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Radiative properties of atoms near a conducting plane: An old problem in a new light
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We examine the level shifts and radiation rates of an atom near an infinite, perfectly conducting
plane. Following the work of Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43,
1617 (1982); 45, 637 (1984)], we distinguish between the effects of radiation reaction and vacuum
fluctuation. This separation provides some new physical insight into the nature of "cavity"
modifications of atomic properties. In particular, we are able to identify the Casimir interaction as
entirely due to the vacuum fluctuations.

I. INTRODUCTION

The radiative properties of atoms are modified in cavi-
ties, because the electromagnetic field surrounding the
atom is modified by the boundaries of the cavity. The
presence of the cavity affects both the natural lifetimes
and the energies of atomic levels. Although these effects
have been known theoretically for many years they have
only recently begun to be demonstrated in the laboratory.
With the use of lasers it is now possible to study highly
excited states of atoms which have large polarizabilities
and therefore are strongly coupled to the electromagnetic
field. Furthermore, the excited atoms can be detected
with high efFiciency, so that experiments can be per-
formed at the single atom level. These developments
have made it possible to observe cavity effects in the labo-
ratory' and have led to the growth of a new field called
"cavity quantum electrodynamics. "

Quantum electrodynamics (QED) provides a quantita-
tive theory of the radiative properties of atoms in
confined space, although a clear and simple physical pic-
ture does not always emerge from the full QED descrip-
tion. ' From one point of view, the cavity effects may
be regarded as modifications of the vacuum field distribu-
tion and mode density associated with the fluctuations of
the quantized radiation field. On the other hand, the
same effects can often be described by considering the re-
action of the instantaneous atomic dipole to its own radi-
ation field reflected from the cavity walls. In the second
viewpoint the physical mechanism is the fluctuation of
the atomic dipole and it does not seem necessary to con-
sider the field fluctuations directly.

Both mechanisms, an atom driven by fluctuations of
the electromagnetic environment, and an atom reacting
to its own field, yield identical answers for many of the
radiative properties. In fact, we know from the work of
Ackerhalt, Knight, and Eberly, ' Senitzky, ' and Milon-
ni, Ackerhalt, and Smith, ' that "radiation reaction" and
"vacuum fluctuations" are in a sense two sides of the
same coin. They have shown that within standard QED,

the extent to which each mechanism contributes to the
total effect can be chosen at will merely by changing the
ordering of the matter and radiation operators in the in-
teraction Hamiltonian. '

Following a suggestion by Fain, ' Dalibard, Dupont-
Roc, and Cohen-Tannoudji' ' (henceforth called DDC)
have discussed an extension of these ideas. They consider
the rate of variation of an arbitrary atomic observable 6
due to the coupling of the electron momentum with the
vector potential of the vacuum A,

coupling
dt

=eN A,

dG =
—,'(N A„+ A„N),

VF

dG = 1(N A, A, .N) .
dt sa

(2)

Of course, each part must be separately Hermitian if it is
to have separate physical meaning.

A generalization of this idea allows them to separate
the two parts even when the atom-radiation coupling is
more complicated than Eq. (1). This approach seems to
provide a simple physical basis (Hermiticity) for deter-
mining which radiative effects are due to vacuum fluctua-
tions and which to self-reaction.

DDC then proceed to solve Eq. (2) by perturbation
theory taken to second order in atom-field coupling. In

where N is the relevant atomic operator. A is the sum of
a vacuum field A„and a field generated by the atom A, .
Although A commutes with N, A„and A, individually
do not. Consequently, the contribution of each field to
the total rate seems to depend on the ordering of N and
A. However, DDC show that the rate of change of 6
separates unambiguously into a vacuum fluctuation part
(VF) and a self-reaction part (SR) when each part is re-
quired separately to be Hermitian:
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particular, they give expressions for the separate contri-
butions from vacuum fluctuation and self-reaction to the
energy-level shifts and radiation rates of an atom. Their
results are formally identical with an application of the
fluctuation-dissipation theorem both to the atom coupled
with a fluctuating electromagnetic vacuum and to the
electromagnetic field coupled with a fluctuating atom. Of
course, their perturbative solution cannot describe situa-
tions such as an atom interacting with a single mode of
the electromagnetic field, ' but Eq. (2) itself is quite gen-
eral.

