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We have performed nonperturbative (Floquet) calculations of partial and total rates for ionization
of H(1s) by linearly polarized 532-nm light at intensities up to and above the threshold intensity
(1.4 X 10"* W/cm?) at which the minimum number of photons required to ionize the atom increases
from 6 to 7. Results are presented for partial seven- and eight-photon ionization rates, and for an-
gular distributions in the seven-photon channel. (In accord with current conservation, the partial
rates sum to the total rate.) We analyze, in some detail, the role of intermediate six-photon reso-
nances between the 1s level and high Rydberg sublevels. Associated with each Rydberg manifold,
specified by the principal quantum number (2 9), are two resonance peaks in the ionization rate; one
peak is very sharp, and corresponds to an avoided crossing of the quasienergy eigenvalues originat-
ing from the 1s level and some high Rydberg sublevel, while the other peak is broad (and smaller)
and corresponds to a true crossing of the eigenvalues. The intermediate resonances significantly
affect the angular distributions, and reveal the orbital angular momentum quantum number of the
Rydberg sublevel involved in each resonance peak. Results are presented for the ionization yield
and angular distribution produced by a realistic pulse, taking into account the temporal and spatial
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variation of the intensity, as well as ponderomotive scattering.

I. INTRODUCTION

Recently we reported! results of nonperturbative Flo-
quet calculations of total rates for multiphoton ionization
of atomic hydrogen, initially in its ground state, by
linearly polarized yttrium aluminum garnet (YAG) laser
radiation (wavelength 1064 nm). It was noted that at in-
tensities above about 10'> W/cm? the total rates calculat-
ed using lowest-order (nonvanishing) perturbation theory
exceed the Floquet rates by several orders of magnitude.’
We did not report, in Ref. 1, estimates of partial rates (for
ionization by a specific number of photons) or angular
distributions. However, Wolff et al.> measured angular
distributions for multiphoton ionization of H(ls) by
1064-nm radiation, and above about 10> W/cm? they ob-
served a dependence on the intensity, even in highly ener-
getic channels where a large number of excess photons
(up to 13) were absorbed. Since perturbation theory
yields angular distributions that are independent of the
intensity, the observed intensity dependence is presum-
ably due to nonperturbative effects in the ionization pro-
cess, at least in the energetic channels where ponderomo-
tive scattering® has only a weak effect. To illustrate the
discrepancy between the measured angular distributions
and those calculated’ in perturbation theory, we show in
Fig. 1, for several different intensities, the half-widths of
the main lobes versus the channel number S, where S is
the number of photons absorbed in excess of the
minimum number (12 at 1064 nm) required to ionize
H(ls) at weak intensities.

Unfortunately, we have been unable to calculate (to
any meaningful accuracy) partial rates and angular distri-
butions for ionization of H(1ls) by 1064-nm radiation at
intensities above the regime where perturbation theory is
valid. The difficulty is due to the fact that at this wave-
length at least 12 photons are required to ionize H(ls),
and at intensities above the perturbative regime very
many (real and virtual) photons are absorbed and emit-
ted, too many for us to handle computationally in a Flo-
quet calculation of partial rates. However, the computa-
tion simplifies at shorter wavelengths, since fewer pho-
tons are required to ionize the atom. Here we consider
ionization of H(ls) by linearly polarized light of wave-
length 532 nm (the wavelength of the frequency-doubled
YAG laser). We report nonperturbative results for angu-
lar distributions in the S =1 channel, and partial rates
(integrated over all angles of ejection) for ionization into
the S =1 and 2 channels. We consider intensities up to
2.05X 10" W/cm?, somewhat above the threshold inten-
sity 1.4X 10" W/cm? at which the minimum number of
photons required to ionize H(ls) increases from 6 to 7.
(In accord with conservation of probability current, the
partial rates sum to the total rate. This provides an in-
valuable test of both the soundness of the theory and the
numerical accuracy of the calculation.) We find prom-
inent nonperturbative effects; in particular, intermediate
six-photon resonances with high Rydberg states contrib-
ute significantly to the ionization rate, and significantly
effect the angular distributions, over the range of intensi-
ties studied. The importance of intermediate resonances
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FIG. 1. Half-width (as defined in Ref. 3) of the main lobe in
the angular distribution, vs S, for (12+S)-photon ionization of
H(ls) by linearly polarized 1064-nm light at various intensities.
The main lobe is peaked along the polarization axis. Experi-
mental data (Ref. 3): -@-, 1.5X10" W/em?% —-X -, 2X10"
W/cm?, -0 -, 2.5X 10" W/cm?. Perturbation theory (Ref. 5)
(independent of the intensity, corrections due to ponderomotive
scattering not included): — A —. The experimental data are a fit
of the measured points to a sum of Legendre polynomials.
These data differ somewhat from those reported in Ref. 3 be-
cause we have fitted to a larger number of Legendre polynomi-
als (coefficients provided by courtesy of B. Wolff). Note that the
theoretical half-widths diminish as S increases; the theoretical
angular distributions (not shown) become more peaked along
the polarization axis, and tend to become structureless as S in-
creases, which indicates that many partial waves of different an-
gular momenta contribute to the differential cross section. Note
also that modifed perturbation thecry (see Sec. III below) does
not improve agreement with experiment.

