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Transient multiwave mixing in a nonlinear medium
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We present a detailed quantitative theory of transient multiwave mixing effects in a nonlinear
medium produced by two incident coherent laser beams. Our theory accounts for all the relevant
parameters such as laser pulse widths, medium response times, nonlinearities, interaction length, in-

tensities, beam ratio, phase-modulation effects, losses, side diffractions, and explicitly shows how the
dynamics and the multiwave mixing processes are interrelated with these parameters. The crucial
role played by the diffracted beams and the time-dependent phase shifts among the beams and the
interplay among the various intensity and index gratings are explicitly evaluated. In particular, the
gain experienced by a weak incident probe beam via these mixing effects from the incident strong
pump beam is investigated as a function of the aforementioned parameters.

I. INTRODUCTION

The study of optical wave mixing dates back to the ear-
ly years of nonlinear optics. ' Theories and experi-
ments dealing with some of these processes, such as
second- and third-harmonic generations, stimulated
scatterings, two- and four-wave mixing, etc. , have by now
been standardized for many years. Recently, with the
emergence of highly nonlinear materials, many of these
so-called standardized effects have been found to assume
several new, interesting, and potentially very useful
forms.

In particular, studies of stationary multiwave mixing
effects involving an incident pump and a probe beam (c.f.
Fig. 1) have led to new theoretical understandings and ex-
perimental results on beam amplification, phase con-
jugation, and self-oscillation processes. The fundamen-
tal process of amplifying a weak beam by a strong beam
of the same frequency by wave mixing in a nonlinear
medium can be mediated, in the stationary case, either by
a naturally present phase shift (in photorefractive materi-
als ) between the refractive and laser intensity gratings,
or, in nonphotorefractive media (e.g. , Kerr media,
thermal index media), by the diffracted beams which are
generated from scattering of the incident waves from the
index grating (produced by the two incident waves). The
former process is termed two-wave mixing (as it involves
only the pump and the probe beams), and the latter pro-
cess is generally called multiwave mixing effect [as they
involve other (diffracted) beams besides the pump and the
probe].

In the stationary case, as a result of the diffusive nature
of the underlying optical nonlinearities (e.g. , collective re-
orientations and thermal effects in liquid crystals, elec-
tronic diffusion in semiconductor etc.), the wave-mixing
effects diminish rapidly while increasing the angle of in-
tersection between the incident laser beams (i.e., decreas-
ing the refractive index grating constant induced by these
lasers). The phase-matching requirement for producing
the side diffraction also requires that the medium be thin
and/or the wave mixing angle be small. Although this
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FIG. 1. Schematic of the transient multiwave mixing involv-
ing a pump, a probe, and two side diffracted beams.

limitation (of having to use a very small angle) can be
largely offset if the laser is in the infrared regime (e.g.,
10.6-pm CO2 laser), it presents, in general, a serious han-
dicap for applications using cw visible or near infrared
laser.

In this paper, we present a detailed theoretical discus-
sion that emphasizes the transient aspects of these wave
mixing effects for the case where incident laser pulse
widths are shorter or comparable to the medium response
time. Our theory is an extension of the formalism em-
ployed by Vinetskii et al. ' The new features of our
theory include (i) quantitative and explicit formulation of
the intensity and phase equations involving the two in-
cident beams and two side diffracted beams. This four-
beam approach is fundamentally a more self-consistent
treatment in that it allows one to study the dependence of
the wave mixing process on the relative intensity ratio of
the pump to the probe beam. This ratio dependence is
important if one envisions using these multiwaue mixing
sects to construct a ring oscillator, " for example, start-
ing with a "probe" beam that originates as scattered
noise from the pump beam. As the probe beam intensity
increases, the pump to probe beam ratio will decrease and
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thus will affect the wave mixing gain. Similar types of
wave-mixing devices, e.g. , phase conjugator, also depend
critically on this beam ratio. Another new feature is (ii)
explicit evaluation of the probe-beam gain for the large
gain regime (i.e., gain ))1) as a function of time, beam
ratio, wave mixing angles, intensities, etc. This informa-
tion is not available by approximate or perturbative solu-
tions of the problem, but they are crucial for examining
the limits or optimization of the probe-beam gain effect.
Also included are (iii) explicit solution and illustrations of
the various phases and phase shifts involved in the mul-
tiwave coupling s that affect the transient multiwave
energy-exchange process. In particular, we point out
how the intensity-dependent phase-modulation effect
could dominate over the phase mismatch experienced by
the diffracted beams, resulting in their nonvanishing (in
fact, substantial) contribution to the wave mixing effect
under geometrical conditions where they normally would
be of vanishing amplitude.