In this work we calculate the changes in the energy
and spontaneous decay rate when an atom is in the vicini-
ty of an infinite plane conducting surface (a prototype for
a cavity). We refer to the region on one side of the sur-
face as semiconfined space. This is not a new problem,
but by separating the vacuum fluctuating and self-
reaction parts according to the scheme of DDC, we are
able to gain some new physical insight into the cavity-
induced effects.

This work is an extension of the free-space results of
DDC to the case of a rudimentary cavity. On three oc-
casions, Eq. (22), (29), and (37), we take a result of DDC
as a starting point for our discussion. The reader is re-
ferred to Sec. 4 of Ref. 17 for the derivation of these re-
sults.

We begin with a discussion in Sec. II of the statistical
functions which are used within the DDC framework to

I

describe the atom and the vacuum field in semiconfined
space. In Secs. III and IV we examine the effect of the
conducting boundary on the spontaneous decay rates and
energy levels of the atom. Finally, we compare our re-
sults with the work of other authors and draw some con-
clusions about the physical origins of cavity-induced
effects.

II. STATISTICAL FUNCTIONS
IN SKMICONFINKD SPACE

In this section we calculate the basic statistical func-
tions which will be used to describe the vacuum and the
atom in semiconfined space. The conducting boundary
that defines the space will be called the mirror.

A. Field modes

Let the normal to the conducting surface define the z
axis. We distinguish two types of plane-wave modes for
the field in front of the surface. These we call E modes
(E, =0) and M modes (8, =0) by analogy with the TE
and TM modes of a waveguide. The wave vector of a
mode is k and its components normal and parallel to the
mirror are k, and a. The position vector is r and its com-
ponents normal and parallel to the mirror are z and p.
The notation and coordinate system are illustrated in Fig.
1. The field operators for E and M modes are

A (k)=
coco V

' 1/2

sin( k,z gc X za i,e
"'t' ""+H. c. ,

A (1c)=
' 1/2 k,—cos(k, z)z —i sin(k, z)k ai, e't "~ 'I+H. c. ,

coco V k ' k

(3)

in which A, eo, and co have the usual meanings, Vis the
normalization volume, ak and ak are the annihilation
operators for the E and M modes having wave vector k
and H.c. denotes the Hermitian conjugate.

B. Correlation and susceptibility functions
for the field

Following DDC we define the correlation functions for
the vacuum field,

C„(r,r) = ,' g (0~[A „(r,t)—,A „(r,t —r)]+ ~0) .
A, (=E,M)

(4)

Aton

(a) (I3) (c)

The subscript plus (minus) indicates anticommutation
(commutation). A„ is a Cartesian component of the vac-
uum field in the presence of the mirror but not yet per-
turbed by an atom. In general, the correlation function is
a tensor C„,but in this case all the off-diagonal elements
are zero. Similarly the susceptibility of the vacuum field
is defined as

FIG. 1. This figure defines the notation and coordinate sys-
tem. (a) The cylindrical position coordinates of the atom. {b)
The electric field, the wave vector, and its components in an E
mode. (c) The magnetic field, the wave vector, and its com-
ponents in an M mode.

y„(r, r)

A (=E,M)
(0~[ A(r, t), A„(r, t —r)] ~0)6(r),
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in which e(r) is the Heaviside step function.

1. Transuerse ftelds

From Eqs. (3) and (4) it follows that for E modes

F(E~ A d k 1 . 2C„""(r,r) = —(sin k,z }(sin P)
2E'9 4~ CO

X (e ICdT+eCCdT)

and for the M modes

F(M) fl d k 1CF(Mj(r ) —(sin k,z)(cos 8)
2~0 4m

2. Perpendicular ftelds

Only the M modes contribute to the normal corn-
ponent of the field. From Eqs. (3) and (4) it follows that

F(M)
A' d k 1CF(M)( )— —(cos k, z }(sin 8)

2E'p 4~ co

X (
lCdT+ CCd T)'

and hence

((1 f + d, ,
i ~

1 cos(AT)
4m eoc — 3 (co T )

X(cos P)(e '"'+e' ')
sin(coT)

(coT )
(12)

(7) After subtracting the free-space part we obtain

where ct is the azimuthal angle and 8 is the polar angle of
k. After integrating over all orientations of k and adding
E and M modes we obtain

fi i + d, ,„,
~ ~

2 sin(AT)

8 ' 'J — 3 T877' E'pc

cos(co T )

(coT)

sin(co T )

(coT)'

Cd»( )= ~ j+ d, „T~
~

cos(coT)
4m' eoc —~ (coT)2

+ sin(coT)