has been observed previously in short-pulse experiments
by Freeman et al.® and, more recently, by Agostini et al.’
and by Feldmann.® We show that associated with each
Rydberg manifold, specified by the principal quantum
number (= 9), are two resonance peaks in the ionization
rate. One peak is very sharp, and corresponds to an
avoided crossing of the quasienergy eigenvalues originat-
ing from the 1s level and a high Rydberg sublevel whose
dominant component has an orbital angular momentum
quantum number / with a value of 4. The other peak is
smaller and broader, and corresponds to a true crossing
of the eigenvalues originating from the 1s level and a high
Rydberg sublevel whose dominant component has an /
value of 2. We calculate the ionization yield and angular
distribution produced by a realistic pulse, taking into ac-
count the temporal and spatial distributions of the inten-
sity. We also estimate the effect of ponderomotive
scattering as the photoelectrons leave the focal region of
the laser. In the case of ionization by a short pulse, the
resonances do not appear to significantly effect the angu-
lar distributions when the energies of the outgoing photo-
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electrons are not differentiated.
In the next section we outline the theory behind our
calculations, only briefly because it has been presented in

detail in previous papers.""*!° In Sec. III we present our
results.

II. THEORY

We treat the laser field as classical and spatially con-
stant, and we describe it by the vector potential
A(1)=Re( Aje '“") where w is the angular frequency.
We make the Floquet ansatz,!! that is, we approx-
imate the exact state vector of the electron by
exp(—iEt /%)|W(z)), where |W(t)) is periodic in ¢ with
period 27 /w. By expanding |¥(¢)) in the Fourier series

W)= e "y, ), (1)

the harmonic components |¢,) satisfy the coupled
differential equations’

(E+ntio—H) 0, Y=V |6, Y+V_|t,4,), 2)

where H, is the Hamiltonian of the hydrogen atom (or
hydrogenlike ion) and where V', and V_ are the one-
photon absorption and emission operators, given by

V,=—(e/2uc) Ayp),
v_=v',

(3a)
(3b)

where e and u are the charge and mass of the electron.
The appropriate boundary conditions in position (x)
space on the harmonic components (x|, ) are that they
are regular at r ~0, where r =|x|, and that they are su-
perpositions of outgoing waves at r ~ o,

(x|, ~ S frn (ER)r explik, r) /7, )

where X=x/r, k,,=[Qu/#*NE +m#w)]'’?, and
v, =Z /(agk,, ), with Z the atomic number of the hydro-
gen atom or hydrogenlike ion. Equation (2), together
with these outgoing-wave boundary conditions, form an
eigenvalue problem for the quasienergy E. The eigenval-
ue is complex, with a negative imaginary part:
E=E'94+A—i(I'/2), where A is the shift from the un-
perturbed bound-state energy E'?, and where T /7 is the
total rate for ionization (integrated over all angles of ejec-
tion, and summed over all channels). If the electron is
tightly bound in its initial state we have A= — P, where P
is the ponderomotive shift, defined as P =27e 2I/(,uccoz),
with I the intensity: I =w?| Ay|?/(87c).

Note that the eigenvalue, and therefore the total ion-
ization rate, are independent of the normalization of
|W(t)), in contrast to the expressions we introduce below
for the partial ionization rates. For our present purpose
(the initial state is the ls state, and the field is linearly po-

larized along the quantization axis) we fix the normaliza-
tion by'

S (W,l,)=1, (5)

n
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where the scalar product (a|b) equals fd3xa(x)b(x),
without complex conjugation of a(x), in contrast to
(alb).

In order for the atom to ionize, it must absorb at least
N, photons, where N, is the minimum number N for
which EQ+A+N#w>0. As the intensity varies, so
does the energy shift A, and at a sufficiently high intensi-
ty N, may jump by unity. Recall that S=N—N,
where N{’ is the value of N, in the weak-field limit. If
the atom absorbs N = N, photons, the electron emerges
with the speed vy, where

uvi /2=E"94+ A+ N . (6)

The differential rate for N-photon ionization, if the elec-
tron is ejected with velocity v into the solid angle d(, is

1 dFN(vN)
i dQ

where fy(vy) is the N-photon ionization amplitude, a
coherent sum of the amplitudes fy,(E,X). Let |®, )
denote the state vector of an electron which scatters, in
the absence of radiation, from the atomic (Coulomb) po-
tential and emerges with velocity #ik/u. We normalize
|®, ) so that (@, |®, ) =86%Kk'—k). As shown in the
Appendix of Ref. 9, we can express the ionization ampli-
tude in two different forms

—Qm) " V2A# /) fy(vy)

1N

=Se

_U/v‘f/v("zv)!2 , (7)

TN, oy K@ [(HE—H I, 8a)

:[<¢{V[V+'¢N*1>+<®](_N|V—]¢N+1)]/J0(pN) ’

(8b)

where ky=puvy /%, where J, (z) is the regular Bessel
function, and where x and p, are real quantities defined
by

pye V=—(e/ucwlky- A, . 9)

In Eq. (8a) the sum over n takes into account that each
harmonic component has a term—the term in fy,(E,X)
on the right-hand side of Eq. (4)—which contributes to
the amplitude for the absorption of N real photons. In
Eq. (8b) only two harmonic components explicitly ap-
pear, those with index N *1; the contribution of the other
harmonic components are implicitly included, in part
through the Bessel function Jy(py). The equivalence of
Egs. (8a) and (8b) provides a very useful check on the ac-
curacy of our numerical calculation of fy(vy). A further
check is provided by the current conservation condition,
that is, by the requirement that the integrated partial
ionization rates, defined as

Ty /f=(1/%) [[dT y(vy)/dQ1dQ ,
sum to the total rate:
S I,=r. (10)

