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Population trapping in short-pulse laser ionization

Jonathan Parker and C. R. Stroud, Jr.
The Institute of Optics, University of Rochester, Rochester, New York 14627
(Received 16 June 1989; revised manuscript received 22 September 1989)

The finite bandwidth of a short laser pulse often overlaps several initially unpopulated low-lying
excited states of an atom. We show that when such a pulse is used to photoionize an atom, the low-

lying levels may be pumped into a coherent superposition that inhibits or prevents excitation of the
atom, effectively trapping population in the initial state of the atom. The existence of the effect was
first noted in a numerical study of short-pulse excitation of hydrogen. Here we explore the effect
through a series of simple models that demonstrate the physics of the effect in the simplest possible
situations.

I. INTRODUCTION

In a recent paper' we presented a numerical study of
above-threshold ionization of hydrogen by an intense
(10' W/cm ), short (7-fs) laser pulse. In order to in-
tegrate the full three-dimensional Schrodinger equation
we made a few specializing assumptions. In particular,
we assumed that the atom was prepared in the n=3,
l =m=2 state, and that the field frequency was coR/8,
one-eighth the Rydberg frequency. One particularly
striking result of the numerical study was the observation
that the atom was not completely ionized even for ex-
tremely intense fields. Instead, some of the population
was trapped in the initial state.

In this paper we will study the basic physics of this
trapping and see that it is a quite general occurrence for
any process in which a short laser pulse is used to excite
an atom. The only requirement is that there be other
bound levels of the same parity as the initial state,
separated from the initial state by less than the band-
width of the laser pulse. Although the original numerical
study was carried out for the case of hydrogen, we will
demonstrate the basic physics using a much simpler mod-
el atom. The level structure of this atom is shown in Fig.
1. In this model atom we have three bound states that
are of the same parity as the initial state, and for simplici-
ty are equally spaced in energy. The continuum is
modeled by a quasicontinuum that is made up of equally
spaced levels, each with the same dipole moment cou-
pling to the bound levels. The solid arrow indicates the
transition from the initial state to the continuum pro-
duced by the center frequency of the laser pulse. Because
of the finite bandwidth of the short laser pulse, the
second transition indicated by the dashed line will also be
resonantly excited by the laser field. The field then pro-
duces not only ionization but also stimulated recombina-
tion. This recombination produces a coherent superposi-
tion of bound states that strongly inhibits ionization by
the intense applied field. Without the presence of the
states Ig, ), Ig2 ), and so on, the ionization would be ac-
curately described by Fermi's golden rule (FGR) ex-
ponential decay. The effect we will be describing, then,
may be characterized as one of the ways FGR fails in the
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FIG. l. Energy-level diagram of ionization model. The states

Ig ) are bound states of angular momentum lo. All of the popu-
lation is initially in state Igo). The states IE) represent un-

bound states of angular momentum quantum number lo+ 1.
The lo+1 states are not drawn to scale. Altogether, 150 states
of angular momentum quantum number 10+ 1 are used.

intense field ionization of real atoms and molecules.
As remarked above, the conditions for population trap-

ping (Fig. 1) are likely to be encountered in a variety of
laser-molecule interactions due to the close spacing of the
Ig ) levels. The same is true in the study of microwave-
Rydberg atom interactions. Several authors have studied
the problem from this point of view ' and have reported
on coherent effects that trap population or modify
Fermi s golden rule. Inhibition of ionization and popula-
tion trapping due to coherences among two or more
bound states has been extensively studied both in the
theory of two-color ionization and in the theory of one-
color ionization.

In Sec. II we will write down the appropriate equations
of motion for the system of Fig. 1, and describe some nu-
merical solutions that demonstrate the effects to be stud-
ied here. In Sec. III the simplest version of the theory
will be presented. The strategy will be to eliminate the
variables associated with the unbound states IE ), leaving
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equations involving only the variables of the bound
states. The resulting equations may then be solved nu-
merically, or in special cases, solved analytically. In Secs.
IV and V, the equations will be solved analytically in two
particularly instructive cases. In Sec. IV it will be as-
sumed that the bound states ~g ) are degenerate in ener-

gy. The result will be that population is permanently
trapped in the initial state ~go). In Sec. V it will be as-
sumed that the states ~g ) are not degenerate in energy
but that the pulse is rectangular in shape. In Sec. VI the
theory will be generalized to take into account terms that
are discarded when the rotating-wave approximation
(RWA} is made.