(coT)

(13)

Similarly, the change in susceptibility of the perpendicu-
lar field due to the mirror is

y,"'(r, r }

where T stands for 2z/c, the time taken for light to prop-
agate to the mirror and back. The first term in Eq. (8) is

just the free-space correlation function, therefore the
change in correlation function of the transverse field due
to the presence of the mirror is

y+~d ~cTe( )
cos(coT)

2m eoc —~ (coT)

sin(coT)
(coT)'

(14}

C""(rr)=, , J "dcoe' 'icoi
8K E'pc AT

cos(co T )

(coT )

sin(coT)

(AT )
(9)

3. Fourier transforms

of the field statistiea! functions

We define the transform f(co) of f(r) through the rela-
tion

f(r)= f dcoe'"'f(co) . (15)

This is consistent with the convention of DDC. The
transforms of the correlation functions [Eqs. (9) and (13)]
are obtained by inspection:

For the susceptibility of the transverse field a nearly
identical calculation yields

C""( )= A
~ ~

stn(~T)
8m @pc

cos(co T )

(AT)

y„"'(r,r)

sm(coT }

477 &pc —~ coT

cos(coT)
(coT)

sin(coT)

(coT)
(10)

From the symmetry of the problem it is evident that
C =C„andy =y .

sin(co T )

(coT)'

C „,
( )

fi
~ ~

cos(coT) sin(coT)
4m' roc (cccT) (coT)3

(16)

We have dropped the argument r in order to simplify the
notation but of course there remains a position depen-
dence through the quantity T =2z /c. The susceptibilities
are not so easy to transform because of the presence of
O(~) within the integrals. Appendix A shows how we ob-
tain the results
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1 1g'"(co) =
81T EOC

sin(coT) cos(coT)
(coT)

l,„r . cos(coT) sin(coT)

(coT) coT (coT)

1 1
y", "(co)=

4' EOC

sin(co T ) cos(co T )

coT (coT)

1 . cos(co T )+l
(coT)

sin(co T )

(coT)

(17)

C. Correlation and susceptibility functions for the atom

Following DDC we now define the correlation functions for an atom in state a,
'2

C„'(r)= ——
& a

l [p„(t),p„(t r)]+—la &,
1 e

(18)

where p„(t) is a Cartesian component of the electron momentum operator. Once again we are interested only in the di-

agonal elements of the more general tensor. This operator evolves only under the internal atomic interactions; the atom
has yet to be coupled to the vacuum. Similarly, the susceptibility of the atom is defined as

7c„'(r)=——
& a

l [p„(t),p„(t —r)] la &e(r) .
m

(19)

We will be interested in the Fourier transforms of these statistical functions which are given by DDC:
'2

C „'(co) =—— g l & b lp„ la & l'[5(co —co,b ) + 5(co +co,b )] (20)

and
2

yl&bfp la&l', —
2fi m b

1

CO+ CO~b

—P +i [5(co+co,b )
—5(co —co,b )] (21)

where 5 is the Dirac delta function, Ace, b is the energy in-
terval E, —Eb, and P indicates that the principal part is
to be taken in subsequent integration.

The key results of this section are Eqs. (16), (17), (20),
and (21), the correlation functions and the susceptibilities
of the vacuum and the atom. Following DDC we will
now calculate the decay rates and shifts of the atomic lev-
els in the context of perturbation theory.

PsR = 2n g f —dcocoC &(co)1m[a„(co)]

and (ii) (22)

PvF =2m g f dcocoC &(co)1m[a&(co)] .
P

PsR and PvF can be positive or negative, enhancing or
suppressing radiative decay in confined space.

A. Self-reaction-induced decay rate

III. SPONTANEOUS DECAY RATE
The modification of PsR due to the presence of the mir-

ror is obtained by subtracting the free-space value.
Hence

The power radiated from an atom consists of two
parts, PvF due to vacuum fluctuations and PsR due to
self-reaction, as outlined in Eq. (2). In the coupled reser-
voir model of DDC these can be written as (i)

Ps'R' = 2ngf —1coco. C „'(co)1m[a„""(co)].

