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Perturbative corrections are derived for the rotating-wave approximation (RWA) for the single-

photon and multiphoton resonance profiles due to the interaction between a two-level molecule,
with nonzero permanent dipoles, and a sinusoidal time-dependent electric field. The derivation is

carried out through the use of a Floquet secular equation that introduces the effects of the per-
manent dipole moments into the problem through the argument, d eA/cu, of Bessel functions con-
tained in molecule-laser coupling parameters; here d =p, 22

—pi „where p„ is the permanent dipole
of molecular state i, and 6, e, and co are the field strength, direction of polarization unit vector, and

the circular frequency of the electromagnetic field (EMF). Expansions for the N-photon resonance
profiles and the associated resonance frequencies and full widths at half maximum, in powers of the

couplings between the transition and permanent dipole moments and the applied EMF, are obtained

by expanding the Bessel functions in the perturbative results and are compared with those in the
literature (available mostly for d =0 only). The perturbative results, and a series of exactly calculat-
ed two-level model absorption spectra, are used to discuss (1) the ability of the explicit perturbative
corrections to the RWA to explain the differences between exact and RWA resonance profiles (for
example, the positive or negative Block-Siegert shifts and dynamic backgrounds absent in the
RWA), (2) the usefulness of the perturbative corrections in general, and (3) the effects of permanent
dipoles on single-photon and multiphoton absorption spectra.

I. INTRODUCTION

Recently a rotating-wave approximation (RWA) has
been derived' for the single-photon and multiphoton
resonance profiles arising from the interaction between a
two-level system ("molecule" ), with nonzero diagonal di-

pole moment matrix elements ("permanent dipole mo-
ments"), and an applied continuous-wave laser (sinusoidal
electric field). These simple analytical results have been
used to help discuss, interpret, and predict some of the
effects of permanent dipole moments on resonance
profiles and molecule-laser interactions in general. '

The limitations of the RWA results have been discussed
with the aid of comparisons with exact calculations of the
absorption spectra for model systems. ' ' Part of the
purpose of this paper is to augment these discussions
with the derivation of the perturbative corrections to the
RWA through the use of a Floquet secular equation
which includes permanent dipole moment effects; see also
Hattori and Kobayashi. In addition to the perturbative
results, the original RWA, and some model exact calcula-
tions for a series of "giant dipole" molecules, are used to
augment other literature discussions' of the spectral
effects related to large differences d between the per-
manent dipoles of the states involved in a transition. The
usefulness and validity of the perturbative corrections to
the RWA are also discussed.

Section II contains a derivation of the perturbative
corrections to the RWA result for the X-photon reso-
nance profile for a two-level molecule with permanent di-

pole moments; the RWA result itself is summarized

briefly at the end of the Introduction. The derivation of
the perturbative corrections involves the development,
and use, of a Floquet secular equation that is analogous,
in many ways, to the approach used by Shirley' for the
atomic d=O case. However, the development in Sec. II
involves a crucial transformation to an interaction repre-
sentation' which introduces the effects of d into the prob-
lem through the arguments of Bessel functions contained
in molecule-laser coupling parameters and yields results
for arbitrary N directly. The perturbative corrections
themselves are obtained from the secular equation by us-

ing near-degenerate perturbation theory as developed by
Certain and Hirschfelder " see also Aravind and
Hirschfelder' for an application to the d=O two-level

problem. Expansions for the N-photon resonance
profiles, and the associated resonance frequencies (to„,)
and full widths at half maximum (WFwHM), in powers of
the couplings between the transition (p) and permanent
dipole moments and the applied electric field, are ob-
tained by expanding the Bessel functions in the perturba-
tive results and are compared with those in the literature.

The usefulness and range of validity of the perturbative
corrections to the RWA, including their (p, d) expan-
sions, are discussed in Secs. II and III. Both analytic ex-
pressions and numerical comparison with exact model
calculations are used for this purpose. Section IV con-
tains the results for the single-photon and multiphoton
absorption spectra for a series of giant dipole two-level
model molecules and a discussion of some of the spectral
effects related to d&0. Finally, Sec. V contains a brief
summary and discussion of the more important results
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C(N) =p e6'2N(d e6'/co) 'Jtc(d e@/~) . (1.2)

P 2 is the steady-state transition probability for finding
the molecule in an excited energy state 2, assuming it was
in the ground state 1 at E =O' AE =E2 E& p=p]2 is
the transition dipole matrix element connecting states 1

and 2; d=p22 —p„ is the difference between the per-
manent dipoles of states 1 and 2; Jz is a Bessel function
of integer order N; and 6, e, and n are the field strength,
direction of polarization unit vector, and the circular fre-
quency of the electromagnetic field [in the RWA, the res-
onance profile is independent of the phase 5 of the elec-
tromagnetic field (EMF)]. The RWA predicts an N-

photon resonance frequency of co„,=DE/N and a full
width at half maximum (FWHM) for the N-photon reso-
nance profile given by'

~FWHM
res

=4}u eA' Jtc(d e@N/b, E), (1.3)
Nd ev

under the assumption that C(N) does not vary appreci-
ably with co across the main N-photon resonance. As
d~0, C(N) =It, e65& „and the coupling parameter, the
molecular RWA result for P 2, and the 8 FwHM all yield
the familiar "atomic" RWA or Rabi results ' ' in the
d =0 limit the RWA supports one-photon (N = 1) transi-
tions only.

Many of the effects of permanent dipole moments on
single-photon and multiphoton resonances, relative to the
atomic case, can be qualitatively deduced from Eq. (1.1).
Some of these are related to the fact that the molecule-
EMF coupling C (N) is an oscillatory function of frequen-

cy ~. Thus the usual Rabi-Lorentzian resonance profiles
can be modified, as a function of u, by oscillatory fringes
and asymmetries with zeros occurring at the zeros of the
Bessel function present in Eq. (1.2). Another effect of
d&0 is to reduce the width of the one-photon resonance
relative to the atomic case especially for (d eD/co)
sufficiently large and near a zero of the Bessel function
J, . Often the widths of the N-photon resonances de-
crease with increasing N because of the factor of N

and conclusions of this paper.
The RWA expression for the N-photon resonance

profile for a two-level molecule is given by'

/C(N)/'

2[(AE —Nco )'+
I
C (N) I']

where the coupling between the molecule and the applied
(plane-polarized) sinusoidal electromagnetic field is

II. PERTURBATIVE CORRECTIONS
TO THE TWO-LEVEL RWA FOR Eilo

A. The Floquet secular equation and steady-state
transition probabilities

In the interaction representation defined in our earlier
work, ' the time-dependent wave equation for the in-
teraction of a two-level molecule, having permanent di-
poles, with a continuous wave laser is given by

b,
l 6=l

dt dt
=Hqb, (2.1)

where Hi, ti =Hr, z2 =0 and

occurring in Eq. (1.3) and because Jtc(d eAN/hE) often
decreases as Ã increases. Examples of these effects and
others have been discussed in previously cited references;
see also Figs. 1 —3 to be discussed later.

The RWA result of Eq. (1.1) indicates that two-level
molecules with d&0 can support even as well as odd pho-
ton transitions; for example, in atoms, a third level is re-
quired for two-photon transitions and these transitions
should therefore often be weaker for atoms than for
heteronuclear diatomic molecules. In this context it is
easy to see that the RWA for molecules, as in the case of
the usual result for atoms, is not adequate" as d~0
since, for example, a two-level atom will support a three-
photon transition, whereas Eq. (1.1) will not (in this lim-
it). Also, for example, the RWA is not capable of pre-
dicting the shifts in the resonance frequencies away from
hE/N that occur as the strengths of the applied field are
increased; this shift is to high frequency for atoms' ' '
but can be to either' ' high or low frequency for d@0
two-level molecules. More detailed discussions of the va-
lidity, deficiencies, and applications of the RWA for mol-
ecules (atoms) can be found elsewhere. ' ' ' Like all
RWA approximations, for two-level systems, Eq. (1.1) be-
comes more reliable as the coupling [C(N)] between the
transition dipole and the applied electromagnetic field
(EMF) decreases, that is, as p e6' decreases and d e8 in-
creases for fixed values of AE. The perturbative correc-
tions to the RWA, derived and applied in what follows
(see also Hattori and Kobayashi ) also aid in the under-
standing of the limitations of the RWA.

