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Langevin equation for the squeezing of light by means of a parametric oscillator
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We show that the Langevin equation for a nonlinear-optical system may be obtained directly

from the Heisenberg equation of motion for the annihilation operators, provided a certain lineariza-

tion procedure is valid. We apply the technique to the parametric oscillator used to generate

squeezed light and compare our results to those obtained from Fokker-Planck-type equations. We

argue that, only when the Wigner, as opposed to the P or Q, representation of quantum optics is

used, do we get a correct description of the underlying stochastic process. We show how the lineari-

zation procedure may be carried out to describe the operation of the parametric oscillator both

below threshold, where a squeezed vacuum state results, and above threshold, where we 6nd a

squeezed coherent state. In the region of the threshold a heuristic extension of the method leads to

a possible description of the system by means of a nonlinear Langevin equation.

There is a standard procedure' used in nonlinear optics
to obtain the coupled Langevin equations describing the
interaction of two or more modes of the light field. A
"reversible" Hamiltonian is first constructed, represent-
ing the action of the pumping field and of the nonlinear
device. To this is added an "irreversible" Hamiltonian
representing the interaction of the radiation modes with
the walls of the cavities (that is, the mirrors). The equa-
tion of motion for the density matrix is now reduced by
eliminating the heat-bath modes; for this step we have to
make certain assumptions about the relevant relaxation
times. Then we pass to a generalized Fokker-Planck
equation for a pseudoprobability density by expanding
this density matrix in terms of a suitable set of basis
states. The final step, from the "Fokker-Planck" equa-
tion to a "Langevin" equation, is a heuristic one, and
consists of comparing the quantum process with the clas-
sical Brownian motion process, for which the latter rath-
er than the former is the more fundamental equation.
This is a highly ambiguous procedure; it is not possible,
in all representations of the density matrix, to guarantee
that the 'probability" density is positive, and even when
it is positive quantum theory gives us no criterion for de-
ciding whether, as in the classical case, the distribution is
over dispersion-free states, or whether there is some kind
of irreducible smoothing to be understood in all of the
basis states. Indeed, as we shall see, one obtains difFerent
Langevin equations from the commonly used densities
obtained with the normally, antinormally, and symmetri-
cally ordered characteristic functions, known respective-
ly as Glauber P, Q (or positive P), and Wigner representa-
tions.

We therefore propose that it is of interest to model the
action of the heat bath in a more classical manner. In
this way we pass directly from the Heisenberg to the
Langevin equation. The advantages of such a treatment
are (a) simplicity, (b) it leads always to genuine (positive)

probabilities, and (c) it gives us a criterion for choosing
which of the Brownian-motion descriptions obtained
from the quantum formalistn is correct. In this latter
connection we shall show in a subsequent publication
that certain autocorrelations of the process are given in-
correctly by the Langevin equations derived from the P
or Q representations, the correct ones being obtained
from the 8' representation.

The passage from Heisenberg to Langevin equation
may be rigorously demonstrated for any system
("linear" ), whose Hamiltonian is at most quadratic in the
annihilation and creation operators, of the optical and
heat-bath modes. We shall presently show how to extend
the same treatment to a certain weakly coupled, or quasi-
linear, system, but we begin by considering the linear
case. The following lemma is almost trivial, but never-
theless crucial.

Lemma. The Wigner function of a system whose
Hamiltonian is at most quadratic in the annihilation and
creation operators evolves according to a deterministic
equation of motion.

To prove this lemma, all that is required is the observa-
tion that, for such a system, the Wigner-Moyal equation
reduces to the Liouville equation of classical mechanics.
In sharp contrast, the evolution equations for the
Glauber P or the Q functions contain second derivatives
even if the Hamiltonian is quadratic and, therefore, they
do not have the form of Liouville equations.

Now let us apply the lemma to a system whose Hamil-
tonian is (A= l )

H=coit d+ ' f(t)a + —' f*(t)8—

++to b, b, +gyj(it b +&b ), (I)
J J

where & is the creation operator of a "photon, " b the
creation operator of a "phonon" in the heat bath, and y.
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are coupling constants. Then the Wigner distribution

%V(a, [p I ) satisfies a differential equation of the form

wv
Bt

(2)

where X is the Liouville operator, linear in BlBa, BlBp, ,
and their conjugates. This corresponds to a deterministic
time evolution given by

(3)
p, = ia—),p, iy—,a .