With the help of Eqs. (17) and (20) we find

(23)

PsR= ', , X~!b l&blppla&l'—
47TEom c b

sin(co, b T ) cos(co,b T ) sin(co, b T )+
co,b T (co,b T) (co,b T)

cos(co,b T ) sin(co, b T )
+2 &blp, a& ' — ', +

( bTco) (co,b T )' (24)

&blppla &I:l&blp la &I +l&blpyla
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B. Vacuum-induced decay rate

The mirror-induced change in Pv„ is

Pv'„" =2m g f dcocoC „""(co)1m[a„'(co)]. (25)

With the help of Eqs. (16) and (21) we find

sin(co, b T) cos(co,b T) sin(co, b T)

4irepm c b co,b T (co,b T) (co,b T)

cos(co,b T ) sin(co, b T)

(co,b T) (co,b T)
(26)

Note that Eq. (26) is identical to Eq. (24) except for the
replacement of co,b by lco,b I.

C. Total decay rate

The total power radiated from the atom in
semiconfined space is P =P +Pv'„"+PsR, where P is the
power that would be radiated in free space,

PO
2

» g ~.b(~.b+ I~.b I )
67TEpm C

X(I & b Ip, la & I'+
I & b Ip, la & I') . (27)

For ground-state atoms it is reassuring to note that each
term in Pv'„" is canceled exactly by the corresponding
term in PsR because co,b is negative for every b. This
cancellation also ensures more generally that there are no
upward radiative transitions from any initial state. For
downward transitions from an excited state, P acquires
equal contributions from Pv'„" and from PsR regardless of
the distance from the mirror. This is the same kind of
conspiracy that DDC found in the free-space case and
which is contained in the term (co,b+ lco,b I

) in Eq. (27).
It seems to tell us that the vacuum fluctuations and the
self-reaction are equally important in radiative decay,
both in free space and in the presence of a boundary.

At distances far from the mirror (co,b T ))1), the
modifications become negligible and the radiated po~er
approaches the free-space value as one would expect.

Close to the mirror (co,b T « 1) the power radiated by
a dipole parallel to the surface goes quadratically to zero
[P ~(co,bT) ] while a perpendicular dipole radiates at
twice the free-space rate. This behavior has a simple ex-
planation. Close to the mirror the field A goes linearly
to zero because it must satisfy the boundary condition
A =0 in each mode. This applies both to the vacuum
field and to the field generated by the atom. Hence the
decay rate goes quadratically to zero. In a similar way
the reflection at the boundary doubles the perpendicular
component of both the vacuum field and the field pro-
duced by atomic fluctuations. This generates four times
the power density of decay radiation, but only in half the
free-space volume. Hence the radiated power doubles.

IV. ATOMIC ENERGY LEVEL SHIFTS

It is convenient to work in the Coulomb gauge where
the Hamiltonian describing the external interactions of
the atom in the dipole approximation is

e2
2 eH= A2 ——A p+V

2m m stat (28)

In this section we will separate H into vacuum-
fluctuation and self-reaction parts and will examine the
level shifts (calculated to order e ) associated with each.
Evidently the A term is to be associated with the vacu-
um, while the "instantaneous" Coulomb interaction ener-

gy V„„ is a self-reaction term. This assignment is not
only intuitively reasonable, it is also required if the sepa-
ration into vacuum-fluctuation and self-reaction contri-
butions is to be gauge invariant. The A p term will be
decomposed into a vacuum-fluctuation part and a self-
reaction part as discussed by DDC.

A. Self-reaction-induced level shifts

Here we are only interested in the mirror modification of
hsR which we obtain by subtracting the free-space part
from y:

b, s'a =
& a

I V„„la &
—m. g f dco[C'„'(co)]'y„""(co) .

(30)

l. F/ectrostatic term

The first term in Eq. (30) is the London —van der Waals
interaction of the instantaneous electric dipole with its
image: '

&a Ip'+2z'la &

4m'Eo l 6z
(31)

Here we are making the approximation that the size of
the atom is much less than z, the distance to the mirror.
It will prove useful to rewrite this in terms of T (—:2z/c)
and p, the electron momentum,

The self-reaction part of the level shift due to H can be
written following DDC as

~sa=&alV„„la & ~g f dco[C'„'(co)]'y„(co) . (29)
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&alv„„la &=— , (I&blp, la &I'+I&bli/2p, la &I') .
8m.rom c T

b (to bT)
(32)

2. Self re-action contribution to the A.p term

The second term in Eq. (30) is readily evaluated with the help of Eqs. (17) and (20). The result is

e2
l&b

lpga la
&I'