N (ZNy)

Since (x|, ) explodes exponentially as r increases
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(due to the negative imaginary part of E), the matrix ele-
ments on the right-hand side of Egs. (8a) and (8b) are not
formally convergent; we obtain finite expressions by
analytically continuing the divergent integrals.'° The use
of the analytically continued result is physically sensible
provided that the width I'/2 is small compared to the
outgoing energy E'®+ A+ N,#iw of the photoelectron in
the lowest open channel. The ratio of these two quanti-
ties is, in fact, of the order of the error of the Floquet an-
satz,'? and therefore analytic continuation is consistent
with this ansatz. Incidentally, it turns out that the two
(analytically continued) matrix elements on the right-
hand side of Eq. (8b) are each nearly divergent, but these
near divergences cancel when summed.!© We stress that
the expressions (8a) and (8b) for the ionization amplitude
are valid only in the velocity gauge. In fact, were one to
work in the length gauge, where the operator V', has the
form —i(ew/c)( Ayx), with V_=V",, one would find
that the two (analytically continued) matrix elements on
the right-hand side of Eq. (8b) are also nearly divergent
but the near divergences do not cancel, a consequence of
the fact that in the length gauge the electron-field interac-
tion becomes infinite as r increases, and the boundary
condition (4) does not hold. (In the velocity gauge the
electron-field interaction becomes infinite as p =|p| in-
creases, but this divergence is swamped by the kinetic en-
ergy p2/2u.)

We note that in Ref. 13 it is stated that the N-photon
ionization amplitude is (¢y|¢y) if the state vector
|W(2)) is suitably normalized. As far as we can tell, this
expression is in conflict with the expressions (8a) and (8b)
used here. The discrepancy seems to lie in the fact that
the scalar product |1y ) does not reveal the distinc-
tion between the absorption of N real and N virtual pho-
tons. (The harmonic component |1 ) represents an elec-
tron that has absorbed N photons, these photons may be
real or virtual.)

In practice, we must truncate the coupled equations,
Eq. (2), for the harmonic components. We solve the trun-
cated equations by expanding each harmonic component
on a basis set consisting of the functions Y, (X)Sy(r),
where the Y, (X) are the usual spherical harmonics, and
where the S);(r) are complex Sturmian functions which
for r ~ « behave as r"exp(ikr); we choose the wave num-
ber « to lie in the upper-right quadrant of the complex «
plane.>1® Projecting Eq. (2) onto this basis, using the
orthogonality'® of the basis functions, we obtain a set of
coupled linear equations for the basis expansion
coefficients; these equations may be rapidly solved by us-
ing the method of inverse iteration,'* taking full advan-
tage of the fact that the coupling between the harmonic
components is tridiagonal.

III. RESULTS

We preseat, in this section, results!® for ionization of
H(ls) by linearly polarized light of wavelength 532 nm.
At low intensities the minimum number N, of photons
required to ionize H(1ls) with 532-nm light is 6. Howev-
er, the energy shift in the ground state is negative and de-
creases as the intensity 7 increases, such that N, increases
to 7 for I above the threshold intensity I, ;=1.4X 10"
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W/cm?.

In Fig. 2 we show the total ionization rate (that is,
I' /%) versus I over an intensity range which extends
above I,;, ;. In Fig. 3 we show partial rates (integrated
over all angles of ejection) for ionization into the S =1
(N=7) and S =2 (N =8) channels for intensities just
above I;, ;. In both figures the ionization rates exhibit
prominent peaks which occur at intensities where there is
an intermediate six-photon resonance between the ground
state and a high Rydberg state. Each resonance corre-
sponds to either a true or an avoided crossing of the real
parts of the quasienergy eigenvalue curves originating
from the unperturbed ground level and an unperturbed
Rydberg sublevel (when the latter is shifted downwards
by N,fiw, where N, is the number of photons that reso-
nantly excites the Rydberg sublevel from the ground lev-
el).b1316718 Since we have not calculated the full
quasienergy eigenvalue spectrum up to the intensities of
interest, but only the quasienergy originating from the
unperturbed ground level, we cannot say with certainty
which Rydberg sublevel is involved in a particular reso-
nance. However, in Fig. 3 we have marked with arrows
the intensities at which resonances would occur between
the ground state and Rydberg states with principal quan-
tum number =9 if the Rydberg levels were not to shift
relative to the continuum threshold [in other words, we
have taken into account only the shift of the ground level
relative to the continuum—this shift is roughly 1.04P,
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FIG. 2. The solid line is the nonperturbative total rate (in-
tegrated over all angles of ejection and summed over all chan-
nels) for ionization of H(ls) by linearly polarized 532-nm light
for a range of intensities. The long dashed lines are the partial
rates for six-photon (upper curve) and seven-photon (lower
curve) ionization, as calculated within usual lowest-order non-
vanishing perturbation theory. The short dashed lines are the
partial rates calculated by modifying perturbation theory
through including the shift of the ground energy level relative to
the continuum threshold.
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FIG. 3. The solid lines are the nonperturbative partial rates,
integrated over all angles of ejection, for seven-photon (upper
curve) and eight-photon (lower curve) ionization of H(ls) by
linearly polarized 532-nm light. The vertical arrows mark the
intensities at which intermediate six-photon resonances between
the ground state and Rydberg states having the indicated princi-
pal quantum numbers are predicted to occur, based on taking
into account the shift of the ground energy level, but neglecting
the shifts of the Rydberg energy levels relative to the continuum
threshold. The short dashed lines are the same as in Fig. 2 for
seven-photon ionization.