We note that these equations are formally identical

with the Heisenberg equation for I and b. , for which
there is an established procedure for eliminating the
heat-bath modes, using the Wigner-Weisskopf approxi-
mation. We now see that an almost identical procedure
may be applied to these "Newtonian" equations. Indeed,
a formal integration of the second gives

Heisenberg-Langevin equation which is obtained in the
quantum formalism, starting from (1), after the elimina-
tion of the heat-bath degrees of freedom. In consequence,
the Fokker-Planck equation associated with (9) is also the
same as that obtained by the usual procedure starting
from the quantum evolution equation of the density ma-
trix transformed to the W representation.

In order to study the solutions of Eq. (2), we shall
choose the coupling

f(t) =i ee (10)

(where e is real) which makes the Hamiltonian (1) an ap-
propriate model for the light squeezing device through
optical parametric oscillation below threshold, as we
shall show later on. In this case, it is convenient to
change from the complex stochastic process a (t) to the
real ones x( t) and y (t) through

a(t) = [x(t )+iy(t)]e

pj ( t ) =pj (0)exp( i co~ t —
)

iyj—J a(t')exp[ice, (t' —t)]dt'

and this, when substituted in the first equation, gives

(4)

and it is straightforward to get from (5) the Fokker-
Planck equation

BW(x,y, t) 1„,B'W B'W B,
Bt 4 Bx& By&

a = i(co i—y)a —if(t)a'+—L(t), (5)

where a (small) renormalization of the frequency to has
been made, the constant y is given by

y=miy(co)i p(m),

p(co) being the density function of the reservoir oscilla-
tors, and L(t) is a (complex) white noise whose mean and
variance are given by

(L(t)) =0=(L(t)L(t')),
(L(t)L "(t') ) =2D5(t t') . —

The diffusion constant D is essentially the spectral densi-

ty, at frequency u, of the heat bath, which is the Planck
distribution, including zero-point energy, of "phonons"

2D =y(1+ 2n ) =y coth(co/2k T),
where T is the temperature.

A few comments are in order. In the first place, we
point out that the elimination of the heat-bath degrees of
freedom transforms the deterministic equations of motion
(3) into the stochastic differential (Langevin) equation (5).
We have changed from a to a (t) in order to emphasize
this fact. The solution of (5) is a (Wigner) probability
density W(a, t ) evolving according to

W(a, t)= fP(a, a', t)W(a', 0)d a',

P(a, a', t)da=Prob[a ~a(t) (a+da~a(0}=a'],
which, in differential form, is a genuine Fokker-Planck
equation; that is, it guarantees that 8' remains positive
definite if it was so at the initial time. The Wigner func-
tion W(a, t ) is just the average over p of the
%'(a, Ip I, t) involved in Eq. (2). We stress, finally, that
the Langevin equation (5) is formally identical to the

+ (y W) —e (x W) — (y W)
B B B

By Bx By

+ (xP)+ (yP)
Bx By

(xP }— (yP)

s BP BP
4 Bxz By'

(13)

where s =0 reproduces Eq. (12) for the W representation
and s = —1 (1) gives the P(Q) representation. This is the
same equation that would be obtained following the usual
procedure, that is, starting with the evolution equation of
the density matrix.

The superiority of the Wigner representation is clear in
the comparison between (12) and (13); the former is a
genuine Fokker-Planck equation, whereas the latter
sometimes has an indefinite diffusion matrix. In the case
of the P representation, we obtain an unphysical
"diffusion" at low temperature for all values of the cou-
pling constant e, while the Q representation gives such
problems only in the case e) 2y. We shall show below
that the Hamiltonian (1) is appropriate for describing the
squeezing of light only in the "below-threshold" case
e & y. It is generally considered, therefore, that for prac-

(12)

Hence, by the well-known relation between the distribu-
tion functions W and P or Q, it is possible to obtain the
generalized Fokker-Planck equation in the form

BP(xyt), (1+ +2 )
BP+BPZ 2

Bx By
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(L(t) ) =0, (L(t)L(t') ) = es5(—t t')—
(L(t)L'(t')) =y(1+s+2n }5(t t') —.