8treom e T
b (to,bT)

cos(co,b T ) sin(co, b T ) +cos( tocb T )
(toab T) (coab T

+
I & b

I
i/2p,

I
a & I'

(co,b T)

cos(to, b T) sin(to, b T )
(33)

(to, b T) (to,b T)

3. Total self reactio-n induce-d level shift

The sum of Eqs. (32) and (33) yields the total levels shift due to self-reaction,

2 cos(toab T)

( cob T)
r

sin(co, b T )
+cos(to, b T)

(tocb T)

c so( t,obT) sin(to, bT)+ I & b
I
v'2p, la &

I'—
(to bT)~ (to,bT)

(34a)

gcav y gcav(b)
b

(34b)

In the limit of small co,b T this shift is dominated by the
1/T (i.e., 1/z ) terms and is just the London —van der
Waals interaction

For future use it is convenient also to write this result in
the form 2

gcav ~ Ccav
( 0)VF 2 ~ P

—
m Q f dco[C'„""(co)]'y„'(co) .

1. The A~ term

(38)

At large distances the shift becomes

(35) The first term of Eq. (38) represents that part of the in-
teraction e A /2m due to the presence of the mirror. It
is readily evaluated using Eqs. (9) and (13). The result is

~SR I bT
e e A 1g C„""(r, ro) =

z2m 4vre mc T
(39)

e
, , —g I & b lp la & I'cos(co„T),

SATE'pm C b

(36)

B. Vacuum-induced level shifts

The vacuum-induced part of the level shift due to H
can be written following DDC as

which is precisely the interaction energy of a classical
electric dipole of amplitude I&blp~la &I/mto, b with its
own reAected far field. a= ——y I & b

I
v'Zp, la & I'

m
I ~.b I'

to obtain

e2

2m g C"'(r, r=o)

(40)

2

where, as usual, T=2z/c. This co—ntribution to the level
shift comes entirely from A, . For future reference it is
useful to rewrite this result using a version of the
Thomas-Reiche-Kuhn sum rule

2

&ol a'lo& —~g f "d~ c'„'(~)'j „'(~) . 4& Epm C T b I to, b I

(41)

(37)

Once again we are interested in the modification of the
energy due to the mirror which we obtain by subtracting
the free-space part from Eq. (37),

2. Vacuum fluctuation contr-ibution to the A.p term

Now we evaluate the second term in Eq. (38) with the
help of Eqs. (16) and (21). The contribution from the x
and y components of the field is
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2

16'1T E'pm

sin(cp T )

NT
os( T) +

'
( T)

(AT)' (AT)'
1

N+ CO~b

—p
N N~b

(42a)

and from the z component

2

d ci)
I
cp

I

16m. @pm c b

+"" I(bleep, a)I' P
(cpT) (cpT)

1

CO+ 6)~b

—p
CO CO b

(42b)

Although we are able to evaluate these integrals analytically as described in Appendix B, they have a rather inelegant
form. The results for the transverse (p) and normal (z) contributions are, respectively,

2

, , —g l&blppla &I'
4 i'rem'c' T

b
'

I cpbl

1+g ( I ~,b I
T ) j( I ~,b I

T )

cos(cpgb T )+—
2 (cp~bT)

sin(cp~b T ) +cos( cp, b T )
Q)gb T

(43a)

and

2

, , —& I &b Iv'2p, la & I'
4~cpm c T b CPab

1+g(Icp„IT) f(Icp„IT)+ +
lcpob I T ( Icp b I T)

cos(cp, b T) sin(cp, b T}

(Cp~b T) Cp~b T
(43b)

where the auxiliary functions f and g are defined in Appendix B.

Tprai vacuum induced -leuel shift

(44)

When we sum Eqs. (41), (43a), and (43b) to find the total vacuum-induced level shift we see that the first term in Eq
(43b) is canceled by the contribution from Eq. (41) and that some of the terms in Eqs. (43a) and (43b) correspond exactly
to terms in the self-reaction shift given in Eq. (34a). Thus the total vacuum-induced shift can be written as

2
1 Cp b 1 +g(l CpblT) f(ICp blT)

g;„"=y, ",a "(b)+,', , —y '"
l&blp, la &I' + ', f(l~.b IT)—

g (I~.b I T) f (
I ~.b I T)

C. Total level shift

The total le~el shift is 5""=bsR"+hv'„". Close to the
mirror, when ~,bT &&1, Av'„' diverges no faster than
1/T, as shown in Appendix C, whereas b, s'R diverges as
1/T [see Eq. (35)]. Therefore the total level shift near
the mirror is dominated by the London —van der Waals
interaction and is due entirely to self-reaction.