II. SCHRODINGER'S EQUATION
AND NUMERICAL SOLUTIONS

Xexp(icoEt)sin(cot)f (t),
gs(t)

i = g WEsaE(t)exp(icogt)
dt E

Xexp( i coEt)sin(cot—)f (t) .

(la)

(lb)

In Eq. (1), fiWE sin(cot)f (t) is the matrix eleinent of the
interaction Hamiltonian connecting the states ~E) and
~g ). The energy of the state ~iE ) is ftcoE, the energy of
the state ~g ) is fico, and fico is the photon energy. The
time dependence of the electric field is given by
f(t)sin(cot). Here the pulse envelope function f(t) is
normalized to unity at its maximum. The variables a(t)
are the probability amplitudes of the states in the interac-
tion picture. To make the notation simpler, as (t) will be

go

written ao(t), and a (t) will be a, (t).
Next, we review the method of numerically integrating

Eq. (1), and the choice of dipole moments, and energy
level spacings. The numerical integration of Eq. (1) was
performed using a set of 150 equally spaced states (Fig. 1)
to represent the ionization continuum. The laser pulse
was (in all of the numerical examples shown in the
figures) three optical periods full width at half-maximum
(FWHM) in duration. The ground states ~g ) are equally
spaced in frequency, unlike the hydrogenic states, and are
drawn to scale in Fig. 1. The actual integration was ac-
complished by the Taylor's series method. The 150 states
span a width in frequency equal to that of the frequency
of the laser pulse. It is well known that a quasicontinu-
um of discrete states behaves as an ionization continuum
provided the states are sufBciently closely spaced in ener-
gy. The discrete nature of the quasicontinuum begins to
become apparent after a time 2m/5, where 6 is the fre-
quency separation of the states. In this case 6 is co/150
where co is the laser frequency, so that 2~/b is 150

In this section we will write down the Schrodinger
equation for the set of states shown in Fig. 1 and describe
some numerical solutions.

Schrodinger s equation, in the dipole approximation,
restricted to the set of states of Fig. 1, is

daE(t}
i = g WEsas(t)exp( icogt)—

dt
g
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FIG. 2. Population in initial state ~go ) during the laser pulse.
The curves are generated by numerically integrating
Schrodinger s equation on the basis set of Fig. 1. The curves are
labeled by the number of bound states ~g ) present in the numer-
ical integration. The intensity of the laser pulse Io and all other
parameters are constant for the three curves.

periods of the laser field. The entire integration period of
the examples shown in the figures is nine field periods.
To understand why the discrete nature of the continuum
should become apparent in the numerical integrations
only after a time 2m. /6, notice that pulse lengths of this
duration or longer have a suSciently narrow spectrum to
resolve the level structure, but shorter pulses have too
broad a spectrum. The mathematics of this problem may
be found in Ref. 7.

In the case of the real hydrogen atom the situation is
more complex than for the simple model atom studied
here. Our numerical studies of hydrogen [using the
(1=2, n=3) state as the initial ~go ) state of Fig. I] show
that the counter-rotating terms at frequency 2' are more
pronounced than here, and several more atomic levels are
coupled into the problem. To accurately model the hy-
drogen atom in such intense fields we have found that it
is necessary to introduce the bound states (1=3, n=4),
(1=3, n =5), and (1=4, n = 5), as well as the ionization
continua to which these states are coupled. The effect of
these (1=3) bound states is to greatly increase the ampli-
tude of the oscillations of frequency 2' that are apparent
in the numerical integrations of Eq. (1).

Although the model atom of Fig. 1 does not directly
model the hydrogen atom in intense fields, it is instruc-
tive to calculate the corresponding hydrogenic parame-
ters. The intensity Io that appears in the figures was
chosen so that a standard FGR calculation would predict
that 90% of the population would be removed from the
initial state by the time that the pulse peaks in intensity,
as shown by the curve labeled 1 in Fig. 2. If we choose
the initial state ~go ) to be the (1=2, n =3) state and the
continuum states to be the 1=3 states, and if the laser fre-
quency is chosen to be —,

' the Rydberg frequency, then Io
is 2.0X10' Wlcm .

