance detun-
inventories a,, /7%, m=1,2,... ,Ng, respectively, ings and dipole coupling strength parameters, and the in-
delivered over a linewidth Aw=4(71n2)""2/7 . In the troduction of the recursive residue generation method
single-mode limit that Aw—0, 7, — o with which the cw (RRGM) by Wyatt and co-workers'® for the evaluation of

laser field is monochromatic and bandwidth averaging is  transition amplitudes of systems with a large number

unnecessary. (N.Z 10%) of .lev.els. I have recently in.troduced‘“a) an alge-
braic prescription for the construction of a Kubo-type

III. DISCUSSION AND CONCLUSIONS trapsformation to a repre_sentation whe'rein the Harpil-

tonian operator for a multilevel system dipole interacting

The last two decades have yielded a substantive litera- with a cw field is time independent, subject to the imposi-

ture'* on the application of Floquet theory'>!* to the dy-  tion of the RWA and the appeal to transition dipole
namics of multiphoton processes in atomic and molecular ~ selection rules that validate the neglect of unimportant
systems through their interaction with intense laser-light  couplings; the resultant sparse Hamiltonian operator is
sources. With the laser operating in either the cw mode  arbitrarily constructed on the basis of the near-resonant
or as a pulsed source having such long-duration pulses as laser coupling of the ground state to the excited states,
to validate the SVAA,? the field is taken to be mono- but without direct appeal to the magnitude of the dipole
chromatic and of constant intensity and the periodicity of  coupling strength parameters.

the interaction limits the time interval over which one The Hamiltonian operator of a multilevel system under
has to integrate the dynamical equations of motion to the  excitation by an ultrashort-duration laser pulse is not
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periodic and the entire arsenal of Floquet theory'?~ ' and
transformation procedure®®»®<>20 js jnapplicable. In
previous papers*®"?! the strategy of computing the evo-
lution operator, for both periodic and aperiodic Hamil-
tonian operators, through use of an algorithm based on
its Riemann product integral representation®? in conjunc-
tion with Frazer’s method of mean coefficients,?’ has
been advocated. Basically this involves the discretization
of the interval (— o,¢] into a sufficient number of serial
subintervals and evaluating a chronologically ordered
product of matrix exponentials of the subinterval-
averaged Hamiltonian operator. The optimum number
of subintervals per optical cycle ensures the fulfillment at
any time ¢ of the inequality in Eq. (13) and the condition
in Eq. (14) on the eigenvalues of U(¢). The matrix ex-
ponentials are evaluated either by a complete spectral
decomposition of their arguments?' or, more efficiently,
through use*® of the LBRM.® The more recent so-
called “time-slicer” method proposed by Hirschfelder
and co-workers®* is identical to that algorithm*®"2!
whose essential approach appears to have been first
used?’ in an engineering context and whose rigorous basis
is provided by the Riemann product integral formalism.??
When one considers the requirement to bandwidth aver-
age operator expectation values, this approach is clearly
prohibitively costly in processor and storage resources
when N is large, say, N = 100.

In this paper, as a result of adopting the compound
Magnus expansion in compliance with Maricq’s conver-
gence criterion,®? I have succeeded in dispensing with
the computationally taxing need to evaluate matrix ex-
ponentials at a potentially large number of subintervals of
each optical cycle sustained throughout a single
Gaussian-shaped pulse’s tenure in favor of a much small-
er number of such evaluations when the time-resolved
evolution operator is required or to just a single evalua-
tion when one seeks the asymptotic value of the evolution
operator. As before, Egs. (13) and (14) serve to gauge the
accuracy of the approximate U(t) for |¢| < «. Since ap-
plication of Eq. (7) requires the eigenvalues of U( ), one
could, as an alternative to the use of Eq. (8a), also com-
pute the corresponding eigenvectors and evaluate U"( o)
as Zexp(nA)Z 'forn=1,2,..., where A is the diago-
nal matrix containing the eigenvalues of U( « ) and Z has
the corresponding eigenvectors as columns. However,
the computational time required to evaluate the requisite
Bateman N matrices is much shorter than that required
to evaluate Z and Z~'. The LBRM and the RRGM re-
quire only the eigenvalues of M(?) and obviate the need
for the corresponding eigenvectors in constructing
U(t)=exp[M(t)] for |t| < ; this common feature partly
accounts for the efficiencies of both of these schemes.?®
Indeed, the independent Bateman matrices can be evalu-
ated concurrently by parallel array processors and the
fulfillment of the properties in Eq. (6) provides a cross-
check on their accuracies. Furthermore, their idempo-
tency renders Eq. (8a) as the analog of the cw Floquet re-
sult for a multilevel system interacting with a train of
identical phase-coherent laser pulses.

The joint use of the RWA and the Magnus exponential
expansion warrants some commentary. Appeal to the

GERALD F. THOMAS 41

RWA was made solely on physical grounds and not as an
expedient to yield Eqs. (4) and (12). Maricq’s
conjecture®" provides the basis for use of the compound
Magnus expansion. Extension to higher orders in the ex-
pansion is straightforward although, whatever about
MACSYMA, the MuMath and Maple Leaf symbolic mani-
pulators are not helpful in this regard.

One notes that the approach adopted herein for solving
the state amplitude equation of motion for a multilevel
system interacting with a Gaussian-shaped laser pulse is
formally analogous to Hyman’s procedure?’ for solving
the many-channel, close-coupled symmetrized impact-
parameter equations description?® of electron-atom col-
lisions. In the electron-atom scattering context the Ham-
iltonian operator originates with the coupling of many
internal states of the target atom by the incident electron
via their long-range Coulombic forces and is given in
terms of the asymptotic straight-line trajectory velocities
and wave numbers for each channel, the impact parame-
ter, the position vector of the electron with respect to the
atom as origin, and the matrix elements coupling
different channels through the dipolar term of the poten-
tial. In both cases the Magnus matrix is available
through first- and second-order terms as closed-form ana-
lytic expressions and the numerical work is essentially re-
duced to a matrix exponentiation. In the present context
this exponentiation is required over the spectral band-
width of the exciting pulse, while in the electron-atom
collision context it is required for each value of the im-
pact parameter of the projectile. To accomplish this task
I advocate use of the LBRM, while Hyman, following
Mandelberg, 2% chooses the aforementioned diagonaliza-
tion procedure.

In conclusion, the computational effort required to
evaluate the evolution operator for a multilevel system in-
teracting with a realistically shaped short-duration pulse
is not appreciably greater than that needed to apply ei-
ther Floquet analysis'* or transformation proced-
ures*®6:20 and mitigates reliance on the assumption
that the SVAA is valid. In return for the effort expended
in evaluating the evolution operator over the tenure of a
single pulse, Eq. (8a) permits one to efficiently cascade the
state amplitude matrix over the total duration of a train
of such phase-coherent pulses, predicated on the conver-
gence of the Magnus cumulant expansion of the evolution
operator. Obviously the entire approach presented here
lends itself to pulse shapes other than Gaussian; indeed,
only Egs. (4), (7b), (12), (13), (14b), and (15b) are affected
by a change in the pulse’s shape as embodied in the
modulating envelope f(¢). Also, Maricq’s radius of con-
vergence of the compound Magnus expansion depends on
ff:dtf(t), the epochal duration of the pulse. The sui-
tability?® of the proposed algorithm for implementation
on emerging multiprocessor machines*® is under investi-
gation in the context of the multiphoton excitation of
molecules by pulsed high-intensity lasers. The results of
these applications will be reported elsewhere.
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