At a large distance from the mirror (cp,b T )) 1), b F'v" is
dominated by the first term of Eq. (44), which has the
1/T form shown in Eq. (36). This corresponds, as we
remarked in connection with the self-reaction shift, to the
atom interacting with the reflected far field of its own ra-
diation pattern. Thus the total shift of level a due to
lower-lying states comes half from the self-reaction and
ha1f from the vacuum fluctuation, in complete accord
with our conclusions about the spontaneous-emission
rate. Similarly the shifts due to states lying above state a
cancel as do the spontaneous-emission rates. This cancel-
lation means that the energy of a ground-state atom far
from the mirror has no such "far-field" shift. This is a
reasonable result because the ground state does not radi-
ate. In this case the shift is due entirely to the vacuum
fluctuations and is contained in the second and third

"
l&blpla &I'

4~eom'c' T, I~.b I (I~l.bT)'

(45)

This result is precisely the Casimir-Polder shift, first ob-
tained in 1948. It is usually written in terms of the static
scalar polarizability a„„defined as

a stat
2I (blerla ) I

b 3ACu, b
(46)

whence

(~SR+ ~v'F")
I T-'b "

4~&p Smz4
(47)

This result leads us to accept the following physical
picture of the Casimir-Polder shift. The fluctuating

parts of Eq. (44).
The large-distance limit of Eq. (44) is discussed in Ap-

pendix C. We find that the large-distance level shift for
ground-state atoms is

(~SR ~vF)l T
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+stat k
4 stat ~

AC 1/2z 3 $C

6'OZ
(49)

which has all the essential features of the more exact re-
sult in Eq. (47).

The Casimir-Polder force has frequently been de-
scribed as a "retarded London —van der Waals force."
This now seems inappropriate since the Casimir-Polder
force is entirely due to vacuum fluctuations while the
London —van der Waals force is purely the result of self-
reaction.

vacuum induces an ac Stark shift in the atom which, in
free space, is Bethe's famous self-energy contribution to
the Lamb shift. When a boundary is imposed on the vac-
uum, the spectrum of fluctuations is changed as indicated
by Eqs. (9) and (13), and the corresponding correction to
the Lamb shift is the Casimir-Polder shift. The change in

~
A

~
is significantly only for those wavelengths that are

long compared with the distance to the boundary, in
which case

~
A

~
becomes zero while

~ A, ~
is doubled.

For these frequencies we crudely take the change in the
field to be equal to the unperturbed field. The atomic lev-
el shift, ignoring factors of order unity, is then just

b, —f dk k a(k)Ek, (48)

where a(k) is the electric polarizability. At large dis-
tances, where 1/T is less than all the atomic resonance
frequencies, a(k) is effectively constant. Then

arrangement is an atom in its ground state at the center
of a spherical cavity where there is no London —van der
Waals interaction and the (nonzero) level shift is entirely
due to the Casimir-Polder energy. Unfortunately spec-
troscopic methods necessarily involve an excited state
whose long-range resonant self-interaction will tend to
dominate the shift of the interval, as observed, for exam-
ple, by Heinzen et al. '
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APPENDIX A: FOURIER SPECTRUM
OF THE FIELD SUSCEPTIBILITY

The mirror modifications to the field susceptibility are
given in Eqs. (10) and (14). They have the form

g„"'(r)=f defoe' 'g(co)8(r), (A 1)

We define the spectrum of the susceptibility as

(A2)

This is just the inverse of the relation given in Eq. (15).
Taking Eqs. (Al) and (A2) together we find that

(A3)

V. SUMMARY AND CONCLUSIONS

Several authors have already analyzed this problem
from various points of view and there seems to be general
agreement as to the net values of the decay rates and level
shifts. In particular, we agree completely with the results
given recently by Barton. Perhaps the only significant
deviation is in the short-range level shift found by Barut
and Dowling which includes an extra London —van der
Waals energy for excited states. We do not find such a
term and believe that it is erroneous.

What is new about our work is that we have attempted
to separate the self-reaction and vacuum-fluctuation mir-
ror effects subject to the physical constraint that each in-
teraction must be separately Hermitian. As pointed out
by DDC, this provides a unique prescription for separat-
ing the effects.