Atomic units are used in what follows. The atomic
units of energy, circular frequency, length, dipole mo-
ment, and electric field strength are EH, EH/A, ao, eao,
and E~e 'ao ', where E~ is the Hartree of energy, ao is
the Bohr radius, e is the absolute value of the charge of
an electron, and A is the reduced Planck's constant.

H& &2 =H&*z, = —p.e6 cos(et +5)exp i EEt d e—A f co—s(co.t'+5)dt'
0

(2.2)

where the molecular and field parameters occurring in Eq. (2.2) have been defined in Sec. I. To derive the Floquet secu-
lar equation for the problem it is convenient to transform Eq. (2.1) into a phase factored form' by writing

b„„=K„„exp[—t (+-,'hE+tz„, I)t] . (2.3)
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Choosing a& = —
—,'¹uand a2= —,'%co, in order to help identify the X-photon resonances in the Floquet matrix equations

to follow, gives

i—K=i-
dt dt

(2.4)

where

and

H(, = —Hz2 = —b = '(h—E— Nco—)2
(2.5)

H, z=Hz, = —)
p, e( exp( —iYsin5) g J„(Y)(exp[i(k+1)5]exp[ i[N——(k+1)]cot j

k = —oo

+exp[i (k —1)5]exp I i [—N —(k —1)]cot I ) (2.6)

with

Y =d e8/co . (2.7)

Since H is periodic in time, with period 2m/co, the general
solution of Eq. (2.4) can be written as' '

G =Z exp( igt)—, (2.8)

where Q is a diagonal constant matrix Q;~ =q;5;J and Z is
periodic in time with period 2n/cu T.hen. , substituting
Eq. (2.8) into Eq. (2.4), and following Shirley's work' for
the d=O case, yields

H"'= —H" =0 m =n —keo11 22 (2.15)

H'(2 ' = [H2, ']' = —,' C(N +m)g—(N +m), (2.16)

t

is satisfied. The rows and columns of the Floquet Hamil-
tonian matrix are denoted by the indices na and ky, re-
spectively, where a and y are the atomic indices 1 and 2
and n and k are Fourier indices ranging from —~ to
+ ~. The matrix elements H ~" ', completing the
definition of the Floquet Hamiltonian matrix elements
defined by Eq. (2.12), can be identified by comparing Eqs.
(2.5) and (2.6) with Eq. (2.10) and are given by

(2.14)

Z
~
—— y Z(k~)exp(ikcoi),

k = —oo

(2.9)
where

H
&
= g H'~&exp(ipcot),

p= Qo

where

(2.10)
and

C(N+m)=2@ e( Y '(N+m)J)v+ (Y)

g(N +m) =exp[ i [ Y sin5 ——(N +m)5]) .

(2.17)

(2.18)

Z(n) y y ~(n —k)Z(k)

y=1 k= —oo

and the matrix elements

(2.11)

(2.12)

det~H'"» "'+(neo q&)5» 5k„—
~

=0 (2.13)

define an effective time-independent Hamiltonian (Flo-
quet) matrix for the problem. Equation (2.11) has non-
trivial solutions for the eigenvectors Z~& only if the
determinantal equation

The secular equation corresponding to Eq. (2.13) is easily
constructed and is much more dense than that' ' corre-
sponding to d=0.

Following Shirley, ' whose analysis corresponds to
d=O, the solution of the time-dependent Schrodinger
equation Eq. (2.1) can be obtained, subject to the initial
conditions that only state 1 is populated at t =to, in
terms of the eigenvalues q& and the eigenvectors Z~& of
the Floquet secular equation problem. After considerable
manipulation, analogous to that for the d=O problem,
one can show that the time-dependent population of state
2, P2(t) = ~E2(t) ~, is given by

P2(t) = g g g [Z2' ') Zz'Z((".+' )[Z()"+'] exp[i(n' n)toto]exp(—( —([q —
q ~

—(s —s')co](t to)]—
y, y'=1 n, n'= —oo S,S'= —co

(2.19)

For the interaction of a continuous-wave laser with a
molecule, the initial time to, or equivalently the initial
phase of the field "seen" by the molecule, is not we11

defined. Thus the time-dependent transition probability
of interest corresponds to Eq. (2.19) averaged over ro,

with the elapsed time (t —to) kept constant. ' The ab-

sorption spectrum of the molecule, which corresponds to
the initial time and lang-time average of Eq. (2.19), is ob-
tained' from this result by averaging over the elapsed
time (t —to). The steady-state population of state 2, for a
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given frequency co, is then given by

oc oo

p N y— y y lz( ) l2lz(p) l2 {2.20)

—)C—(N+n —k)g(N+n —k), (2(y
V'" "' = —

—,'C(N —n +k)g*(N —n +k), (2) y (2.24)

B. Perturbation theory expansions of the Floquet results

To apply perturbation theory, the set of linear equa-
tions given by Eq. (2.11) is rewritten as

(X)

(H'"y "' —
qt)5r 5k„)zyJ=0,

y=1 k = —oo

with the matrix element H'n ' expressed as

(2.21)

H(n —k) g(0) + V(n —k)
ay na, ky ay (2.22)

where

E(0'z =[(—1)'b, +np2]5„5k„=E„' ' (2.23)

and

y=1 g= —oo p= —oo

where the absorption spectrum is P 2 as a function of fre-
quency 0). Equation (2.20) is completely analogous to
Shirley's result' for d=O.

The absorption spectrum can then be obtained by solv-
ing the Floquet secular equation problem for the eigen-
vectors Z'

& corresponding to the eigenvalues q&, P=1,2.
This can be done for each N, as a function of co, for pro-
gressively larger Floquet secular equations until conver-
gence, as a function of s and p, is obtained. There are, of
course, far more e%cient methods for carrying out calcu-
lations of this type numerically. ' ' However, the Flo-
quet secular equation results, summarized here for d@0,
are very convenient for a perturbation analysis of the N-
photon absorption spectrum as illustrated, for example,
by Shirley' for d=O. They are so used in what follows
in order to discuss the correction terms to the RWA re-
sult of Eq. (1.1}.

0, e=y .
The desired X-photon resonances can be identified in the
Floquet secular equation, Eq. (2.13), by setting b,E =N(o,
N=1, 2, 3, . . . , and hence b, = ((b,E——¹o)=0.Two of
the diagonal Floquet Hamiltonian matrix elements
H'1 '=H' '= —6 and H' '=H' '=6 will be almost11 11 22 22

equal. These two elements, together with their associated
ofF'-diagonal matrix elements, define a 2X2 secular equa-
tion having nearly degenerate roots q& and therefore on
N-photon resonance the zeroth-order states l0, 1) and
l0, 2) are nearly degenerate.

The perturbation theory derived by Certain and
Hirschfelder, " see also Hirschfelder, ' can be applied to
these nearly degenerate states. In Shirley's original treat-
ment' of the d =0 case, the problem was analyzed by us-
ing what amounts to Brillouin-Wigner perturbation
theory —this yields results that are implicit functions of
the energy and requires iterative steps to obtain the tran-
sition probabilities in terms of the zeroth-order energies
and the perturbation matrix elements given by Eqs. (2.23)
and (2.24), respectively. The perturbation theory used
here is of the Rayleigh-Schrodinger type and is designed
for treating near-degenerate problems of the kind con-
sidered in this work —the results are given directly and
explicitly in terms of the zeroth-order energies and per-
turbation matrix elements. The d=O problem has been
discussed using this perturbation theory by Aravind and
Hirschfelder. ' The treatment of the problem including
permanent dipoles (dKO) is analogous but considerably
more complicated since the Floquet matrix is much more
dense for dAO than for d=O. Details of the calculation
will not be given because of the complexity of the equa-
tions and because the methodology is, in principle, the
same as that discussed previously for the d=O calcula-
tions; interested readers can find details of the dAO cal-
culations elsewhere (Kmetic ).