where P is the ponderomotive shift, with P/I
=0.264X10"13 eV (cm?/W), and where the fraction
0.04P is roughly half the dc-Stark shift, the factor of
one-half arising from cycle-averaging]. The tall sharp
spikes in the ionization rate occur almost exactly at the
positions of these arrows, so that we can identify (with
reasonable confidence) the principal quantum number of
the Rydberg sublevel involved in the resonance responsi-
ble for each spike. To the left of each spike is a smaller
and broader peak that arises from an intermediate reso-
nance with a different Rydberg sublevel —a sublevel that
has shifted slightly toward the continuum but which
presumably belongs to the same Rydberg manifold
(specified by the principal quantum number) as the sub-
level associated with the nearby spike. Note that six pho-
tons can couple the ground state to a state with an orbital
angular momentum quantum number [ that can be 0, 2,
4, or 6 (or larger if the transition is nonperturbative) and
so we might expect to see groups of at least four slightly
separated peaks, rather than two, each group correspond-
ing to intermediate six-photon resonances with Rydberg
sublevels having the same principal quantum number
(=9). Of course, it could be that the “missing” peaks are
simply obscured through overlapping of peaks. We re-
turn to this matter below.

At this point we should observe that the Rydberg sub-
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levels which continuously develop from the zero-intensity
limit correspond to superpositions of states with the same
parity but with different orbital angular momentum
quantum numbers. However, in the zero-intensity limit
most of the Rydberg sublevels have a dominant com-
ponent with a particular / value, and the larger this /
value, the purer is the superposition. As the intensity in-
creases, the sublevels within a manifold (specified by the
principal quantum number) shift and split, but a sublevel
whose dominant component has a large / value shifts only
very slightly at moderate intensities. Therefore we expect
that the sharp spikes correspond to intermediate reso-
nances with sublevels whose dominant components have /
values of perhaps 4 or 6; this conjecture is supported by
an analysis of the angular distributions, as explained
below, and also by a study of the composition of the wave
function on the basis set. The small broader peak to the
left of each spike corresponds to an intermediate reso-
nance with a sublevel that has shifted slightly and which
presumably has a dominant component that has a smaller
I value, perhaps 2 or 4; this again is supported by an
analysis of the angular distributions and of the composi-
tion of the wave function. A careful calculation of the
quasienergy eigenvalues of the ls level and the relevant
Rydberg sublevel in the neighborhood of each resonance
reveals that each sharp spike corresponds to an avoided
crossing of the real parts of two eigenvalue curves, with a
very small gap of about 0.1 meV or less, while each small
broad peak corresponds to a true crossing of the real
parts of two eigenvalue curves. To the extent that the
atom can be described by two levels coupled to each oth-
er and to the continuum, a true crossing occurs when the
difference of the uncoupled widths of the two levels is
larger than the energy #(}, of the coupling between the
two levels, %17 where by “uncoupled” widths we mean
the ionization widths calculated neglecting the coupling
between the two levels, and where (, is the Rabi frequen-
cy. If the difference of the uncoupled widths is less than
7}, the crossing is an avoided one, and the gap at the
crossing is roughly #i€},. At each resonance the Rabi fre-
quency is very small because the resonant coupling be-
tween the two levels involves six photons ({2, behaves as
I® with intensity I). The uncoupled width of the 1s level
may be even smaller because ionization from the 1s level
requires at least seven photons in the region of the reso-
nances (the uncoupled 1s width behaves as I’). However,
ionization from a Rydberg sublevel requires only one
photon, and so the uncoupled width of a Rydberg sublev-
el whose dominant component has a small [/ value,
perhaps 2 or less, can be significantly larger than both
#Q), and the uncoupled 1s width, in which case the cross-
ing is a true one. On the other hand, if the dominant
component of the Rydberg sublevel has a large / value,
perhaps 4 or more, the centrifugal barrier keeps the elec-
tron far from the nucleus so that it cannot easily absorb
real photons, ionization from that sublevel is consequent-
ly suppressed, and the uncoupled width of the sublevel is
smaller than #€; if the uncoupled 1s width is also small-
er than 74, which is the case if the / value and the prin-
cipal quantum number of the Rydberg sublevel are not
too large, the crossing is an avoided one. This is in ac-

cord with what we observed above. We note that the
width (at half-maximum) of a resonance peak at an avoid-
ed crossing should be! roughly equal to the gap #%Q,, at
least within a two-level model. The widths of the spikes
in Figs. 2 and 3 are about 3X10'° W/cm? or less, or
equivalently (recalling that the shift of the ground level is
roughly 1.04P) about 1 meV or less; that the widths of
the peaks are somewhat larger than the gaps is perhaps
an indication of the inadequacy of the two-level model.
(In a real experiment, the widths of the resonance peaks
in the photoelectron spectrum are broadened owing to
ponderomotive scattering as the electrons leave the focal
region, to bandwidth effects, and to the finite resolution
of the detector; the broadening due to the induced width
of the ground level is usually, but not always,
insignificant relative to these other sources of broadening.
Note that instrumental broadening is usually at least 5
meV, which is greater than the separation of the peaks
very close to threshold, and hence those peaks are not
resolvable.)