We find that vacuum fluctuation and self-reaction con-
tribute equally to the decay rates regardless of distance
from the mirror. Close to the mirror, the level shifts are
dominated by the 1/z London —van der Waals self-
reaction. Far from the mirror the level shifts of excited
states are dominated by the 1/z interaction with reflected
spontaneous radiation to which the two mechanisms con-
tribute equally. For ground states the spontaneous radia-
tion is absent and the leading level shift at large distances
is then the 1/z Casimir-Polder interaction which is en-
tirely due to the vacuum fluctuations.

From the experimental point of view it would be in-
teresting to observe the Casimir-Polder energy of an atom
near a conducting boundary. Perhaps the most appealing

i + ~ d co' co'cos( co'T) i sin( coT)P
2 Ir —oc ci)' —co (~'T) 2T AT

(A4)

i + ~ den' co'sin(co'T)
P

27T —~ CO N (~ 7)
i cos(co T) —1

2T (~T)2

The use of Eqs. (A3) and (A4) takes us immediately from
the time-dependent susceptibilities given in Eqs. (10) and
(14) to the frequency-dependent functions given in Eq.
(17).

APPENDIX B: INTEGRATION OF EQS. (42b) AND (42a)

1. The basic integrals

The functions f(a) and g(a) are defined as in
Abramowitz and Stegun, Secs. 5.2.6 and 5.2.7,

dx =g (a) .
0 x+a

(B1)

Since

in which P indicates the principal value of the integral.
The relevant integrals are

i f + ~ dao' m'sin(co'T) i
cos ci) T

2K —~ co' —co 6)'T 2T
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f sinx
dX = 77 COSQx+a

(B2}

2 ~ahI=- dx —sinx—
T I~.bl

cosx sinx

X

f cosx
dx =m sina,x+a

it follows that

1 1

x+a x —a
(B8)

dx = — a +m. cosa,
0 X Q

(B3)

The new terms are given by Eqs. (B1) and (B3}with the
result

COSX
dx =g (a)—n sina .

0 x+a
4 abI=— 1+g (a) f (a)

a a~

2. Integration of Eq. (42b) cosa cosa +cosa
a2 a

(89}

The integral to be performed is Eq. (42b) (see Sec.
IV B 2). For simplicity we drop the constants in front of
the integral, the summation, the squared matrix element
and the principal value symbols. In the rema1ning in-

tegral, which we denote by I, we substitute x =~T and
a = Ice,& I T. This gives

Equations (B7) and (B9) lead immediately to the results in

Eqs. (43).

2 as cosx s1nx

T I~.b I
o x x'

Now we make the substitutions

1 1

x+a x —a

(B4}

APPENDIX C: SHORT- AND LONG-DISTANCE
LIMITS OF lkyp

Equation (44) gives the energy shift b, v'F" due to the
vacuum Auctuation. Here we determine the asymptotic
behavior of b, v'F" at large distance (co,&T 00 ) and small
distance (co,~ T 0).

1 1 1

x x+a x —a
2 1 1 1+

ax a x+a x —a
. (B5) Asx 0

1. Short distance

1 1

X+Q x —a
2 1 1 1

ax Q x+a x —a f (x) —+(y —1+lnx)x+ —x +0(x ),
2 4

and the integral becomes
g (x) —(y+lnx)+ —x +0 (x ),

2
(C1)

2 ~ah f d
2 .

( )
cosx

o
"a'" a

1 1

x+a x —a
COSX

X

slnx

X
——+0(x ) .

1 1

x2 2

sinx

Q

1 1

x+a x —a
(B6} Therefore

where j~(x) is the spherical Bessel function. With the
help of Eqs. (B1) and (B3) we find

g (x) f (x) 7r cosx sinx

x x 2 x x

——+ —+0 (x) (C2)
1

x 2

4 atI=-
T I~.bl

1+g (a) f (a) m. cosa sina

a Q2 2 Q2 a

(B7)

and

1+g (x) f (x) + n cosx sinx +COSX

3. Integration of Kq. (42a)

In this case the integral analogous to (84) is

—+0(x) . (C3)
2

Hence the short-distance limit of Eq. (44) is

T

2

I&hip, la &I' +0(~.,T) +l&—blv 2p, la &I'— 1 m+—+0(r0,&T}
Iro.b I

T 2
(C4)
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Asx

2. Long distance

1 2! 4! s!
1 — +;—,g(x)—,1—,+

x x x x
(C5)

therefore

1+g(l~.blT) f(l~.blT)+, f ( It—o.I, I T)
( I~., I

T)' ( I co,„lT)'
(C6)

and

g(Ico,sIT) f(Ito,b IT)

I ~.b I
T ( I ~.b I

T)' (l~,b IT)'
(C7)

Equations (C6) and (C7) lead us immediately from Eq. (44) to Eq. (45).