After considerable algebraic manipulation, the pertur-
bation expansion of the steady-state population of excited
state 2 for the N-photon resonance is given by

P 2 =(2p } I IEp)p2l (1+gFo( 1)+2E0102[E0102]*+5 +0(5)] 4F01,1+0(3}
where

=lE0, 'l +2E() 'E' ' +lE' ',
l

+5' '+ lE()", ()2l +2E()", ()2[E' ' ]'+5' '+0(5)

(2.25)

(2.26)

and

5' '=2E' 'E' ' 5' '=lE' '
01 01,01 & 01,02

E = E=—b, = —T(b—,E —Np) ),(0) (0)
01 02

E01,02 [E02,01 ] = ,' C (N)g (N)——
(2) (2), ~ [C (N +s)]
01,01 02,02 4 M (22) )(~0) SCO

(2.27)

(2.28)

(2.29)

(2.30)
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,

2

(26—sea)
(2.31)

(3) p (3) g, ~ [C(N +s)) C(N)g(N)
01,02 L 02, 01 & 8 (2b, — )s(%0) SQ)

(2b, —
Ice�)(2b,

+see)
(2.32)

&~4~, C(N —p +r)C(N +r s)C—(N —s)C(N —p)
E01,01

p(%0) r(wo) s(&o) (2h+pcu)(res)(25+see)
r

—k X X
p(&0) r(&0)

[C(N —r)] [C(N)]
(ra) )(2b, + res)r(WO)

2C(N —p +r)C(N +r)C(N p)C—(N)
(2b, +pc@)(2b, re@)(re—)

[C(N —p)] [C(N+r)]
(26+pro) (2b ra)—)

(2.33)

In these results g, ~~o~ implies a sum over s ranging from
—~ to + ~ excluding the s =0 term and the superscript
(n) on the various quantities, as in E'"', implies terms of
(explicit) order n in the perturbation matrix elements of
Eq. (2.24), or equivalently the couplings C(N+rn) be-
tween the molecule and the EMF defined by Eq. (2.17).
O(n) indicates terms of order n or higher that are not
given explicitly.

In the above, and in what follows, use is made of the
fact that Eo', '= ,'(bF. Neo—) i—s o—f second order in the
coupling (p eC) for frequencies around co„„which are of
the most significance in the analysis of this section [see,
for example, Eqs. (2.40)—(2.42)]. Thus Eo, ' is actually of
the same order as ~Eo', 'oz ~, and 5' ', as well as 5' ', is of
sixth order. The term 5' ' is required for the derivation
of the Bloch-Siegert shifts associated with the N-photon
resonance profiles and both 5' ' and 5' ' are required for
purposes of comparison with the literature. In general,
our result for the N-photon resonance profile, Eq. (2.25),
is explicitly accurate through only fourth order in the
perturbative expansion of the numerator and denomina-
tor of the main resonance term, the first term in Eq.
(2.25), and only through second order in the (small) back-
ground term.

The application of near-degenerate perturbation theory
also yields perturbation expressions for the eigenvalues of
the Floquet secular equation, q+ =kp, where p is given
by Eq. (2.26). Using this result it can be shown that the
N-photon steady-state transition probability given by Eq.
(2.25) can be written as

=2II FwHM
—IC(N) —8C(N)Fo, '~ —2$(N)[Eo&,o2] l „n

res

+O(4) . (2.35)

C. Discussion of perturbation results and limiting cases

The RWA expression for the steady-state N-photon
transition probability, discussed in the Introduction [Eq.
(1.1)], is obtained from our perturbation expression for
P 2 by neglecting the background term [—4F»'& +0 (3)]
and by retaining terms through 0 (2) only in the numera-
tor and denominator of the remaining part of Eq. (2.25).
Substituting Eqs. (2.28), (2.29), and (2.18) into the result-
ing expression,

p N ~+os, o2 ~

2[(E[o))2+ ~g(1) ~2]
(2.36)

yields the RWA result of Eq. (1.1) which supports an N
photon resonance profile or absorption spectrum with a
maximum of 0.5, occurring at co„,=DE/N, and having a
8 FHM given by the first term in the perturbation expan-
sion of Eq. (2.35) (under assumptions already discussed).
These RWA results predict the overall qualitative
features of the absorption spectrum for two-level systems
even for relatively high molecule-EMF coupling
strengths, see Sec. I for a brief discussion and for refer-
ences to previous papers with detailed examples and dis-
cussions.

P N =,' I 1 —4[ap Za(~E) ]'I (2.34) Perturbative corrections to the 8 WA

in agreement with Shirley's result' for d=0.
Perturbation expressions for the full width at half max-

imum, O'FTHM, for the N-photon resonance profiles, I'
2

versus co, can be obtained from Eq. (2.25). The derivation
is analogous to that given previously' ' for the RWA
and involves the assumption that the perturbation ener-
gies of order greater than zero, and Fo&'& occurring in Eq.
(2.25) do not vary appreciably over the width of the main
N-photon resonance. One obtains, after some manipula-
tion,

The RWA fails to predict important features of the ab-
sorption spectra as the molecule-EMF coupling increases;
for example, the shifts of the main resonances to the high
or low frequency side of ~=DE/N or the background
observed in spectra obtained from exact solutions for the
two-level problem. The perturbative corrections to the
RWA expression for the absorption spectrum, the lead
terms of which are contained in the perturbation expres-
sion for P 2 given by Eq. (2.25), contain contributions to
both of these effects seen in the exact spectra.
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Setting Eq. (2.34) equal to 0.5 indicates that the reso-
nance maxima occur when

—E + (—b E N—s) )F
AE 2 2 2 (4) 4 (2)

01,01 N 01,01 01, 1

(3(bE) 2p ()(&E)
(2.37)

g E(3)
(2) (2) 4 (()
o),o( o(, ) +

N o), o2 ~(b'E +O(5)

An expression for the N-photon resonance frequency can
be obtained by substituting p given by Eq. (2.26) into this
result:

(2.38)

where use has been made of [BEo(,'o) /()(bE)]= —2Fo, ',
and

()[Eo,o ], [C (N + ) ] C(N)g'(N)
d(bE) ' „, [b E (N —+s)(o]

(N — +1)C(N+1)~ (

[b,E (N +—1)co][bE (N —s—)o) ]

X j [bE (N +1—)co] '+ [b,E —(N —s)co] (2.39)

+ + +O(((Md) ),
64( bE)

(2.40)

bE 2(p e(o)
2 3(b,E)

13(p.e@) (d e( )

24(EE)

and for N~3

+O((pd)'),
27(b,E)

(2.41)

Since most of the terms on the right-hand side of Eq.
(2.38) are functions of ~, an iterative technique must be
used to obtain an explicit expression for the resonance
frequency through a given order in perturbation theory;
the lead term will be the RWA result bE/N.

While Eq. (2.38) can be solved iteratively in a numeri-
cal manner for co„„ for each N, it is more instructive
qualitatively to carry out the iteration analytically and to
obtain an expression for co„„and hence for the shift of
the resonance frequency from the RWA limit, in powers
of the couplings p e6 and d e6'. The results will be ob-
tained through fourth order in the product of the two
couplings, that is, through order (p e@)"(d eB) for
n+I &4.