In Figs. 2 and 3, and in subsequent figures, the nonper-
turbative rates are those for ionization from the diabatic
1s state. At an avoided crossing of the real parts of two
quasienergy eigenvalue curves, the (real) continuous adia-
batic curves repel one another and the atomic characters
of the adiabatic (Floquet) states interchange. A diabatic
“eigenvalue” can be constructed by interpolating between
one adiabatic eigenvalue, on one side of the avoided
crossing, and the other adiabatic eigenvalue, on the other
side of the crossing. The atomic character of the diabatic
state, corresponding to the diabatic eigenvalue, is
preserved through the crossing. Interpolation between
the real parts of the two different adiabatic eigenvalues,
over the gap of the avoided crossing, can be done accu-
rately with a straight line. However, the imaginary parts
of the adiabatic eigenvalues cannot be so easily interpo-
lated because the imaginary part of the diabatic eigenval-
ue exhibits a spike at the crossing—these are the reso-
nance spikes seen in Figs. 2 and 3—and therefore the
heights of the spikes are somewhat uncertain. A more
accurate approach, described in detail elsewhere,'® would
be to express the electron state vector, in the region of an
avoided crossing, as a superposition of the two relevant
adiabatic Floquet state vectors, and to determine the
time-dependent coefficients of the superposition, for a
given temporal profile of the intensity, by solving ap-
propriate coupled equations. However, for sufficiently
short pulses, the intensity sweeps through the crossings
so rapidly on the time scale 1/(} set by the Rabi frequen-
cy that the electron simply jumps across the gap of an
avoided crossing, from one adiabatic curve to the other.!8
Hence, for sufficiently short pulses, the electron follows
more or less the diabatic eigenvalue curve. Note that at a
true crossing of two quasienergy eigenvalues there is no
distinction between the adiabatic and diabatic eigenval-
ues; therefore there is no ambiguity in the heights of the
broad peaks.

We cannot explore the intensity region I
<I<1.7X10"® W/cm? in detail because there are
infinitely many intermediate six-photon resonances in this
region, and our finite basis cannot represent Rydberg
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states with a very high principal quantum number. Thus
we cannot detect resonances corresponding to the inter-
mediate excitation of levels with a principal quantum
number greater than 13 (though we are able to detect res-
onances corresponding to higher principal quantum num-
bers by using a larger basis'®). As a result, our estimate
of the total ionization rate I' /# extrapolates smoothly
across the threshold. The smooth extrapolation is not
unreasonable since the frequency bandwidth of a laser
pulse is always larger than the frequency separation of
Rydberg levels sufficiently close to threshold. Note that
in the case of a short-range potential, the total ionization
rate exhibits minima at thresholds, a consequence of the
reduction in available phase space.’

In Fig. 2 we also show estimates of the partial rates (in-
tegrated over all angles of ejection) for ionization into the
S =0 (N=6)and S =1 (N =7) channels, based on a cal-
culation of the transition matrix elements in lowest-order
perturbation theory. We show both results obtained by
using usual lowest-order perturbation theory (long
dashed lines) and by using modified perturbation theory
(short dashed lines)—modified by including the nonper-
turbative shift of the ground energy level. The sum of the
S =0 and 1 partial rates calculated using usual perturba-
tion theory lies well above the nonperturbative (Floquet)
total rate, but when this sum is calculated using modified
perturbation theory it is in good agreement with the non-
perturbative total rate at intensities below I, ;. As ex-
pected, at intensities above I,; ;, modified perturbation
theory does reproduce the sharp spikes—though the
shapes are not the same as in the Floquet calculation, and
the heights are infinite—but this theory does not repro-
duce the small broad peaks. Note that the perturbative
partial rates were calculated’ using the same set of basis
functions as was used in obtaining the nonperturbative
total rate, and therefore our modified perturbation theory
calculation does not reveal more resonances close to
threshold than does the nonperturbative calculation.
Note also that modified perturbation theory yields partial
rates that are discontinuous as the threshold is crossed; as
the intensity increases from just below to just above 1 5,
the six-photon rate drops to zero, and the seven-photon
rate would have an essential singularity at the threshold
if we were to include a sufficient number of basis func-
tions to describe the accumulation of resonances at the
threshold. Evidently, far from resonances, modified per-
turbation theory is adequate throughout the intensity
range studied here, and is a significant improvement over
usual perturbation theory. However, at long wave-
lengths, e.g., 1064 nm, modified perturbation theory is as
inadequate! as usual perturbation theory at moderate in-
tensities (of order 10'> W/cm?), presumably because at
such wavelengths and intensities an important effect is
not accounted for, namely, as the electron begins to ab-
sorb photons the field induces strong oscillations, and this
results in the electron spending less time near the
nucleus—the region where it can absorb the requisite
number of photons to become entirely free. We have re-
calculated the half-widths of the main lobes of the angu-
lar distributions at 1064 nm using modified perturbation
theory, but the agreement with the measured data—
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shown in Fig. 1 —is worse than that given by normal per-
turbation theory.

