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Dispersive effects on the main-wave modulational instability in free-electron lasers
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The main-wave one-dimensional modulational instability due to the dispersive terms of the wave

equation in a free-electron laser is introduced and analyzed. We derive the appropriate dispersion

relation and compare its associated growth rate with one due to wave-particle energy exchange

alone, as obtained by Davidson and Wurtele under the deep trapping assumption [Phys. Fluids 30,
557 (1987)]. It is found that, depending basically on the relation between some characteristic pa-

rameters, the modulational instability may be governed by wave dispersion. We also discuss the

effects of waveguides on these instabilities and the behavior of the unstable modes as a function of
the mentioned characteristic parameters.

It is known that the initial parametric instability in
free-electron lasers (FEL) saturates when particles begin
to be trapped in the ponderomotive wells formed by the
beating of the main electromagnetic wave and the wiggler
field. ' As was discussed by Davidson and Wurtele, one
essential point is to understand the stability of such a
state because, in general, the space-time variation of the
main signal may affect its monochromaticity degrading
FEL efficienc (of course, we are not talking about a
proper tapering of FEL's parameters, which may enhance
its gain ).

In the present work, we reconsider the problem of the
main-wave stability in the sense defined by Davidson and
Wurtele. In other words, given an initial steady-state
wave, we wish to know if slow perturbations on the phase
and amplitude of this wave are unstable functions of
time.

An important difference, however, will be introduced.
Davidson and Wurtele discarded all the slow second
derivatives in Maxwell's equations for the main wave
based on the reasonable (but not always correct) supposi-
tion that their effect is smaller than the one due to the
first derivatives. In their case, the modulational instabili-
ty (MI) was originated by energy exchange between wave
and particles. In our treatment we will keep these second
derivatives. Putting in another way, we may say that our
interest will be the analysis of the instabilities that come
out as a combined result of these second derivatives and
the already mentioned wave-particle energy exchange.
The resultant instability will be called modulational insta-
bility due to kinetic effects (MIK) when the second
derivatives are not important. On the opposite limit,
when they are decisive in determining the signal of the
perturbation squared frequency, the instability will be re-
ferred as due to dispersive effects (MID). Modulational
instability due to dispersive effects has been discussed by
many authors in many contexts, ' and here we intend to
show under which conditions it may dominate the insta-
bility processes.

By definition, two electromagnetic waves A and A
are present in our system. They are described by the fol-
lowing functions:
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with a'(z, y, t)= a'(z—,y, t)e, a' (y)—=a'(y)e, and e(—= 2x)
being the vector representing the polarization.

The field A is the one corresponding to the main signal
and the field A„, is the one describing the (given) wiggler.
It is seen that as the wiggler wave is moving to the left (or
right, depending on the signal of k ), we are not working
in the lab frame. It will be clear, however, that the frame
we are using (the ponderomotive frame ) offers a decisive
number of advantages. Transformations to the lab frame
are easily done and will not be analyzed here. We also as-
sume that all transverse (y) dependence of the field a on
the coordinates is due to the presence of a waveguide
aligned with our z axis. The precise three-dimensional
structure of this waveguide will not be specified in this
paper, although it may be relevant in a variety of situa-
tions; in our work, the waveguide will manifest itself ba-
sically through the dispersion relation between co and k,
which will be derived by assuming the presence of two
conducting plates at y =+m/(2k, ) and a'=a cos(key),
with k~ representing the transverse scale of our system
(which may be equivalent to the longitudinal one). It is
still to be noted that we will not be considering the pres-
ence of harmonics of the main signal and electrostatic po-
tentials, which may be justified if the plasma is rather
tenuous (to /co-'((1 with to as the plasma frequency of
our system j.

To analyze the particle orbits, we assume
ea'/mc ((1,and use the force law in the form

md ( y v ) =—
(
—i), A'"+ v X V X A"' ),t

with A' '= A + A, y
—= [1+(ea' /mc ) ]'~, m as the

electron rest mass, e as the electron charge, and c as the
velocity of light.

To solve the above equation we take its x component,
substituting the solution into the longitudinal one. This
gives
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where

totA
ymc

a„'a 'cos[( k +k„)z + cr ],e A
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(2)

[a', c'(a,'+V,')]—A=4~cJ,
where J is the transverse current,

(3)

J=n vj

Writing A in the form (1), we obtain from Eq. (3) and
from the assumed forms of a', n', and a' (upon an in-

tegration along the y axis),

[
—[co —c g(k )]—2i(cuB, +c kB, )+8, —c 0, )a

k~
=4rrce (nuj )„I, ,

2
(4)

where (nui) i, represents the (co, k) Fourier component
of the physical quantity nui (computed at y =0). The
function g(k ) incorporates all the transverse effects of
this waveguide. It has the form

with A as a number of order 1 that represents the high-
frequency effects generated by linearly polarized waves'
(in circularly polarized systems with e=x+iy, A=1).
Here, A will not be important; soon it will be absorbed by
other physical quantities.