Figures 2 and 3 present several numerical solutions of
Eq. (1} and demonstrate the profound effect that the
states ~g, ) and ~gz ) have on the ionization rate of the in-
itial state ~go). All three curves of Fig. 2 represent the
population of the initial state ~go ) during the pulse. The
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FIG. 3. Population in the initial state ~go) during the laser
pulse. The solid curve shows the evolution of ~go) with the
same intensity Io used in Fig. 2. The dotted curve shows the
evolution of ~go) at intensity 2I0. The dashed curve shows the
evolution of ~go ) at intensity 10IO.

pulse peaks in intensity at t=0. The pulse has three opti-
cal periods per FWHM. In Fig. 2, the solid curve labeled
1 represents the time evolution of ~go) in the case in

which ~go) is the only bound state. The evolution of
~go ) in this case most closely resembles FGR exponential
decay. The intensity of the laser pulse Io was chosen so
that the atom was nearly ionized by t =0 when the pulse
peaks in intensity. The curve labeled 2 represents the
evolution of ~go) with one other bound state ~g~ )
present. Now the inhibition of FOR is clearly evident.
The curve labeled 3 represents the evolution of ~go) with
the two states ~g, ) and ~g2) present. The inhibition of
FGR is greater.

In Fig. 3 the intensity of the pulse is varied, rather than
the number of bound states as in Fig. 2. In each of the
three cases shown in Fig. 3 there are three bound states.
The solid line shows the evolution of ~go) at the same in-

tensity Io used in Fig. 2. The dotted and dashed lines
show the evolution of ~go ) at intensity 2IO and IOIO, re-
spectively. Increasing the intensity by a factor of 10 in-
creases the population remaining in the initial state at the
end of the pulse.

III. THEORY IN THE ROTATING-WAVE
APPROXIMATION

The existence of trapping is clear enough in the numer-
ical results, but the physics behind the eA'ect is not so
clear. We can clarify the physics by simplifying our mod-
el a little further so that we can obtain analytic solutions.
In this section we will describe an approximate solution
of Eq. (1) that employs the rotating-wave approximation.
The method is a generalization of a method discussed in
Ref. 6. The strategy will be to eliminate the infinite set of
unbound states iF. ) from the set of equations leaving a
finite number of equations containing only the variables
of the unbound states ~g). The theoretical predictions
will then be compared to the numerical solutions of
Schrodinger's equation.

The major difficulty in simplifying and solving Eq. (1}
is the assumption that the laser pulse has an arbitrary

X exp( i c—ot)f (t),
da (t) = —g Vz az(t)exp(icogt)exp( icoF—t)

(2a)

Xexp(icot)f (t) . (2b)

In Eq. (2), 2fiVE f (t)sin(cot) is the matrix element of the
interaction Hamiltonian connecting the states ~E ) and

~g ). In order to solve Eq. (2) two more approximations
wi11 be made. %'ith these two new assumptions, it will be
possible to derive analytic solutions to Eq. (2) in several
special cases.

The two further assumptions are the following: first, it
is assumed that the ionization continuum is Hat, i.e., VE
is independent of E; and second, it is assumed that the
width in energy of the ionization continuum is infinite,
rather than the finite energy width drawn in Fig. 1.

With these two approximations, the next step is to
eliminate the unbound states ~E ) from Eq. (2). Formally
integrating Eq. (2) for the amplitudes ag(t), and substi-
tuting aE(t) into Eq. (2b) yields

dag = —g I dt' g Vz~ Vzg exp[i'(coFo co)(t' —t—)]at E

Xexp(i cog t)exp( i

cost�')—

Xa (t'}f(t')f(t),
where ficoo is the energy of the initial state ~go), and

cozo =coE —coo. Now the expression in the large
parentheses can be summed to yield
2I

g
5(t' t) Vz /V—Eg, whe. re 21

g
is the Fermi-golden-rule

rate of ionization of the state ~g ) into the ionization con-
tinuum ~E). The equation is simpler in the Schrodinger
picture. The Schrodinger picture variables cg(t) are re-
lated to a (t) by

cg(t)=ag(t)exp( ico t) . —

With these new variables, and with the 6 function de-
scribed above, Eq. (3) reduces to a very simple set of cou-
pled equations

dcg (t) VF
+ico c (t)= —I gf (t) g cg (t) . .

dt g' V g

In Figs. 4 and 5 we compare the results of the theory
Eq. (5) with the predictions of Schrodinger s equation,
Eq. (1). The theoretical equations are numerically in-
tegrated with a Gaussian pulse shape for f (t). The pulse
lengths and atomic parameters are as described in Sec. II
and the figure captions. For a variety of conditions, the

shape f (t). It will be assumed that f (t) is smoothly
varying, but no other assumptions are made. In our nu-
merical examples, f (t) will always be Gaussian.