We now focus on Fig. 3, where we show nonperturba-
tive estimates of partial rates for ionization into the S =1
(N=7) and S =2 (N =8) channels. On average, the
S =2 rates are about an order of magnitude smaller than
the S =1 rates (the ratio of the two rates varies slightly
but not monotonically with intensity). We calculated
these rates using the normalization of Eq. (5). We
verified that the two expressions for the partial rate, that
is, Egs. (8a) and (8b), give the same result; the discrepan-
cy would not be visible on Fig. 3. [Were we to omit the
divisor Jy(py) on the right-hand side of Eq. (8b) we

would obtain about a 35% difference; this indicates the
importance of taking into account the flux in all harmon-
ic components.] We also confirmed the current conserva-
tion condition, Eq. (10); except in the intensity range
Iy <I <1.7X10" W/cm?, where our basis set is inade-
quate, and except at intensities where the resonance
spikes occur, the sum of the S =1 and 2 partial rates is
slightly less (by typically only 2% or 3%) than the total
rate I', and the small difference can be attributed to the
contribution from the channels S >2. At the spikes the
S =1 rate is appreciably larger (by as much as a factor of
2) than the total rate, so the current conservation condi-
tion breaks down; this is to be expected because the
spikes occur at avoided crossings, and in the immediate
vicinity of an avoided crossing the diabatic eigenvalue
cannot be unambiguously defined. (At the small broad
peaks—the true crossings—the current conservation
condition is satisfied.) Note that the widths and heights
of the resonance peaks (both the spikes and the broad
peaks) diminish as the intensity decreases, that is, as the
principal quantum number of the Rydberg manifold in-
volved in the resonance increases. This is expected since
the probability for a Rydberg electron to be in the vicini-
ty of the nucleus, and therefore the strength of a transi-
tion to a high Rydberg state, is proportional to the in-
verse of the cube of the principal quantum number of the
state. As mentioned above, the widths of the spikes are 1
meV or less. The widths of the broad peaks vary from
about 2 to 5 meV and are roughly the ionization widths
of the excited Rydberg states involved in the resonances.
In general, the maxima of the broad peaks occur at inten-
sities close to, but not at, the intensities where the true
crossings occur. The slight shift of the maximum of a
broad peak relative to the true crossing can be partly un-
derstood from the two-level model, used in the discussion
of Fig. 1 of Ref. 1. On the basis of the two-level model, it
was argued in Ref. 1 that when a resonance peak arises
from a true crossing, the maximum of the peak occurs at
I./(1+y?%/A?), where I, is the intensity at the crossing
and where ¥ is the uncoupled total rate for (one-photon)
ionization from the excited (Rydberg) state. This implies
that the maxima occur at intensities below where the cor-
responding crossings occur—a feature that is not always
observed, indicating once again the failure of the two-
level model.

In Fig. 4 we show nonperturbative angular distribu-
tions for seven-photon ionization at six different intensi-
ties which span the region of the intermediate resonances
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FIG. 4. Angular distributions for seven-photon ionization of
H(1s) by linearly polarzied 532-nm light at various intensities.
The angle 6 is measured relative to the polarization axis. The
distributions are normalized so that the area under each curve is
the same in (a)-(f). The intensities are, in units of 10'> W/cm?
(a) 1.86, (b) 1.87, (c) 1.88, (d) 1.90, (e) 1.9047, (f) 1.91.

with the Rydberg manifold whose principal quantum
number is 10. We have normalized the angular distribu-
tions so that the area under each curve is the same. In
the first box, Fig. 4(a), the angular distribution is identical
to that obtained in usual seventh-order perturbation
theory;'® the intensity is in a region far from resonance,
to the left of the broad peak in the partial rate (the peak
at 1.88X 10" W/cm? in Fig. 3). As we go from Figs. 4(a)
to 4(h) the intensity increases. In Fig. 4(b) the intensity
corresponds to the deep minimum in the partial rate—
see Fig. 3—and the structure in the angular distribution
disappears. In Fig. 4(c) the intensity corresponds to the
maximum of the broad resonance peak of the partial rate,
and in Fig. 4(d) the intensity corresponds to the shallow
minimum between the broad peak and the spike. Figures
4(c) and 4(d) cover the region of the true crossing—and
the shape of the angular distribution indicates that the
photoelectron emerges in several partial waves, but with
the dominant wave carrying orbital angular momentum
quantum number / =3. Since /—I+1 is favored?® over
I —1 —1 for bound-continuum transitions, we infer that
the Rydberg sublevel that is involved in the true crossing
resonance has a dominant component whose / value is 2.
In Fig. 4(e) the intensity corresponds to the sharp spike in
the partial rate; the shape of the angular distribution in-
dicates that the photoelectron emerges in a partial wave
with [ =5, and invoking the angular momentum propen-
sity rule again we infer that the Rydberg sublevel in-
volved in the avoided crossing resonance has a dominant
component whose / value is 4. Finally, in Fig. 4(f) the in-
tensity is again far from resonance, and the shape of the
angular distribution returns to that which would also be
obtained in seventh-order perturbation theory.

These basic features of the angular distribution were
seen in the regions of all of the resonances we studied (the
physical dynamics underlying each resonance is the
same). We infer that the broad peaks and spikes corre-
spond, respectively, to resonances with sublevels whose
dominant components have ! values of 2 and 4. This is
indicated not only by a study of the angular distributions,
but, more convincingly, by a study of the composition (on
the basis) of the two eigenvectors involved in each reso-
nance. Apparently, the resonances with Rydberg sublev-
els that have dominant components whose / values are
zero or 6 (or higher) do not give rise to an enhancement
of the ionization rate. We can now speculate as to the
reason for this. For / = 6 the centrifugal barrier is large,
and the strengths of the resonant transitions are simply
too weak to give any enhancement of the ionization
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rate—in fact, the widths of the Rydberg sublevels with /
values larger than 4 are smaller than the 1s width.2! On
the other hand, a Rydberg sublevel whose dominant com-
ponent is / =0 (this sublevel also has a strong / =2 com-
ponent) has a relatively large uncoupled width y. The in-
termediate resonance with this sublevel corresponds to a
true crossing, and since the ratio ¥ /A is appreciable we
expect, on the basis of the two-level model, that the reso-
nance peak has a maximum that is shifted rather far from
the crossing intensity I, —so far, in fact, that the separa-
tion of the real parts of the relevant two eigenvalues, at
the peak maximum, may be greater than ¥. Hence we ex-
pect the / =0 peaks to be very broad, and not visible
above the background. The phenomenon of missing reso-
nance peaks was noted previously! at the wavelength
1064 nm.?