To begin, the right-hand side of Eq. (2.38) is expanded
in powers of the couplings, assuming, initially, that
AE —Neo is of unknown order and that cu is fixed. This
step is accomplished by making use of the expansion, in
powers of Y, for the Bessel function in the molecule-EMF
coupling parameter C(N +m), see Eq. (2.17), which
occurs in the spectral results for the various quantities in
Eq. (2.38). Then the procedure followed is similar to that
employed for the d =0 case previously' where co =bE/N
is used as a first approximation in the iteration to obtain
co„,. The result of the first iteration is then used to obtain
a second result for co„„and so on. The resulting expres-
sions for the resonance frequencies are

(p e( ) 7(p.eA (d.e6')
4(b E) 48(b,E)

bE (p e8) (p.e6) (d e8)
N (bE) ' (bE)

where

+ T3+O((pd) ),(&E)'

N

N —1

(2.42)

3N
4(N2 1)(N2 —4)— (2.43)

T3= N(7 —3N )

4(N —1)

and O((pd) ) indicates terms of fifth or higher order,
overall, in the two coupling parameters. These results
agree with those in the literature for certain special cases,
mostly involving d=O. For N =1, d=0, Eq. (2.40)
agrees with the original work of Bloch and Siegert, ' Shir-
ley, ' and others. For N~3 and odd, d=O, Eq. (2.42)
yields our inversion of the expressions of Hioe, who
presents results for bE as a function of (o through O(p ),
and with other literature expansions' ' to lower order in
the coupling p e6'. When d=O there are no even photon
transitions for the two-level system. Finally, for d&0,
our expressions agree with the only analogous literature
results which are available for N= 1 through O((pd) )
and for N ~ 2 through O(p ) only.

For all N, when d&0, it is clear from Eqs. (2.40) —(2.42)
that the shift from the weak field or RWA resonance fre-
quency of hE/N can be either to high or low frequency
depending on the magnitude of the couplings d.eD and
p.eD relative to each other; for d =0 the shift is always to
high frequency. These results then give analytical and
qualitative backup, see also Hattori and Kobayashi, for
the effects of permanent dipoles on resonance frequencies
that were discussed and observed some time ago' in
exact calculations of two-level rnultiphoton molecular ab-



1562 MARY ANN KMETIC AND WILLIAM J. MEATH

sorption spectra. It is relevant to note that the results of
Eqs. (2.40)—(2.42) are valid only for small couplings p eA'

and d eN. For large couplings the higher-order terms (in

p, "d ) can become larger than the lower-order terms and
the power-series expressions for co„,diverge (see also Ref.
8 and Sec. III).

Expansions in powers of the two couplings can also be

obtained for the 8'zwHM. Since' the major effects of
d&O on the FWHM are contained within the RWA, see
also Sec. I, and expansions of this type are not of great
usefulness, only a limited set of results is given here ex-
plicitly. Using Eq. (2.35), the above results for co„„and
techniques similar to those used to obtain Eqs.
(2.40)—(2.42), it can be shown that

2y, eC— (p et )(d eh' }'+0(p'),
4(b,E)

(p, e8)(d e6)+O((pd) ), N =2

""FWHM
3 3

8(&E)' 4(b,E)', (p e&) — (p, e6')(d eb)2+O((pd)s), N =3
(2.44)

3(~E) 9(EE)3
(p'e&)(d'e@) (p, e6) (d e6)+O{(pd) ), N =4 .

EoI,oz ~ —,'p e65~,exp(iN5), (2.45)

F(2) (P e@) [(gE+ )
—2

Equations (2.44) are sufficient to demonstrate, analytical-
ly, that two of the effects of dAO are to reduce the widths
of the resonances and to induce even, as well as odd, pho-
ton transitions relative to atoms (d=O). Both these
effects have been discussed previously' ' through the
use of the RWA and exact multiphoton calculations. The
expressions for the WFw„M given in Eq. (2.44) are in

essential agreement with those in the literature for dWO
and for N =2, 3,4; for N =3 and 4 the disagreement in-
volves overall multiplicative factors involving N only.
For N=1 and 3 our results agree precisely with well-
known literature results' in the limit d=O.

It is also of interest to compare the perturbative results
for the resonance profile given by Eq. (2.25) with analo-
gous results obtained by Shirley' which are available
only for d=O. Using px 'J (x)~—,'5 ~(5 &) for p )0
(p &0) as x ~0, the d=0 limit of the quantities occur-
ring in Eq. (2.25) that are needed for the comparison are
given (for all N) by

(3) ) 3 exp(i 5) exp(3i5)
01,02 ~ 8 V'

(~E + )2
Lv I (~E )P N, 3

(2.48)
An expression for P2, d=O, can be obtained by using
these results with N =1 in Eqs. (2.25) and (2.26). Upon
setting LE+co—2m in the energy denominators arising
from Eqs. (2.46}-(2.48), and neglecting 5' ' and 5' ' which
are of sixth order, the resulting expression agrees with
the analogous result due to Shirley' through O(p ) in

the main resonance term [aside from the presence of
(p e8) /(DE+co), which occurs in both the numerator
and the denominator of our result]; the background term
is identical to that of Shirley.

When N & 3 is odd, and for d=O, all contributions of
O(5) and O(6), except 5' ' and 5' ', vanish in both the
numerator and the denominator of the resonance part of
Eq. (2.25) and to this order of approximation the transi-
tion probability for N )3, N odd, will consist only of a
background term. Higher-order perturbative corrections
are necessary to obtain the steady-state transition proba-
bility for odd photon transitions when d=O and N )3.
Setting AE —3' in all energy denominators, and neglect-
ing 5' ' and the background term, our result for P z

agrees with that of Shirley 6' ', which occurs in the
denominator of the resonance term, is not very significant
relative to

+(&E —~) '(1 —5~, )],

E(2) P''e@
[(it E + )

—
1

4

+(bE —co) '(1 —5~ i)],

(2.46)

(2.47)

5 '=(
—,', )(p.eA) 5 /(bE —co)

which is the only contributor to the resonance numerator
through O(p ). A similar analysis for N ) 1, even, gives
a result for the steady-state transition probability, to the
order of the coupling parameter indicated explicitly in
Eq. (2.25), that consists only of a dynamic background
term. This of course is correct to all orders for a two-
level system with d=O and in the absence of static elec-
tric fields.
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III. USEFUI.NESS OF THE EXPRESSIONS
FOR THE PERTURBATIVE CORRECTIONS

TO THE RWA

Here the perturbative corrections to the RWA are dis-
cussed for three two-level models that have been used in
the literature' to discuss the effects of permanent di-
poles on single-photon and multiphoton resonance
profiles. The three models all correspond to p~~d(~e, and
the RWA resonance profiles for each have previously
been compared with corresponding exact numerical re-
sults. ' Each model will be summarized briefly below in
the context of discussions of the usefulness of the pertur-
bative corrections in representing the differences between
the RWA and the exact results.

The quantities occurring in the perturbation expansion
of the steady-state transition probability given by Eq.
(2.25), and in the analogous expression for W'Fw„M, in-
volve single or double infinite sums over molecule-EMF
couplings involving Bessel functions of argument
d e6/co. The various terms in these sums can be either
negative or positive depending on the values of the pa-
rameters involved in the problem, including the frequen-
cy co. For the two-level models studied here it was found
that truncations of the summation indices to
—m & l ~ +m, with m =90, were suScient to guarantee
much more than graphical accuracy for the resulting
spectra.

Based on the model calculations to be discussed in this
section, and on others not discussed explicitly here, the
calculated absorption spectra obtained from the pertur-
bative expression of Eq. (2.25) are not well behaved in
general. For example, the third-order energy Eo&'O2 as a
function of co often becomes large compared to the first-
and second-order energies and, as a result, the values of
the spectra can become much too large ())0.5) and/or
negative. For strong molecule-EMF coupled examples
(e.g. , model 3 below) even the second-order energy mis-
behaves relative to the lower-order energies and only the
RWA itself is meaningful. For these reasons, in what fol-
lows, we discuss explicitly only the absorption spectra
calculated using the following expression, obtained from
Eq. (2.25) by setting Eo", oz equal to zero,

0,50-

0.25- p3
2

l~
0,50- I

(e)

0.25- P

0.00
0.50-

for more examples, and details, see Refs. 1, 3—5, 10, 15,
and 17—19. The usual RWA resonance profile, Eq. (1.1)
with d=0, becomes more reliable if b &(I; p(N) is the
N-photon analog of b for problems where d&0. The pa-
rameter g is related to the argument of the Bessel func-
tions occurring in the molecule-EMF coupling parameter
C(N) for co=co„,=bE/N; it can be used to indicate the
reduction of C(N), relative to p.eA', due to d&0. In
evaluating p(N), and WFwHM through Eq. (3.3), co„, is
taken to be that which corresponds to the spectra gen-
erated from Eq. (3.1).