'Present address: Department of Physics, Harvard University,

Cambridge, MA 02138.
'K. H. Drexhage, in Progress in Optics, edited by E. Wolf

(North-Holland, Amsterdam, 1974), Vol. 12, p. 165; A. G.
Vaidyanathan, W. P. Spencer, and D. Kleppner, Phys. Rev.
Lett. 47, 1592 (1981); P. Goy, J. Raimond, M. Gross, and S.
Haroche, ibid. 50, 1903 (1983);D. Meschede, H. Walther, and
G. Muller, ibid. 54, 551 (1985); G. Gabrielse and H. Dehmelt,
ibid. 55, 67 (1985);R. Hulet, E. Hilfer, and D. Kleppner, Ibid.
55, 2137 (1985); G. Rempe, H. Walther, and N. Klein, ibid.
58, 353 (1987); W. Jhe, A. Anderson, E. Hinds, D. Meschede,
L. Moi, and S. Haroche, ibid. 58, 666 (1987); D. Heinzen, J.
Childs, J. Thomas, and M. Feld, ibid. 58, 1320 (1987); D.
Heinzman and M. Feld, ibid. 59, 2623 (1987); F. de Martini,
G. Innocenti, G. Jacobovitz, and P. Mataloni, ibid. 59, 2955
(1987).

H. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
3T. A. Welton, Phys. Rev. 74, 1157 (1948).
4G. Barton, Proc. R. Soc. London, Ser. A 410, 141 (1987); 410,

175 (1987);320, 251 (1970).
5G. S. Agarwal, Phys. Rev. A 12, 1475 (1975},and references

therein.
L. Spruch and E. Kelsey, Phys. Rev. A 18, 845 (1978); L.

Spruch, Phys. Today 39 (11), 37 (1986}.
7C. Liitken and F. Ravndal, Phys. Scr. 28, 209 (1983); Phys.

Rev. A 31, 2082 (1985).
8J. Wylie and J. Sipe, Phys. Rev. A 30, 1185 (1984); 32, 2030

(1985)~

A. Barut and J. Dowling, Phys. Rev. A 36, 649 (1987);36, 2550

(1987).
' r. Boyer, in Foundations of Radiation Theory and Quantum

Electrodynamics, edited by A. O. Barut (Plenum, New York,
1980), p. 49.

' P. Milonni and P. Knight, Opt. Commun. 9, 119 (1973}.
' J. R. Ackerhalt, P. L. Knight, and J. H. Eberly, Phys. Rev.

Lett. 30, 456 (1973); P. W. Milonni, Phys. Rev. A 25, 1315
(1982).

' I. R. Senitzky, Phys. Rev. Lett. 31, 955 (1973).
'4P. W. Milonni, J. R. Ackerhalt, and W. A. Smith, Phys. Rev.

Lett. 31, 958 (1973).
' P. W. Milonni, Phys. Rep. 25, 1 (1976).
'SV. M. Fain, Zh. Eksp. Teor. Fiz. 50, 1327 (1966) [Sov.

Phys. —JETP 23, 882 (1966)]; V. M. Fain, Nuovo Cimento
688, 73 (1982).

7J. Dalibard, J. Dupont-Roc, and C. Cohen Tannoudji, J. Phys.
(Paris) 43, 1617 (1982).

' J. Dalibard, J. Dupont-Roc, and C. Cohen Tannoudji, J. Phys.
(Paris) 45, 637 (1984).

' See, for example, H. Walther, Phys. Scr. T23, 165 (1988).
~ J. Dalibard, J. Dupont-Roc, and C. Cohen Tannoudji (private

communication).
'J. Lennard Jones, Trans. Faraday Soc. 28, 334 (1932}.

z2Handbook of Mathematical Functions, edited by M.
Abramowitz and I. Stegun, 9th printing (Dover, New York,
1970).

H. Bethe, Phys. Rev. 72, 339 (1947).
24H. Dehmelt, in Laser Spectroscopy VIII, edited by O. Persson

and S. Svanberg (Springer, Berlin, 1987), p. 41.