In Fig. 5 we show the partial differential rate for
seven-photon ionization, versus intensity, at two different
angles. The upper curve, corresponding to ejection of the
photoelectron along the polarization axis, exhibits the
sharp resonance spikes seen in Figs. 2 and 3. The lower
curve, corresponding to ejection at 60° relative to the po-
larization axis, exhibits inverted spikes; these inverted
spikes occur because at intensities where the avoided
crossing resonances occur the angular distribution has a
minimum close to 60°—see Fig. 4(e).

The intensity profile of a typical Fourier-transform-
limited laser pulse has the form

I(p,z,t)=[R 2/r2(z)]10e *2[p/rfz)]2e*(142/c)2/tp2 ’ 11

where I is the peak intensity, p is the cylindrical radius,
t, is the characteristic pulse duration, R is the spot size at
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FIG. 5. Partial differential rate, vs intensity, for seven-

photon ionization of H(ls) by linearly polarized 532-nm light.
The upper and lower curves, respectively, correspond to the
photoelectron being ejected along, and at an angle of 60° relative
to, the polarization axis.
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the laser focus (where z =0), and
[r(2)P=RY1+(Az/7R*?], (12)

with A the wavelength. Assuming that the electron fol-
lows the diabatic eigenvalue curve, the N-photon ioniza-
tion yield Y, produced by a pulse is

Yy=(2m) [dpp

dez

1—exp

—f:cdt rN(I(p,z,m/h”,

(13)

where T y(I(p,2,t)) /% is the N-photon ionization rate at
the space-time point (x,?), assuming cylindrical symmetry
with respect to the z axis, and where the spatial integra-
tion is over the volume ¥V of (uniformly distributed) atoms
available to ionize. The frequency bandwidth is of order
1/t,, and this must be small compared to /27 for the
Floquet ansatz to be useful; hence the pulse should be
more than a few cycles long. Note that if we change vari-
ables from p, z, and t to p’=p/R, z'=(A/R?)z, and
t'=(t—z/c)/t,, the intensity profile of Eq. (11) can be
expressed in a form that is independent of R, A, and ¢,.
Hence, assuming this profile, if V is taken to be all space
(or, more precisely, if the linear dimensions of V are large
compared to R and R?/1), the yield Yy scales with R
through the factor R*/A, and if we neglect depletion
[that is, if we replace the exponential in Eq. (13) by the
first two terms in its power series expansion], Y, scales
linearly with #,. In Fig. 6 we show the yield for seven-
photon ionization, integrated over all angles of ejection,
as a function of the intensity at which ionization occurs
during the passage of a typical pulse whose profile is
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FIG. 6. Yield in photoelectrons for seven-photon ionization
of H(1ls) by a 532-nm linearly polarized pulse whose peak inten-
sity is 2.05X 10'* W/cm?, as a function of the intensity at which
ionization occurs.
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given by Eq. (11) and whose peak intensity is 2.05X 10"
W/cm?. The curve is the envelope of a histogram that
was constructed by dividing the intensity interval
0=1 =1, into very small, equal segments and calculating
the yield produced in each segment. We have taken V to
be all space and we have neglected depletion so that the
shape of the curve is independent of R and #,; provided
that 7, is less than about 200 psec, more than 10% of the
atoms experience the peak intensity before being ionized.
The peaks are just the resonance peaks seen in Fig. 3. At
the higher intensities (lower principal quantum numbers)
the spikes and the broad peaks can be resolved, but at the
lower intensities (higher principal quantum numbers) the
spikes and broad peaks merge. For seven-photon (S =1)
ionization the spikes (avoided crossings) provide a larger
contribution to the yield than do the broad peaks (true
crossings), but for eight-photon (S =2) ionization (not
shown) it turns out that the reverse is true. The reso-
nances contribute about 53% of the yield for seven-
photon ionization, and about 64% of the yield for eight-
photon ionization. The contributions to the total ioniza-
tion yield from the S =0, 1, and 2 channels are, respec-
tively, 46.3%, 46.3%, and 7.3%; that the contributions
from the S =0 and 1 channels are the same is fortuitous.