Model l. @=1.0, d =20.0, b,E =1.0, and 8=0.5.
The N = 1, 2, and 3 photon resonance profiles, obtained
from the second-order perturbation expression for P 2

given by Eq. (3.1), are compared to the RWA spectra in
Fig. 1. The molecule-EMF couplings are small for this
example, for d&0, and very good agreement between the
RWA and the exact results is obtained for all N and co',

for details see Kmetic and Meath. ' Setting d=0 leads to

P s—(F2) 1 ~g(1) ~2(1+8F(2) ) 4F(2) (3.1) 0.25- p
2

where

'= ~Eo'i' ~'+ 2Eo"&"' + ~&"'
i ~'+

~ &oI'oz ~' (3.2)

Similarly, the 8'„wHM is also adversely affected by the
third-order energy in general and, from Eq. (2.35), is now
taken to be

0.00
02 0.9

LU /h, E
1.6 0.2 0.9

W/h, E
1.6

2
WFwHM =—~C(N) —8C(N)Fo)')

~

res
(3.3)

In what follows the absorption spectra will be discussed
with the aid of the coupling strength parameters

b=lp e@l/~&,

g=g(1) = Id eh I/bE,
P(N) = [ i C (N) i /AE]

res

FIG. 1. Comparison of the RWA and the second-order per-
turbation results for the absorption spectra P 2 as a function of
co/AE, for the two-level model characterized by p = 1.0,
d =20.0, AE =1.0, and 6'=0.5. The second-order perturbation
resonance profiles for N =1, 2, and 3 are illustrated in (a), (b),
and (c) and are calculated from Eq. (3.1). Parts (d), (e), and (f)
contain the corresponding R%'A resonance profiles for N =1, 2,
and 3 and are calculated from Eqs. (1.1) or (2.36). In this exam-
ple b =0.5 and g=10.0. The corresponding exact spectrum
can be found in Ref. 1.
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a relatively strongly coupled system (b =0.5) with broad
semisaturated resonances.

The parameters characterizing the spectra of Fig. 1 are
b =0.5, i)=10.0, and P(N)=3. 1X10, 1.5X10, and
1.4 X 10 for N = 1, 2, and 3, respectively, in the
"second-order" spectra. Since the P(N) are small there is
good agreement between the RWA, second-order, and ex-
act results' for the resonance profiles, and the profiles are
narrow with the W„wHM evaluated from Eq. (3.3), name-
ly 0.0062, 0.015, and 0.0092 for N =1, 2, and 3, agreeing
well with those obtained from the directly calculated
spectra. The resonances in the second-order spectra
occur at cold, E =0.995, 0.498, and 0.332 for N = 1, 2,
and 3 and are shifted slightly to the low-frequency side of
the RWA resonances, which occur at co/AE =1/N, in
agreement with the exact calculations' of the spectra. In
addition, and also in agreement with the exact spectra, a
very low background is present in the second-order per-
turbation resonance profiles that is absent in the RWA.

Model 2. p= —0.5072, d =2.0, AE =3.706X10
and 6=5X10 . The single-photon and multiphoton
resonance profiles obtained from Eq. (3.1) are compared
to the RWA spectra in Fig. 2. This is an example of a
more strongly molecule-EMF coupled system where the
agreement between the RWA and the exact spectra is
only qualitative, see Kmetic and Meath for details.
With d=O the EMF-molecule coupling is massive
(b =6. 84) and the absorption spectra are essentially fully
saturated for all co.

The parameters characterizing the second-order spec-
tra of Fig. 2 are b =6.84, g =26.98, and
P(N)=6. 3X10, 5.7X10, and 3.4X10 for N= 1,
2, and 3, respectively. The RWA, Eq. (1.3), and the
second-order results of Eq. (3.3), predict WFw„M for
N =1, 2, and 3, of 4.26X10, 2.01X10, 1.09X10
and 2.40X10, 1.85X10, and 1.07X10, respec-
tively. Those deduced from the second-order spectrum of
Fig. 2 are 2.63X10 and 6.31X10,for N=1 and 2,
respectively, in good agreement with WF~HM of
2.22X10 and 6.30X10 obtained from the exact
spectra the width of the three-photon resonance can-
not be estimated graphically due to the occurrence of
high oscillatory fringes close to the three-photon reso-
nance peak. The predictions of Eq. (3.3) agree well with
the exact results for N=1 and N=2 and seem an im-
provement over those obtained from the RWA in at least
this respect. In general, for strongly coupled molecule-
EMF systems the use of either Eq. (3.3), or its RWA ana-
log Eq. (1.3), is questionable' since there can be consid-
erable fluctuation of P z over the width of the "reso-
nance. "

A background of approximately 0.15 is present in all
the second-order perturbation spectra of Fig. 2; it is ab-
sent in the RWA. As well, the resonances are shifted
significantly to the low-frequency side of the R%'A reso-
nances and are in very good agreement with the exact
calculations reported earlier, ' co„,/AE =0.88, 0.43, and
0.29 versus the exact results of 0.87, 0.44, and 0.31 f'or
%=1, 2, and 3, respectively. In general, the second-
order spectra are in much better agreement with the ex-
act results than are those for the RWA, compare Fig. 2

with Fig. 1 of Ref. 1.
Model 3. @=3.0, d =6.5, hE =0.10, and

E = 5 X 10 . The parameters characterizing the absorp-
tion spectra for this system are b=1.5, g=3.25, and
P(N)=0. 223, 0.28, and 0.25X10 for N=1, 2, and 3,
respectively. This is an example of a strong molecule-
EMF coupled system (with d&0). As pointed out earlier
only the RWA and the exact calculations are meaningful
for this model and these have been discussed and con-
trasted in detail previously. For this type of system,
where the multiphoton resonances are overlapping and
are reasonably saturated, ' even for d&0, the perturba-
tive corrections to the RWA are unreliable; the RWA it-
self still yields useful qualitative interpretations ' of the
spectra.

In summary, the perturbative corrections to the RWA
contained in the expression for P z given by Eq. (3.1) can
account for the "negative Bloch-Siegert" shifts and the
background seen in exactly calculated single-photon and

OM- (c)

0.25- p3
2

0.00
0.50-

(b)
I

(e)

p2
2

0.00
0.50-

0.25- P
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0.2 0-9

W/h, E
3.6 0.2 L9

Wl jK
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FIG. 2. Comparison of the RWA and the second-order per-
turbation results for the absorption spectra P & as a function of
colAE, for the two-level model characterized by p= —0.5072,
d =2.0, AE =3.706X10 ', and 8=5.0X10 . The second-
order perturbation resonance profiles for N =1, 2, and 3 are il-
lustrated in (a), (b), and (c) while (d), (e), and (fj contain the cor-
responding RWA resonance profiles. Here b =6.84 and
g=26. 98. The corresponding exact spectrum can be found in
Ref. 1.
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multiphoton spectra and that are absent in the RWA.
The perturbation-theory results, correct through second
order, give almost quantitative agreement with the exact
results for weak molecule-EMF coupled systems (e.g. ,
model 1) and account for the differences between the
RWA and the exact results reasonably well for moderate-
ly coupled cases (e.g. , model 2); for strongly coupled sys-
tems the perturbation corrections are essentially mean-
ingless for computational purposes. We also point out
that the perturbative corrections to the RWA can be-
come unreliable, for certain co, even for weak and
moderate molecule-EMF coupled systems. For example,
the perturbative corrections occurring in Eq. (3.1) con-
tain terms of the form (b,E —ceo) ~ where c and p are
positive integers. These terms become large as co~bE/c
and can cause divergent results for some values of fre-
quency (for the examples of Figs. 1 and 2 this occurs for
small co and the plots are terminated accordingly).