In the set (2), we have defined, without loss of generali-
ty, a' as being purely real, and a =8'e' with
and o as (real) slow functions of their argument
[(co,k)(a', a ) « (B„t),)(a', a )]. We suppress motions
along the y axis by assuming the fields to produce trans-
verse ponderomotive focusing forces. This can be
achieved by using wigglers of the form a~ =a cosh(k„iy)
(Ref. 9), for example. In that case all the particles are at-
tracted toward the plane y =0 where all the fields are lo-
cally homogeneous. It is precisely this local homogeneity
that allows us to consider the y component of the trans-
verse momentum as a conserved quantity which, besides
enabling us to produce Eqs. (2) with U =0, justifies the
approximate discarding of the transverse spread due to
beam emittance and wiggler and main-signal inhomo-
geneities (see Ref. 9).

With these comments in mind we can write an expres-
sion for the density of particles n ':

n'=n(z, t)5(y) .

As it is known, we see from the set (2) that the longitu-
dinal motion of the particle is driven by an "e6'ective po-
tential, " the longitudinal ponderomotive potential. To
simplify the model as much as possible (without affecting
its physical content) and to compare it with previous
ones, eventually we will assume deep trapping of parti-
cles in the ponderomotive wells. This situation may not
be the real one, but may provide very useful information
in what follows.

We need now an adequate evolution equation for the
variable a. To deduce it, we begin with the wave equa-
tion for the field A

g(k )=k (5)

The next step is to calculate the density n in term of
the field A (and A„), following the above rule to select
only the components of the product nut which are in
phase with the main signal. Taking advantage of the
periodicity of our system, let us represent n in the form

i s- ( k -+ k )z
n = g n, e (6)

Each n, is to be obtained by assuming its dependence
on space to be weak

2m. z+ 2~/lk+k„, l —is(k+k )z

ik+k„ i

(7)
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where we are adopting, from now on, the following nor-
malization conditions and definitions: t ~cot, z ~(co/c)z,
(a, a ) —+(e/mc )(a, a ), co&=(4rrNoe /ym) (~k+k ~/
2nco )(ki/2), 'b. =[co —g(k )c ]/co cup, V——=c k/co,
and zo as the equilibrium position of the particles inside
the ponderomotive wells, it being z* just the departure
from this equilibrium (z =zo+z'). We notice that

i [(k + k )/a)]czo
e '= —1 (independent of z). This implies that
z* must be a slow function of z which, as we shall see, is
true.

As it was said, the amplitude a depends weakly on z
and t. Let us rewrite this condition

(co, k)a ))B,,a ))B„B,a .

In this case, we see that the dispersive term of Eq. (9) be-
gins to play a role only in the situations for which

{8,+ V/cB, )a «B,a, V/cB, a . (10)

Later on we will see when condition (10) may be valid.
Right now, let us perform the transformation
(t,z)~(7, $) with t =r and g=z —(V/c)t Using the new.
variables and the slow modulation assumptions together
with the condition (10), we may rewrite Eq. (9} in the
form

The point z is one around which we wish to know the
value of n, . Of course, were n a strictly periodic func-
tion, n, would be z independent; here we are only assum-
ing d, n, «(k +k )n, .

Equation (7) tells us that

—is (k + k„, )z

fk+k. /

'

where z, a function of the point z, is the location of the
deeply trapped particles inside the integration region of
Eq. (7} and No is the linear density (constant) of particles
along the x axis inside each ponderomotive well [No has
a dimension of (length) '].

By inserting Eq. (6) in the right-hand side of Eq. (4),
and by taking its components in phase with A, we get
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~ [[A: +k,g j/~]&~
(
—b, —2ia, +Da~)a =copa e

with

D = p'2/c2 —1 .