Let us rewrite Eq. (1} in the R%'A. To do this the
sin(cot) in Eq. (1) is expanded in complex exponentials,
and the rapidly oscillating terms are discarded to yield

daF(t) = g Vz a (t)exp( i—cogt)exp(i cozt)
dt
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FIG. 4. Population in the initial state Igo) during the laser
pulse. The solid curve shows the numerical integration of
Schrodinger's equation. The dashed curve shows the predic-
tions of the theory in the RWA. The pulse intensity was Io, and
three bound states were present, Igo), Ig, ), and Ig2 ).

theory qualitatively agrees with the predictions of
Schrodinger's equation.

and

—c (r) = —I f '(r)D (r)/V
d
dt ~ Eg (6)

D(r)= — g—I, '

f'(r)D(r) .
dt

g

The initial condition D (
—ac ) = V@0 arises from the ini-

tial state co(t), which satisfies co( —ac )=1. Solving for
D (r) and substituting it into Eq. (6) yields

IV. POPULATION TRAPPING

When the bound states Ig ) are degenerate in energy,
then Eq. (5) may be solved exactly with arbitrary pulse
shape f(t). The calculation shows, surprisingly, that
population is trapped in the initial state Igo) for laser
pulses of arbitrary duration. In other words, the trapping
is permanent.

Assume that the states Ig ) are degenerate and without
loss in generality set the initial-state energy to zero:
coo =co, = . =0. With the change of variables
D(t) = gg VE c (t), Eq. (5) becomes

The solution is more transparent if we assume that the
pulse is rectangular in shape, and turns on abruptly at
t=0. Then the probability amplitude of the initial state
1s

r,
c (t)=1+ exp — QI, t —1

g
g

(10)

Equation (10) implies that as long as the FGR ionization
rates (2I g ) for transitions from Ig ) to the ionization con-
tinuum are nonzero, then I 0/g(l s) is less than 1 and
population will be permanently trapped in the initial state
Igo).

V. NONDEGENERATE STATES

Equation (5) can also easily be solved analytically for
nondegenerate states Ig ), provided that the laser pulse is
rectangular in shape. In this section we will describe the
solution in the simplest case (two bound states) and as-
sume that the pulse is rectangular and turns on at t=0.
Again the initial-state energy ficuo is set to zero and the
energy of Ig &

) will be denoted by 5' = co, —coo= co, .
One important physical point that we want to em-

phasize in this section is that the ionization exhibits qual-
itatively different behavior in two limits. In the weak-
field limit when the FGR rate 2I o is so small that
5' & 2I 0, then the initial state Igo ) ionization closely fol-
lows the FGR exponential decay law exp( 2I ot) w—ith or
without the presence of the state Ig, ). In the strong-field
limit, when 5' (2I 0, then the ionization rate is strongly
inhibited in comparison to the FGR rate. We are assum-
ing that I o=I, . The rules are slightly modified when
this condition is not met, but unless I

&
(&I o, it remains

true that in the strong-field limit, ionization is strongly
inhibited in comparison to the FGR rate.

The solution of Eq. (5) in this limit (two bound states
with rectangular laser pulse) is straightforward. With ini-
tial conditions co(0) = 1 and c ~(0)=0, the solution for the
probability amplitude of the initial state co(t) is

cg(t) = —I
gf—(t) exp —J dt' Q I ~ f (t')

dt g ' VE QO g

g

which may be integrated immediately to get

~g ~EOcg(t)=c (
—~)+

g

X exp —J dt' Q I

c 1.0
0
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FIG. 5. Population in the initial state Igo) during the laser
pulse. The conditions were identical to those of Fig. 4, except
that the number of bound states present was varied from 1 to 3
as in Fig. 2.



JONATHAN PARKER AND C. R. STROUD, JR.

1cp(t)= [( A2+I p)exP( —A it)
1 2

—
(
—A i+I p)exp( —A2t)],

A, =I +i 5'/2+ [I —(5'/2) +i5tph]'~

(1 la)

(1 lb)

lation remaining in ~gp) at the end of the pulse ~cp~ ap-
proaches —, in the limit of high-field intensity. The gen-
eral behavior is also apparent in the numerical solution of
Eq. (1) with Gaussian pulse shapes, as shown in Fig. 3.