Finally we emphasize that the results for the resonance
frequencies and the WFwHM obtained from the (p, d) ex-
pansions of Eqs. (2.40) —(2.44) are essentially meaningless
for the explicit examples considered in this paper; the
couplings )M eD and d.e8 and the coupling strength pa-
rameters b and q are large and the perturbative expan-
sions in p and d do not converge. However, for example,
the implicit perturbation result for co„„given by Eq.
(2.38) can be used, without making a ()M, , d) expansion,
iteratively to obtain meaningful results. With terms of
third- and higher-order set equal to zero, Eq. (2.38) yields
values for co„,=0.88, 0.44, and 0.30 for E =1, 2, and 3,
respectively, for model 2; these are in excellent agreement
with the exact results.

The difficulties with perturbation theory can be avoid-
ed by using exact methods for the solution of two- (or
many-) level problems and results using such techniques
are used to augment previous discussions of dAO effects
in single-photon and multiphoton spectra in what fol-
lows.

IV. COMMENTS ON SINGLE-PHOTON
AND MULTIPHOTON SPECTRA

OF LARGE d960 MOLECULES

(a) (b) (c)

p 025

0.00
0.50-

P 0.25-

0.00
0,50

P) 0.25-

0,00
(50-

and their single-photon and multiphoton spectra, as a
function of 6 =

~ p e6
~
/bE, q = ~d e@~ /b, E, and a can be

generated by varying the field strength 8, and d, relative
to those characterizing the original model molecule. The
exact absorption spectra or resonance profiles, or the
phase and long-time average of the population of the ex-
cited state 2 as a function of frequency co, correspond to
the interaction of the molecule with a continuous-wave
laser with the molecule being in the ground state at the
initial time t =0. The calculations are carried out by us-
ing the Riemann product integral method ' ' to obtain
the solution to the time-dependent wave equation over
the first period of the Hamiltonian for the problem, as a
function of frequency, followed by the use of Floquet and
related techniques ' ' ' ' ' to obtain the absorption
spectra. In Fig. 3 the exact two-level spectra in columns
(a), (b), and (c), respectively, correspond to a=O, 1.1, and
1.5. In addition, the labels 1, 2, 3, and 4 correspond to
b =0.2, 0.6, 1.0, and 1.8, respectively. The values of
co„,/bE, N =1,2, . . . , 6, for each spectrum shown are
summarized in Table I.

Here we discuss some exact two-level model resonance
profiles that illustrate some of the spectral effects related
to large differences between the permanent dipoles of the
states involved in a transition. The discussion augments
recent papers ' ' on "giant dipole molecules, " or more
precisely molecules with giant differences d, and serves as
a connection between these recent papers and earlier
work' ' ' on this subject.

The two-level model molecules chosen are based on the
ground and lowest excited singlet states of the
1 —[p —(N, N-dimethylamino)phenyl]-4-(p-nitrophenyl)-
1,3-butadiene molecule with the molecular parameters ' '

chosen to be AE =8.56 X 10, d = 11.80, and p =3.93,
with d~~p~~e. In addition to the coupling strength param-
eters b, q=g(1), and 13(N) employed earlier, the parame-
ter a= —,'~d~/~p~, introduced in the work of Hattori and
Kobayashi, is also used in what follows to help discuss
the spectral effects of d&0. Various two-level models,

P) 0.25-

LOO
0 &.0 28 0

UJ/4E
&.0 2.0 0

LU/4E

lA)

UJ/4E
20

FIG. 3. Comparison of the absorption spectra P& as a func-
tion of co/AE, obtained from exact calculations for the two-level
systems specified by p, =3.93, AE =8.56X 10, and d =0 [(a)-
1 —{a)-4], d =8.65 [(b)-1 —(b)-4], and d =11.80 [(c)-1—(c)-4]. In
(a)-1, (b)-1, and (c)-1, 6=4.36X 10 ' and b =0.2 while
@= 1.31 X 10 and b =0.60 for (a)-2, (b)-2, and (c)-2,
6=2. 18X10 and b =1.00 for (a)-3, (b)-3, and (c)-3, and
6=3.92X10 and b =1.80 for (a)-4, (b)-4, and (c)-4. Also,
a=0 and g=0 for (a)-1 —(a)-4, a=1.1 and g=0.44, 1.32, 2.20,
and 3.96 for (b)-1 —(b)-4, respectively, and a = 1.5 and g =0.60,
1.80, 3.00, and 5.40 for (c)-1—(c)-4. The parameters b, g, and a
are defined in the main text.
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TABLE I. Summary of the values of ~„,/hE for the exact spectra given in Fig. 3. These spectra
correspond to the two-level systems specified by @=3.93, LE =8.56X10 ', and d=0 [Figs. 3(a)-

1 —3(a)-4], d =8.65 [Figs. 3(b)-1—3(b)-4], and d =11.80 [Figs. 3(c)-1—3(c)-4]. The parameters b,

g =g(1), and a are defined in the main text.

0.20
0.60
1.00
1.80

0.20
0.60
1.00
1.80

0.20
0.60
1.00
1.80

0.00
0.00
0.00
0.00

0.44
1.32
2.20
3.96

0.60
1.80
3.00
5.40

co„'„/AE

1.01
1.09
1.25
1.73

1.01
0.99
0.76
0.75

1.01
0.92
0.85
0.85

co,'„/AE

0.52
0.65
0.37
0.37

0.52
0.43
0.42
0.42

co„„/bE

a=0.0
0.35
0.44
0.56
0.79

a=1.1

0.35
0.38
0.28
0.26

a=1.5

0.35
0.30
0.28
0.28

co„,/AE

0.26
0.29
0.24
0.24

0.26
0.27
0.21
0.21

co,'„/AE

0.21
0.26
0.34
0.51

0.21
0.25
0.21
0.19

0.21
0.26
0.17
0.17

co„,/hE

0.17
0.22
0.20
0.18

0.18
0.21
0.15
0.14

To begin, consider the spectra corresponding to a fixed
value of a. When a=0, g=0 for the spectra in Figs.
3(a)-1—3(a)-4. As b increases on going from 3(a)-1 to
3(a)-4 the spectra become more saturated as expected and
as is evident from the increasing background; the reso-
nances shift significantly to higher values of co/bE (see
Table I). Only the odd-photon resonances occur, as usu-

al, since d=0 and only two levels are involved.
When a= 1.1, q=0.44, 1.32, 2.20, and 3.96, and

b =0.2, 0.6, 1.0, and 1.8 for Figs. 3(b)-1, 3(b)-2, 3(b)-3,
and 3(b)-4, respectively. Initially as g increases, some of
the resonances approach each other and eventually over-
lap very strongly. This effect is evident when g=1.32
and b =0.6 [Fig. 3(b)-2]. Here, the one- and two-photon
resonances are very close and appear as one large broad
resonance with two maxima separated by a very slight
minimum. The one-photon resonance has shifted slightly
to a lower value of co/EE while the two-photon reso-
nance has shifted significantly to a higher value of co/AE
relative to smaller d or to d=O (see Table I). The three-,
four-, five-, and six-photon resonances shift slightly to
higher values of co/hE as well. When g=2. 20, the large,
broad resonance of the g = 1.32 case has been replaced by
a one-photon resonance with a large oscillatory fringe on
the high e/AE side. The one-, two-, and three-photon
resonance positions have undergone large negative shifts
from those associated with the r1=1.32 calculation (their
co„, have become less than AE/N) and an oscillatory
fringe associated with the two-photon resonance is also
clearly present. An additional increase in g, Fig. 3(b)-4,
further complicates the spectra for low frequency. There
is an interesting interplay between increasing b and in-
creasing g in proceeding from 3(b)-1 to 3(b)-4 in Fig. 3.
Increases in b tend to broaden and saturate, while in-
creases in g tend to narrow and sharpen, the absorption
spectra as discussed previously' ' (see also Sec. I). For
dAO the appearance of even, as well as odd, photon reso-
nances is clear and this can add to the crowding of the

resonances, relative to the d=O spectra of part (a) of Fig.
3, as a function of co and r).