(14)

This is rather unphysical in that it ascribes part of the
noise to the coupling process rather than it being a prop-
erty solely of the heat bath, as in (7). But the autocorrela-
tions are different for the three representations, namely,

tical purposes, it makes no difference whether we use the
8' or Q representations, though it is now widely under-
stood that the P representation is inadequate for the
description of squeezed states.

However, we propose to show that the Q representa-
tion is also unsatisfactory compared with 8'. The essen-
tial point is made by considering the Langevin equation
associated with (13). It has the same formal appearances
as (5), but instead of (7), the noise description is given by

The neglect of quadratic terms in z, ,z2 transforms the
nonlinear Heisenberg equations into linear ones, and it is
then possible to apply our previous results, that is, we

may replace the Heisenberg operators z, ,z2 by the sto-
chastic processes z, ,z2 and remove the bath terms to ob-
tain the Langevin equations

z, = A, (c„c2)+Kciz2+Kc~z*, —yiz, +L,e'"',

z2 = A2(c»c2 }—Kc, z, —y2zz+L2e
(19)

where y, , y2 are inverse relaxation times and L „L2 are
complex independent white noises. The deterministic
parts A, and A z (see below) have, by assumption, a
greater order of magnitude than the fluctuations,
represented by z, and z2. Consequently, our linearization
procedure will only be valid if they are removed from
(19). That is, we must assume

(x(t)x(t+r) ) =—'e C1+KC 1 C2 y1C1 =0,
—c2 —

—,'Kc1+E—
y2C2 =0 .

(20)

(y(t)y(t+r) ) =
—,'e

(x(t)y(t+r) ) =0,

(1+2n )+s
E'

(1+2n )+s
y+E'

c, =0, c2=E/y2, valid for all E
1/2

(21)

C1= 2E 2y1y2

K
cz=yi/K

if E)y, y2/K . (22)

These deterministic equations have two independent solu-
tions, namely,

which would indicate that the three Fokker-Planck equa-
tions represent three different stochastic processes. We
will show in a subsequent publication that the Wigner
function (s =0) gives the correct autocorrelation, and we
shall discuss the possibility of experimentally distinguish-
ing this result from the other two.

The procedure can be extended to nonlinear problems
in some conditions. For the sake of clarity we shall con-
sider as a specific example the optical parametric oscilla-
tor. It involves just two radiation modes with frequen-
cies co and 2' with the Hamiltonian

Substituted in (19), the first of these gives

KE
z', —y,z, +L,e' ',

r2
'

z2 = —
y 2z2+ L 2e

'"' .
(23)

KE—y1+
r2

0 0

The damping matrix of the four-component real process
(z„z2) is then

H=to&, 'tt, +2'& zit2+gcoib fbi
J

2

+ g QIJt(&ib J~+8 tb/)+HN„,
l=1 j

(16)

KE
r1

y2
0 0

—
y2 0

where HNz contains the nonlinear coupling and the
pumping

H = (a it —& & )+iE(a e '' —&e'')&K

(17)

Hence it is straightforward to derive the Heisenberg
equations of motion for &, and 82. These equations can
be linearized if we assume that the fluctuation is small in
comparison with the average value. In this case we can
separate in a, the deterministic (c-number) part c, from
the part z, , carrying the quantum fluctuations in the
form

KE
y y1 n n1 (25}

(24)

which has all its eigenvalues negative provided that E is
less than the threshold value of y, y2/K. Below this
threshold the approximation of discarding the quadratic
terms in z, and z2 will be justified provided the oscilla-
tions in z2, produced by L2, are much smaller than e2. In
that case the steady-state solution for the mode a1 is the
squeezed-vacuum state given by (15) with the replace-
ments

a, =(c,+z, )e '"', a2 =(c~+z2)e (18)
Note that the linearization has effectively decoupled a,
from a2, the sole effect of the pumping is to change the
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damping constants in the two quadrature components of
a1.

The mean-square fluctuations in these two components
are

y, (l+2n, ) y, (1+2n, )
(y'&=

4(y, —XZ/y, )
'

4(y, +I'm/y, )

(26}

i, =y1(z1 —z, )+y'zz+L, e' ',
z2= —y'z, —y2z2+L2e ' ', (29)

squeezed state is not a minimum uncertainty, or pure,
quantum state; it cannot be represented by the applica-
tion of a simple squeezing operator to the vacuum.