For a short pulse of specified peak intensity, the pat-
tern of resonance peaks in the yield-intensity profile is in-
dependent of the spot size, and is also independent of the
pulse duration if depletion effects are small, provided that
the passage through resonance occurs sufficiently rapidly
to be considered diabatic, and provided that the frequen-
cy bandwidth is small compared to the widths and sepa-
rations of the resonance peaks. Of course, this pattern
does change as the peak intensity of the pulse varies.??
For sufficiently short pulses the resonance peaks can be
seen as substructure in the ‘“above-threshold” peaks of
the photoelectron energy spectrum measured in recent
experiments.®~#

We calculated the photoelectron energy spectrum for
the intensity profile of Eq. (11). Thus we split the intensi-
ty interval I <1, into small segments, and we calculated
the contribution to the yield, in a particular channel,
from each segment, as above. Since we calculated the
partial rates and angular distributions at intensities
I =1,, we know, for each intensity segment, the probabil-
ity for emitting a photoelectron into a particular solid an-
gle; we also know, for each intensity segment, the energy
at which the photoelectrons leave the atoms. (In calcu-
lating this energy we took into account the shift but not
the width of the ls level. We also neglected the laser
bandwidth.) Thus we know the probability distribution
of initial conditions for the electrons to scatter out of the
focal zone. We determined the classical trajectories of
electrons moving through the ponderomotive potential
2me?I (p,z,t)/(pucw?) subject to this distribution of possi-
ble initial conditions. In principle this gives the photo-
electron energy spectrum that would be measured at the
detector, outside the focal zone. Despite the rather large
““statistical” noise in the spectrum, due to the number of
trajectories being finite, we were able to see the gradual
appearance of resonance substructure® ® in the above-
threshold peaks as the pulse duration 7, was reduced to
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FIG. 7. Photoelectron energy spectrum for ionization of
H(ls) by a 532-nm linearly polarized pulse whose peak intensity
is 2.05X 10" W/cm? and whose duration is t,=1 psec. Upper
curve: distribution (based on 40000 events) when ponderomo-
tive scattering is neglected. Lower curve: distribution (based
on 200000 events) when ponderomotive scattering is taken into
account.

about 1 psec (for the peak intensity of Fig. 6, and a spot
size of 10 um). The energy spectrum for #,=1 psec is
shown in Fig. 7.

For subpicosecond pulses ponderomotive scattering
can be ignored, but bandwidth effects can become impor-
tant. If we ignore the bandwidth, we can simply read off
the photoelectron energy spectrum from the yield-
intensity profile, given, for example, in Fig. 6 for the
S =1 channel.

In Fig. 8 we show the angular distribution for seven-
photon ionization due to a pulse with the profile of Eq.
(11), and a peak intensity of 2.05X 10'* W/cm?, integrat-
ed over the different possible energies of the outgoing
photoelectrons. We have not taken into account distor-
tions due to ponderomotive scattering, and we have as-
sumed that ¢, is sufficiently small that depletion can be
neglected; in this approximation the results of Fig. 8 are
independent of R and ¢,. In view of Fig. 6, it is striking
that the resonances have such a small effect on the angu-
lar distribution when integrated over the spatial and tem-
poral profiles of the pulse. In fact, the angular distribu-
tion is similar to that which is obtained within usual
seventh-order perturbation theory,’” which is also
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FIG. 8. Partial differential yield for seven-photon ionization
of H(1s) by a 532-nm linearly polarized pulse whose peak inten-
sity is 2.05%X 10'* W/cm?. The angle is measured relative to the
polarization axis. The solid line is the nonperturbative angular
distribution. The dashed line is the perturbative angular distri-
bution, normalized so that when the differential yields are in-
tegrated over angle the perturbative and nonperturbative results
are the same. There is a slight difference in the perturbative and
nonperturbative differential yields at zero angle, but this is not
noticeable on the figure.

shown.?® Modifications to the angular distribution due to
ponderomotive scattering would be barely noticeable on
the figure for pulse durations of a few picoseconds or
less.?*

IV. CONCLUSION

We have demonstrated that total and partial ionization
rates can be calculated rather accurately using a Sturmi-
an basis, except in regions very close to multiphoton ion-
ization thresholds, where resonances accumulate. We
have presented nonperturbative estimates of partial rates
for seven- and eight-photon ionization of H(1s) by linear-
ly polarized 532-nm light. Prominent peaks in the ioniza-
tion rate, at intensities just above the seven-photon ion-
ization threshold, are attributed to intermediate six-
photon resonances with Rydberg sublevels, in accord
with the observations of Freeman et al.® There are two
peaks associated with each high Rydberg manifold; one
peak is sharp, and has an / value of 4, the other peak is
broad, and has an / value of (predominantly) 2. There are
no [ =0 peaks because the / =0 Rydberg sublevels are
too strongly coupled to the continuum (an / =0 peak is
broadened beyond the region where the transition is reso-
nant) and there are no / = 6 peaks because the / > 6 Ryd-
berg sublevels are too weakly coupled to the continuum.
We would expect the / =2 and 4 peaks to disappear if the
light were circularly polarized, in accord with experimen-
tal observations,’ since only / =6 sublevels can be excited
by six circularly polarized photons in lowest order. In
Fig. 6 we illustrated the pattern of resonance peaks in the
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yield-intensity profile for seven-photon ionization by a
typical short pulse. Though not illustrated here, this pat-
tern of resonance peaks varies with wavelength, and also,
of course, with the peak intensity of the pulse. The pat-
tern does not vary with spot size, nor does it vary with
pulse duration if depletion effects are ignored, provided
that the passage through the resonances occurs rapidly
and is therefore diabatic, and provided that bandwidth
effects are negligible. The shorter the pulse duration, the
more rapid is the passage through the resonances, and
hence the smaller are the heights of the resonance peaks;
but the background is similarly diminished so that the
resonance peaks remain prominent. Of course, the laser
bandwidth broadens the resonance peaks in the photo-
electron energy spectrum, an effect we cannot easily take
into account. For subpicosecond pulses the bandwidth is
comparable to the widths of the resonance spikes seen in
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Figs. 2 and 3 above. Resonance peaks corresponding to
very high principal quantum numbers cannot, of course,
be resolved, if only because of instrumental broadening.
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