A special equilibrium for the field a ( =—ae' ) will be an-

alyzed. This state is the one for which a is constant
(=o, ) with o and z* equal to zero. The condition for
its existence is

Q~—h=cop ()0) .
&eq

A similar condition as the above was obtained by
Davidson and Wurtele, who considered the factor 6 as
equal to zero, using in its place a derivative of an inhomo-
geneous equilibrium phase 2V/c(acr, „/az), to provide
the steady-state balance represented in our case by Eq.
(12). Actually, in the Appendix we show that the
relevant physical quantity that characterizes either the
equilibrium or the dynamical state is not 5 or the deriva-
tive alone but the sum b + (2 V/c)ao, /az [if we consider

~ao,~/azl =const&&~(k+0 )cr,~~, as in Ref. 2]. That is

precisely the quantity to be used to order to establish
contact between both papers, which is a natural conse-
quence of the complete similarity between the small fast
wave-vector mismatch implicitly contained in 6 and the
small equilibrium wave vector represented by Bo., /Bz.

In other words, there wiH be no problem in defining
correspondence between the present work and Davidson
and %'urtele's; it is just necessary to keep in mind that
systems with —5=&~a /a, and ao, /az=O or b, =O
and —2V/c(ao, /az) =co a /&, are equivalent.

Now, let us perturb the equilibrium (12) by functions of
the form (&, , o, )=e(a„cr,)e" & ' (e«1). In this
case the linearization of the complex equation (11) (which
produces two real equations involving 8, 0, and z') about
the equilibrium state represented by Eq. (12), together
with a "deep trapping" version of Eq. (2)

'2

with

COg

[0+(V/c)K]' —cg' 5+20( V/e)K
'

5—:—K —mii, 0 « ( V/c)K .
V

Notice that to arrive at the first equation for 0, we be-
gin by departing from our set (2). Then we expand the
argument of the cosine using the deep trapping hy-
pothesis (k +k, ,

)z'+cr «1. The next step to observe is
that the particles (z*) basically vibrate within the range
of one potential well, to convert the total time derivative
into a derivative that does not operate on the slow spatial
dependence of the relevant functions. Then we use the
transformation ( t, z)~ (r, g) and proceed.

To satisfy requirement (10) we would have to show that
0 /K (adimensional quantities) is much smaller than 1.
From Eq. (11), we see that the term DK already gives
contributions to the frequency 0, in the correct scale be-
cause )D~ &0(l) and K &&1. So, in practical terms,
what we still must require upon Eq. (13) is that the con-
tribution to the frequency produced by the nondispersive
terms be such that ~b, (I+a)/K

~
&&1. By using the

definition of a and the condition 0 (&K, we obtain

(14)

If a is very small, condition (14) may be satisfied even
for large values of ~b/coii~. However, we will see that
this situation does not correspond to any type of instabili-
ty. So, our next step will be to find out under which con-
ditions even large values of a [ ~a~ ~ 0 (1)] still render re-
lation (14) as a true one. From this relation, it is already
possible to see that ~b, /cos ~

must be small ( ~A/coii ~
&&1);

let us show that it is also a sufficient condition.
Without the terms proportional to DK, Eq. (13) is just

the dispersion relation derived in Ref. 2, under condition
(14) (with the corresponding frequency being represented
by Qxi),

40 =a K (15)
~a

With this relation and the definition of a [Eq. (13)] one
can find a restriction on its maximum permissible value

k+0
0] —— CZ

and

2k+0,
coii =(c/1') AQ~Q, qM

if we consider (from now on) V/c =0 (1).
By replacing a by a,„ in relation (14), we find the

sought suScient (and necessary) validity condition of our
theory

40'=(a+DK )[b(1+a)+DK ),
with

(13)

gives the following linear dispersion relation between the
frequency 0 and the wave vector K:

which defines a particular regime in the FEL sideband in-
stability, the strong pump regime as introduced by
Davidson and %'urtele.

Now let us analyze relation (13) for a wide range of K
variation.

(i) %hen K (&~z, we ~rite 1+a=K /~z to con-
clude that we may have an instability of the MID type
(the sign of the complex frequency 0 depends on that of
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=b,coii(h+Dcoii) .

Introducing the frequency Ao as

2Qo—=
I
(6+Deus )Dcoz I

'

(16)

from Eq. (16), two important unstable regimes may be an-
alyzed.

(a) Q2=QO. Here, writing Q:— sgn(h—/D)Qo+v
(Ivl &(Qo), we obtain the maximum growth rate
(v,„:i I—, I & 0) in the form

I =ID' /Hl' (17)

which is valid when (consider the smallness of v)

H» l~g /6 I'"( & 1)

(b) I
Q

I
»

I Qo I. Here, in order to have MID, we see
from (16) that H should be greater than 1 (one more
time). The maximum growth rate may be estimated as
(considering H ))1)

ID G) g

H1/' (18)

with the instability appearing in the parameter space
range

DK ) if 1 & H & ( co~ /K), with H =
I
D co~ /b,

I
. If H ( 1,

the instability is a MIK one and if H & (co+/K), no insta-

bility is present.
(ii) When K ~co&, one may approximate the disper-

sion relation by

[5+2( V /c)co& Q)[4Q (b +—Dcos )Dcoq ]

(K «co~); consider the negativity of b, and D together
with point (i) above.