If on the other hand, for E above threshold, we substi-
tute (22) in (19), we find

r lr2
(y &~—,', as n1 —+0, E~ E (27)

The corresponding zero-point fluctuations are
(x &

= (y &
=

—,', so that, for suSciently low cavity tem-

perature (n1~0), the y component is squeezed. Since
the fluctuations are about the steady-state value c1=0,
this is a squeezed vacuum state, and the maximum possi-
ble squeezing is obtained as E approaches threshold, that
1st

0
2y 1

0

y'

0
0
r'

where

y' = (2EK —2y1yz)'

In this case the damping matrix is

(30)

(31)

Note that the product of these mean squares is

g 2E2
(xz&(yz&= 1— (1+2n1) (28)

Even at T=O this is greater than the minimum value of
required by the Heisenberg inequality. Thus the

0 r2

which has all its eigenvalues negative. Then again we
conclude that the linearization is justified provided the
oscillations produced by L1 and L2 are much smaller
than c1 and c2. Assuming this is the case, and putting
z =x+iy, we find, for the autocorrelations,

(x(t)x(t+r) & =, [y,(1+2n, )yz+yz(1+2nz }y' ] +y, (1+2n, )y'
4r r2 2 1 2 1

x4l~l
1(y(t)y(t+~) &

= [y1( 1+2n, )y z+ y z( 1+2n z }y']
4r'(rz+2r ) . 4 3

~4l ~i ~3 I ~l
A4e

' —A3e
'

+y1(1+2n1)y'
4 3

(x(t)y(t+~) & =0,

(32)

(33)

(34}

where A, ;(i= 1 —4) are the eigenvalues of I, that is,

A, 1+A, 2

A3+A4 r2 2r1

k3k4

and

1+2n, =coth( co /2k T1 ),
1+2n2 =coth(cu/kTz ),

(35}

(36)

with the temperatures T, and T2 of the two cavities not
necessarily equal. Again the y component is squeezed,
for if we put n, and n 2 zero, we obtain

rlrz+3 1Y +yzl
4(3 z+2Y1)

(n, =n2=0) . (37}

This is less than —,
' if y' is greater than y2, that is,

E) (y1yz+ —,'yz)/K. As with the other linearized re-

gime, it is a simple matter here also to demonstrate that
we are dealing with a nonminimal squeezed state. Note
that in this case, since c1 is real and not zero, the fact
that it is the y component which is squeezed, means that
the state may be described as phase-squeezed coherent.

The procedure we have described may be interpreted in
one of two ways. On the one hand, we could say that we
started with the Heiserberg-Langevin equations
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d
dt

&&
= —t(co —iyi)8, +Eci&&z+L»

—&2 = i—(2co i—y~)d2 ——'K&, +Ee '"'+E~,
dt 2 2 2

(38)

a& = i(—co iy—, )a, +Ka&az+L&,

a~ = i (—2co i y—, )a2 —
—,'Ka f +Ee ~'"'+L~,

(39)

and to regard this nonlinear Langevin equation as the
stochastic differential equation for the process (a, ,az).
This may be linearized directly, that is, without passing
through the master equation, and again we arrive at (23)
or (27).

The treatment of the nonlinear Heisenberg-Langevin
equation has so far proved to be an intractable problem
and in any case the status of quantum Langevin equations

and then, after linearization, obtained the quantum mas-
ter equation for the Wigner distribution. Such a pro-
cedure does indeed lead us to the approximate Langevin
equations (23) or (27). However, a simpler, and apparent-
ly more heuristic, procedure would be to simply remove
the hats in Eq. (38), that is, to write

is rather uncertain in the nonlinear regime. Its quantum
master equation gives a Fokker-Planck equation which
includes third derivatives, and so, by a general theorem of
Pawula, ' a distribution which is initially positive will

not, in general, stay positive. One could reasonably
speculate as to whether this undesirable feature comes
from the choice of model (with a single mode of the radi-
ation field in each cavity), or whether it is really inevit-
able that the quantum world allows us only to treat
"pseudoprobabilities" if we seek a phase-space descrip-
tion of it. In the meantime, we suggest that Eq. (39), even
though it may be "derived" from (38) only in those re-
gimes where linearization is valid, is worthy of further at-
tention. Since it describes a genuine stochastic process, it
will lead to a Fokker-Planck equation with positive-
definite fundamental solution. Furthermore, it will pro-
vide a smooth transition, across threshold, between the
two linear regimes treated in the present article.
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