VI. THEORY WITHOUT THE RWA

Here I =(I p+I, )/2 and b, =(I,—I p)/2. The solution
is particularly transparent when 6=0. In that case,
A i 2

= I +i5tp/2 T [I —(5tp/2) ]' and it is immediate-

ly apparent why the ionization behavior is so different in
the two limits 5tp/2) I p and 5pi/2 & I p. Consider, for
example, the strong-field case 5tp/2 & I p. Expanding the
square root of A to order [(5tp/2)/I ] yields, for cp(t),

I p
—Az 5~'

cp(t) =exp( i 5tpt/2) — exp — t
A, —A2 SI

Io A
exp( —2I t)

1 2

5'
Xexp t

8I
(12)

Recall that cp(t) is the physical probability amplitude of
the initial state. Thus cp(t) has a term with a decay rate
that approaches zero as I approaches infinity. More-
over, the amplitude of this term is proportional to
(I —

A 2 )/( A, —
A 2 ), which approaches a nonzero con-

stant ( —,') as I' approaches infinity. Thus, if 5'/2& I,
then increasing the intensity of the pulse (keeping its
duration fixed) increases the amount of population
remaining in the initial state at the end of the pulse. This
is true for a rectangular pulse of any duration: the popu-

cg(t) = VEsexp( itpst)as—(t) .

Equation (1) becomes

(13)

In the previous sections we have used a simple model
containing the rotating-wave approximation to approxi-
inate the solutions of Eq. (1). We have also carried out a
numerical interaction of those equations using the
methods of Ref. 1. We found that the RWA approximate
solutions are consistently about 10% off in their predic-
tion of the population at the end of the pulse. They are
also missing the oscillations at frequency 2'.

The question arises then, whether the failure was due
to the RWA, or due to some other assumption made in
the derivation of Eq. (5). In this section it will be shown
that the theory may be developed without fully making
the RWA. The new theory uses the same assumptions in
its derivation as the simpler theory, with the exception of
the RWA. The new theory will give correct predictions
of the population remaining in the initial state at the end
of the pulse, suggesting that most of the failure evident in
the RWA version of the theory was due to the RWA.

The derivation of the theory will be very similar to
derivation of the RWA version of Sec. III. The first step,
again, is to formally integrate Eq. (la) and substitute into
Eq. (lb) in an effort to eliminate the variables associated
with the ionization continuum ~E ). To simplify the alge-
bra, a change of variables similar to Eq. (4) is used,

cg
+tcpg cg — g f dt

g

f' dt

g V&gexp[i (tpzp tp)(t' t)] —c (t')f—(t')f (t)

g VEsexp[i(cpEp+tp)t']exp[ i(tpzp —tp)t] cg
—(t')f (t')f (t)

f' dt' g Vsgexp[i (cpEp
—cp)t']exp[ i (tpsp+—tp)t] cg (t')f (t')f (t)

E

g VEsexp[i (tpzp+tp)t']exp[ i (tpzp+tp—)t] c (t')f (t')f (t) .
E

(14)

The next step is to assume that cg(t) may approximated by a truncated Fourier series

2 2

cz(t)=cgp(t)+ g cg+„(t)exp(incest)+ g cg„(t)exp( —input) . (15)
n=1 n=1

The new variable c „(t) will be substituted into Eq. (14) and then the coefficients of exp(inept) are equated. This is a
well-known approach. However, a new approximation is required, one that was not discussed in Sec. III. The new ap-
proximation is the slowly varying envelope approximation (SVEA). It will be assumed that c~„(t)f ( t) is slowly varying
in the following sense. An integration by parts of certain terms in Eq. (14) goes as follows:

f dt' g V~ exp[i (tp~p+tp)(t' t)] cg(t')f—(t')
E

$/2 p'2

=cg(t)f (t) g —f dt' g . exp[i(tp~p co)(t' —t)],[c (t')f (t')] . (16)
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In Eq. (16) cosa is coE —
run, where coo is the frequency of the initial state ~go ).