Figures 3(c)-1 to 3(c)-4 correspond to the absorption
spectra of the original model molecule, 1 [p (N, N--
dimethylamino)phenyl]-4-(p-nitrophenyl)-1, 3-butadiene,
as a function of 6, where a = 1.5. Here g =0.6, 1.8, 3.0,
and 5.4, and b =0.2, 0.6, 1.0, and 1.8 for Figs. 3(c)-l,
3(c)-2, 3(c)-3, and 3(c)-4, respectively. In this example, no
merging of the lower photon resonances is observed; for
each b value, the value of g is larger in this example than
in Fig. 3(b). The four-, five-, and six-photon resonances
shift to slightly higher values of co/hE when b =0.6 and
g= 1.8 relative to b =0.2 and g =0.6. In general,
though, all resonances shift to lower values of co/EE as b
and q increase, illustrating again the negative Bloch-
Siegert shifts due to the presence of d.

Now consider the spectra for fixed values of b. When
b =0.2, Figs. 3(a)-1, 3(b)-1, and 3(c)-1 correspond to
g=0, 0.44, and 0.60, respectively. The resonances occur
at the same positions in each spectra for X = 1, 3, and 5
(see Table I) and, when d@0, for N =2 and 4, as well.
The coupling strengths are quite similar for each reso-
nance. For example, when N = 1, P(1)=0.20, 0.195, and
0.191 for 3(a)-1, 3(b)-1, and 3(c)-1, respectively, and
p(1)=b The effect o.f d&0 is minimized for the small
values of g occurring in this example.

The spectra characterized by b =0.6 correspond to
Fig. 3(a)-2 where r1=0, P(1)=b =0.60, 3(b)-2 where

g = l. 32, P(1)=0.48, and 3(c)-2 where g = 1.80,
p(1)=0.36. As g increases the one-photon resonance
shifts to lower values of m/hE. As discussed previously,
the N & 1 resonances shift to high frequency when
g=1.32. However as g increases further to g=1.8 the
overall effect of increasing d from zero again becomes
clear in that it tends to induce shifts in the resonance fre-
quency to the low-frequency side of the zero field or
RWA limit of AE /X.

Finally, Figs. 3(a)-3, 3(b)-3, and 3(c)-3 correspond to
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b =1.0 and to the parameters i)=0 and p(1)=b =1.00,
i)=2.20 and I3(1)=0.26, and g=3.00 and P(1)=0.071,
respectively, while Figs. 3(a)-4, 3(b)-4, and 3(c)-4 corre-
spond to b =1.8 and are characterized by g=O and
P(1)=b =1.80, i)=3.96 and )33(1)=0.24, and g=5.40
and P(1)=0.11. Both these examples illustrate the effect
of d&0 on the absorption spectra of molecules. When
d=0, the spectra are highly saturated and the resonances
are quite broad; when d&0, the background is greatly re-
duced, the resonances are narrowed appreciably, and os-
cillatory fringes occur in the spectra as explained and dis-
cussed previously. ' ' ' For fixed b, as g increases, the
"real" molecule-EMF coupling parameter /3(1) differs
more appreciably from b.

Hattori and Kobayashi carried out frequency sweep
absorption spectra for a system characterized by +=0.3
and b =0.2, 0.6, 1.0, and 1.8. Solving for the correspond-
ing g values yields q=0. 12, 0.36, 0.60, and 1.08 and
hence these calculations show only some of the effects
discussed here, and previously, ' ' for d&0; for exam-
ple, oscillatory fringes associated with main resonances
were not observed. More importantly the analysis of the
effects of d@0 on the absorption spectra given by these
authors was carried out using a Floquet secular equation
not derived from the interaction representation' used in
Sec. II. The form of the Floquet secular equation used in
Ref. 8 is the dAO analog of Shirley's results' and leads
to results like those of Eqs. (2.40)-(2.44) which, see Sec.
III and Hattori and Kobayashi, cannot be used to ana-
lyze spectra like those of Figs. 1 —3 reliably. Further, the
RWA arising from the dWO analog of Shirley's secular
equation corresponds to the usual atomic result for the
absorption spectrum corresponding to the d=0 limit of
Eqs. (1.1) or (2.36); the effects of d@0 in this approach
arise from higher-order perturbation expansions of the
secular equation. On the other hand, the interaction rep-
resentation used in Sec. II leads to a discussion of the
molecule-EMF interaction in terms of the important
molecule-EMF coupling given by C(X), defined by Eqs.
(1.2) or (2.17), and to the analytic molecular RWA reso-
nance profile of Eqs. (1.1) or (2.36). These analytic results
are crucial in discussing, interpreting, and predicting
many of the effects of d&0 in the single-photon and
multi-photon absorption spectra of molecules. '

V. DISCUSSION

The perturbative corrections to the rotating wave ap-
proximation for the N-photon absorption spectrum of a
two-level molecule, including the effects of permanent di-
pole moments, are obtained in Secs. II A and II B. They
are obtained from a time-independent N-photon Floquet
Hamiltonian matrix description of the problem through
the use of a Fourier expansion of the time-dependent
Hamiltonian, phase factoring techniques, and Floquet
theory. The derivation of the results is a generalization
of earlier work' ' for the d=p22 —p»=0 case and in-
volves the use of a crucial transformation to an interac-
tion representation that enables the problem to be dis-
cussed in terms of the important molecule-EMF coupling
given by C(N), see Eqs. (1.2) or (2.17), rather than the

usual coupling p, 2 eD used by previous workers.
The perturbation treatment of this problem is not easi-

ly carried out. Not only are the zeroth-order energies
near degenerate but they can also be of the same magni-
tude as the second-order energy, especially for frequen-
cies associated with the N-photon resonances, which are,
of course, of particular importance. As pointed out in
Secs. II B and III, this makes the ordering of the terms, in
order of smallness, difficult in the perturbation expansion
of the N-photon resonance profile P 2. This difficulty is
compounded by the fact that the Floquet perturbation
energies and wave functions are functions of frequency as
well as the couplings )u» e6' and d eD; C(X) is a func-
tion of frequency for d&0. The perturbation-theory re-
sults can converge for certain frequencies, and misbehave
for others, for a given problem (see Sec. III for examples).
For the models investigated here it was found that, aside
from the RWA, only the second-order perturbation-
theory expression was useful for numerical calculations of
N-photon resonance profiles.

The perturbation-theory expressions for the correc-
tions to the RWA are used, in Secs. IIC and III, to help
investigate and explain effects observed in exact two-level
resonance profiles that are missing in the RWA. For
problems where the molecule-EMF couplings are rela-
tively weak the result for P &, through second order,
often agrees quite well with exact calculations for two-
level molecular resonance profiles and can account for
the shifts of the resonance frequencies from the RWA re-
sult of AE/N and for the dynamic spectral background
absent in the RWA. On the other hand (see Sec. III), for
strong couplings, where the various N-photon resonances
begin to overlap appreciably, the perturbation results for
P2 are apparently not particularly useful aside from

qualitative results obtained from the RWA. It is likely
that the use of the perturbation-theory expressions ob-
tained from the dWO Floquet secular equation will not
yield computationally useful results in general. If the
fourth-order energies and other higher-order effects are
required to obtain reasonable results, the use of perturba-
tion theory for this purpose is doubtful. It is probably
easier to perform exact computations which avoid the
difficulties associated with perturbation theory and which
are relatively inexpensive for few-level systems (see Sec.
IV).