As for the second point, we have seen that at synchrot-
ron resonance (K ~co~), where the most important in-

stabilities are located, two different behaviors for the un-
stable mode were found to occur. One of them, given by
relation (18), is the direct extension of the one analyzed
by Davidson and Wurtele. The other one, given by rela-
tion (17), has a different structure, it being absent if D is a
very small quantity. In fact, mode (17) is a further exten-
sion of mode (18) to even larger values of H. With this in
perspective, we may say that as 5 tends to small values,
beginning from lb, /co~ I &&1, MI passes by three regimes:
kinetic regime (MIK) when H (1( lb I

) ID~co~),
a dispersive regime [given by (18)] when
1«H «I~~/&I'"(=D'~ ~«l~ «IDI~'p),
another dispersive regime [given by Eq. (17)] when
H)&l~ii/b, l' ( Ib,

l
&&D coii) (see Fig. 1). One shall

be aware of the importance of small Ib,
l

as it is this range
that corresponds to strong amplitude laser waves and/or
tenuous beams. The precise structure of the waveguide
was not taken into account. Calculations including these
(and others) effects should be carried out in the future.
We think, however, that the conclusions regarding the
importance of the usually discarded wave equation's slow
second derivatives will not be invalidated anyhow.

The author acknowledges the benefit of useful discus-
sions with Dr. H. P. Freund and the hospitality of Dr. C.
S. Wu's group at the Institute for Physical Science and
Technology, University of Maryland. This work was
supported by Conselho Nacional de Desenvolvimento
Cientifico (CNPq), Brazil.

1«H «lcm~/b, l'" . (19)

One should notice that this last instability [Eq. (19)], is to
be interpreted as a direct extension of the strong pump
regime of the MIK. We still quote that when H ))1, the
value of I given by Eq. (18) is much larger than the one
calculated without dispersion; in fact, the growth rate
(18) is H' times larger than I xz [which can be calculat-
ed from Eq. (15) with a=a,„].

(iii) If a~0 (K &&co~), we finally have from relation
(13) 4Q =(b+DK ), which indicates that in this situa-
tion the system is stable.

Now, let us recall the two main points derived in this
work. First of all, we note that MID may set in only
when H ) 1. With this in mind, we see that when

g (k )~k (the case where wave-guiding effects are
small), the instability, in principle, cannot be a MID one.
Indeed, in this situation we would have —D~Q +6
(take a look at the definition of D, V, and b, ), which
would produce a value of H such that H~co~( «j. ) if
we consider the fact that, in practice, as the amplitude of
the laser field is much smaller than the one corresponding
to the wiggler, co « Ihl [see Eq. (12)]. On the other side,
when wave guiding is important, g(k )Wk,
D =0 (1)( & 0), and H may be very large, which indeed
conducts to the possibility of MID. These reasonings
also permit to conclude that the dispersive terms have a
stabilizing inhuence on the small frequency range

FIG. 1. Schematic view of I "I —= 2I /[cu (c/i')' '(Dcoq) ]I
as a function of H. The solid line represent the growth rate as
calculated without dispersive terms while the dotted one in-
cludes their effects. One shall note that the two curves begin to
diverge around H = 1.
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APPENDIX

Let us demonstrate the equivalence between b, and (a
possible) r)ao/()z. To do so, let us write the field a in the
form

if we disregard small terms of order A, . After simplifying
e ' ' with the corresponding dephasage of the equilibri-
um positions, we obtain an equation similar to Eq. (9),
where

a =ae' ' '+c.c. (A 1) b, ~b, +(2V/c)/(, . (A3)

where A, represents the small equilibrium phase inhomo-
geneity (iI.—= —r)o,q/()z, with ~t)o,q/Bz ~

&& ~(k +k„)o,q~ ).
Then, on applying the left-hand side operator of Eq. (9)
on (Al), we get

e' '[ —6—2V/cA, 2i (()—, + V/ct), )+t), —B, ]Re'

ic[—(k+k )/co](zo+z )= —cuba eP 0)

Davidson and %'urtele analyzed 6=0 and A,WO, and
we have studied the case 6&0 and X=O. Both represen-
tations are equivalent, because from Eq. (A2) or (A3), we
see that the relevant physical quantity, which must be
used to get both works in contact, is not 6 or I, alone, but
the sum b, + (2 V/c )i(,.
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