The SVEA implies that the integral on the right-hand side of Eq. (16) is negligible due to the negligible time deriva-
tives of f (t) and cg„(t) W. ith this approximation, and with the methods of Sec. III, Eq. (14) can be greatly simplified.
Substituting the Fourier series Eq. (1S}into Eq. (14) yields

cso(t}

cg2(t)dt
cs2(t)

(
—', )

( i—ru —Ziru)c 2 +f (t)

( it—u +2ire)cga

( i—A, g )

(i A, s+i Q3s)

(o)

Cg 'O

g

+gc 2

Cg~2

(17)

In Eq. (17), the frequency shifts Q arise from terms on the
right-hand side of Eq. (16),

p20„=—g (18)
E n to+ tuEo

Figures 6 and 7 show a comparison of a numerical in-
tegration of Schrodinger s equation with a numerical in-
tegration of Eq. (17). The theory is compared to
Schrodinger's equation [Eq. (I)] for the three cases of Sec.
II, shown in Fig. 2. The agreement between theory Eq.
(17) and Schrodinger's equation is superior to the RWA
results, although the agreement is not quantitative.

VII. CONCLUSION

It is apparent from the numerical solutions with
Gaussian pulses, and from the solutions Eqs. (9) and (11),
that the inhibition of ionization is not due to a carefully
chosen laser pulse shape and atomic dipole moment.
Rather, we have seen for a variety of pulse shapes, dipole
moments, and energy-level spacings, that the ionization
Inay be strongly inhibited in comparison the FGR ioniza-
tion rate.

The population trapping and other modifications of
FGR were found to be due to states of the same parity as
the initial state ( ~g, ), ~g2), . . . ) which recapture popula-
tion from the ionization continuum during the excitation

through stimulated Raman scattering. Significant popu-
lation must actually enter these states for the inhibition
effects to be significant. If no population were recaptured
by the states ~g, ), ~gz ), . . . , then the states could be dis-
carded from Eq. (1) and analysis of Eq. (1) would yield
the usual FGR predictions. Let ~%', (t)) be the coherent
superposition of the bound states gs c (t)~g ), and con-
sider Eq. (la) (in the Schrodinger picture) for the proba-
bility amplitude of a typical unbound state ~E )

dc@(t)
+iruEcz(t)=i ( E~(elm cubi)p A~'p, (t) ) .

dt
(19)

In the examples of inhibited ionization studied here, pop-
ulation returns to the bound states with just the right
phase so that the right-hand side of Eq. (19) is small in
comparison to the matrix element used to calculate the
Fermi-golden-rule rate: c (t)(E (e jmcfi)p A go). In
other words, the superposition state %, (t) ) exhibits a re-
duced ionization cross section in comparison to the FGR
prediction for the initial state c (t) ~go). In this paper a
theory was developed and studied in several limits in an
attempt to understand why such an effect should happen
so naturally for a variety of systems.

The theory was initially developed to describe ioniza-
tion under extreme conditions, in which the laser pulse
intensity was sufficient to ionize the atom in a few cycles
of the field. Such conditions arise, for example, in the
study of the above-threshold ionization of atomic hydro-

1.0
C0
tg

CL0
CL
0)

I

O

& 0.0—
-4.0

I l I l I

-2.0 0.0 2.0
time (units of optical period)

I

4.0

c 1.0—
O

tg

Q.
O
Q.
CD

CA
I

C3

I

'c 0.0—
-4.0

1 l l

-2.0 0.0 2.0
time (units of optical period)

l

4.0

FIG. 6. Population in the initial state ~g) during the laser
pulse, under conditions identical to those of Fig. 4. Here the
dotted curve represents the theoretical predictions with three
bound states present.

FIG. 7. Population in the initial stage ~go) during the laser
pulse, under conditions identical to those of Fig. 4. The dotted
curves represent the theoretical predictions with one, two, and
three bound states present as in Fig. 2.



1608 JONATHAN PARKER AND C. R. STROUD, JR. 41

gen. Under these conditions, much of the ionization
takes place during the turn on of the laser pulse. For this
reason it was important to develop a theory capable of
handling physical (e.g., Gaussian) laser pulses. Despite
the extreme conditions, the theory in its simplest (RWA)
form qualitatively predicted the general features of popu-
lation trapping and inhibited FGR observed in the nu-
merical integration of Schrodinger's equation.

In order to understand the remaining discrepancy be-
tween theory and numerical integration, a more sophisti-
cated version of the theory was developed which did not

employ the RWA. The more sophisticated theory gave
superior agreement with the numerical integration by
correctly predicting the population in the initial state at
the end of the laser pulse. As a result we were able to
demonstrate in a variety of examples the partial failure of
the RWA.
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