It seems, in general, that the usefulness of the explicit
perturbation corrections to the RWA lies in the qualita-
tive and conceptual understanding of the differences be-
tween the RWA and exact single-photon and multipho-
ton spectra. An example of this application is the expan-
sion for the shift of the resonance frequencies relative to
EE/N, in powers of the couplings between both the tran-
sition and the permanent dipole moments and the EMF,
obtained in Sec. II C; see also Hattori and Kobayashi.
This result is obtained by iteration from an implicit result
for the N-photon resonance frequency obtained by the
perturbation-theory treatment of the problem and gives
an analytical demonstration of the possibility, if d&0, of
low-frequency shifts in the resonance frequencies relative
to AE/N. These "negative Bloch-Siegert shifts" are in
contradistinction to the usual shifts to high frequency
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seen in atomic (d =0) spectra and are observed in exactly
calculated two-level spectra.

Single- and multiphoton absorption spectra for a series
of giant dipole (more precisely large d&0) two-level mol-

ecules, evaluated using exact computational techniques,
are presented in Sec. IV. They are used to illustrate some
of the e6'ects of d&0 in the spectra, relative to the d=0
case, and the discussion helps to link some of the relative-

ly recent literature' ' ' on the subject together including
that on the use of the RWA to interpret such spectra.
The advantages of using the interaction representation
defined by Eqs. (2.1)—(2.6) to develop the Floquet secular
equation used in our perturbation treatment of the prob-
lem, relative to a more direct extension of the d =0 ap-
proach used by Shirley, ' are discussed briefly in Sec. IV.

The two-level system, in the electric dipole approxima-

tion, studied in this paper has long provided a basis for
the study of a wide variety of linear and nonlinear in-
teractions between electromagnetic radiation and atoms
and molecules; see, for example, some references already
cited and Kefs. 34—37. This paper is particularly con-
cerned with the eA'ects of permanent dipoles on such in-
teractions. While two-level calculations are relevant and
important in understanding and/or predicting the eft'ects
of varying the various parameters defining the interaction
of radiation with matter, they should be regarded as mod-
els unless it is verified in explicit applications that the
e6'ects of neighboring energy levels are not significant.
The usefulness and the limitations of the two-level system
as an approximation for more realistic atoms and mole-
cules have been discussed often previously, see, for exam-
ple Refs. 5, 17—19, 34, and 38-42.

*Also at Centre for Interdisciplinary Studies in Chemical Phys-
ics, University of Western Ontario, London, Ontario, Canada
N6A 5B7.

~Present address: Department of Chemistry, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1.

'M. A. Kmetic and W. J. Meath, Phys. Lett. 108A, 340 (1985).
~G. F. Thomas, Phys. Rev. A 33, 1033 (1986).
M. A. Kmetic, R. A. Thuraisingham, and W. J. Meath, Phys.

Rev. A 33, 1688 (1986).
~R. A. Thuraisingham and W. J. Meath, Mol. Phys. 56, 193

{1985).
5W. J. Meath, R. A. Thuraisingham, and M. A. Kmetic, Adv.

Chem. Phys. 73, 307 (1989).
R. V. Jensen and S. M. Susskind, in Photon and Continuum

States of Atoms and Molecules, Uol. 16 of Springer Proceed
ings in Physics, edited by N. K. Rahman, G. Guidotti, and M.
Allegrini {Springer-Verlag, Berlin, 1987), p. 13.

7G. F. Thomas and W. J. Meath, Mol. Phys. 46, 743 (1982); 48,
649(E) (1983).

T. Hattori and T. Kobayashi, Phys. Rev. A 35, 2733 (1987).
W. J. Meath and E. A. Power, Mol. Phys. 51, S85 {1984);J.

Phys. B 17, 763 (1984};20, 1945 (1987};see also Ref. 5, and
references therein.

' J. H. Shirley, Phys. Rev. B 138, 979 (1965); see also J. H. Shir-
ley, Ph. D. thesis, California Institute of Technology, 1963.

"P.R. Certain and J. O. Hirschfelder, J. Chem. Phys. 52, 5977
{1970).

' J. O. Hirschfelder, Chem. Phys. Lett. 54, 1 (1978).
' P. K. Aravind and J. O. Hirschfelder, J. Phys. Chem. 88, 4788

(1984).
' I. I. Rabi, Phys. Rev. 51, 652 (1937).
' M. Sargent III, M. O. Scully, and %'. E. Lamb, Jr., Laser

Physics (Addison-Wesley, Reading, MA, 1974), Chap. 2.
' F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
' R. A. Thuraisingham and W. J. Meath, Chem. Phys. 125, 129

(1988).
'8R. A. Thuraisingham and W. J. Meath, Surf. Sci. 199, 199

{1988}.
'9W. J. Meath and R. A. Thuraisingham, in Atomic and Molecu-

lar Processes 8'ith Short Intense Laser Pulses, edited by A. D.
Bandrauk (Plenum, New York, 1988), p. 4S3.

2oSee for example, O. Platt, Ordinary Differential Equations
{Holden-Day, San Francisco, 1971};N. P. Erugin, Linear Sys-
tems of Ordinary Differential Equations (Academic, New

York, 1966).
'W. R. Salzman, Phys. Rev. A 10, 461 (1974); 16, 1552 (1977).

~~J. V. Moloney and W. J. Meath, Mol. Phys. 31, 1537 {1976),
and references therein.
S-I. Chu, Adv. At. Mol. Phys. 21, 197 (1985), and references
therein.

2~L. Brillouin, J. Phys. Radium 7, 373 {1932);E. P. Wigner,
Math. Naturwiss. Anz. Ungar. Akad. Wiss. 53, 475 (1935);
see also J. E. Lennard-Jones, Proc. R. Soc. London Ser. A
129, 598 (1930).

2~M. A. Kmetic, Ph.D. thesis, University of Western Ontario,
1988.

266. N. Watson, Theory of Bessel Functions 2nd ed. (Cambridge
University Press, Cambridge, England, 1958).

27C. Cohen-Tannoudji, J. Dupont-Roc, and C. Fabre, J. Phys. B
6, L214 (1973); S. Stenholm, ibid. 6, L240 (1973};P. Hanna-
ford, D. T. Pegg, and G. W. Series, ibid. 6, L222 (1973); F.
Ahmad and R. K. Bullough, ibid. 7, L147 (1974}.
F. T. Hioe (private communication).

2 S. Stenholm, J. Phys, 8 5, 878 (1972); D. T. Pegg, ibid. 6, 246
(1973);F. Ahmad and R. K. Bullough, ibid. 7, L275 (1974).

The Bessel functions involved were computed using the sub-
routine MMBsJN of the IMSL, Inc. library, ed. 9 (1982).

'See, for example, M. Terauchi and T. Kobayashi, Chem. Phys.
Lett. 137, 319 (1987).
G. F. Thomas and W. J. Meath, J. Phys. 8 16„951(1983).
G. F. Thomas, Phys. Rev. A 32, 1515 (1985).
L. Allen and J. H. Eberly, Optical Resonance and Tao-Level
Atoms (Wiley, New York, 1975).
N. B. Delone and V. P. Krainov, in Atoms in Strong Light
Fields, Vol. 28 of Springer Series in Chemical Physics, edited
by V. I. Goldanskii, R. Gomer, F. P. Schafer, and J. P. Toen-
nies (Springer-Verlag, Berlin, 1985).

36A. G. Adam, T. E. Gough, N. R. Isenor, and G. Scoles, Phys.
Rev. A 32, 1451 (1985).

37D. R. Dion and J. O. Hirschfelder, Adv. Chem. Phys. 35, 265
(1976).

38P. R. Herman, Am. J. Phys. 42, 992 (1974).
M. D. Burrows and W. R. Salzman, Phys. Rev. A 15, 1636
(1977).
J. V. Moloney and W. J. Meath, J. Phys. 8 11,2641 (1978).
'J. Wong, J. C. Garrison, and T. H. Einwohner, Phys. Rev. A

13, 674 (1976).
4~M. Quack, J. Chem. Phys. 69, 1282 (1978).