In Sec. II, we present the basic theoretical formulation,
followed by some discussion of the pertinent features of
transient multiwave mixing effect. In Sec. IV, the equa-
tions and various experimentally accessible quantities are
solved using some exemplary values for the parameters
involved. This is followed by a specific treatment of tran-
sient Nd: YAG (where YAG is yttrium aluminum garnet)
laser wave mixing in silicon and liquid crystals where
some experimentally observed effects are well described
by our present theory.

II. THEORY

The starting point of our analysis is the set of Maxwell
equations governing the propagation of the lasers within
the nonlinear medium

E=E,(x,z, t)= gE (z, t)e

ilk sbe=he(x, z, t)= ge, (z, t)e (6)

where m =+1,+3, . . . . For simplicity, we have assumed
that all the fields are linearly polarized in the y direction.

Substituting Eqs. (5) and (6) into Eq. (4) yieldsBE; BE BE BE

2k, c Bt 2k, Bt c k, Bt Bz

k,' ~ kp+i(1—m ) E + —E = i —geIE &. (7)
z 2 z I

The last term (a/2)E on the left-hand side is a phenom-
enological loss term that we add on to account for losses
(e.g. , scattering, absorption, etc.) in the nonlinear medi-
um experienced by all the optical fields.

Assuming the slowly varying envelope approximations,
all the second-derivative terms are small in comparison
with the first derivative, and Eq. (7) becomes simply

as aiK E +— E= iK—0 g
—e&E

Bz 2

where

BE BE e BE 1 B(heE)+
x az c at c at

Because of the oscillatory behavior of he in the x direc-
tion generated by the interference of the two coherent in-
put beams 1 and —1, we may expand the field and the
dielectric constant in terms of their Fourier components,
i.e., we have

VXE=—1 H
c t

and

kp
It:0=

2k,

and

Ao[n
2 —sin (8/2)]'~

DVxH=-
c at

(2) k
K =(m' —1)

Z

(10)

The displacement vector D is related to the optical elec-
tric field E via the constitutive equation

D=(e+be)E,

where e is the linear optical dielectric constant and Ae is
the optically induced change in the dielectric constant.
We are using notation very similar to that used in Refs. 5

and 10 for the purpose of comparison. Consider the in-
teraction geometry as depicted in Fig. 1. The two in-
cident waves are labeled 1 (strong pump beam) and —1

(weak probe beam), respectively. In general, there are
several diffracted beams on the transmitted side, and they
are labeled +3, +5, and so on. We will be concerned
with wave mixing involving beams and cross sections
much larger than the thickness of the film, and therefore
we can safely use the plane-wave approximation. In this
case, the field variables depend only on x and z, i.e., the
Maxwell equation for a charge- and current-free medium
becomes

The wave-mixing processes, whether it is two wave, three
wave, or multiwave, depend, to a large extent, on the
functional form of Ae on the optical field and spatial and
temporal coordinates. The functional form of Ae, of
course, is dictated by the physical mechanisms (e.g. ,
thermal, electronic, orientational, photorefractive, etc. )

and also the various time scales involved (decay time,
turn-on time, and laser pulse lengths).

In this paper, we consider a class af nonlinear mecha-
nism where the optical dielectric constant change obeys
an equation of the form

B(b,e) he B Ae B Ae

7 p

The first term on the right-hand side describes the opti-
cally induced dielectric constant change per unit time.
The second term is the relaxation of the dielectric con-
stant by nondiffusive mechanisms (e.g. , recombination of
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carriers, radiative relaxations from excited levels, etc.).
The last two terms describe the diffusive relaxation pro-
cesses.

This equation describes many electronic, thermal,
orientational, and other diffusive nonlinear processes
(e.g. , such as the electronic valence ~ conduction transi-
tion nonlinearity studied by Eichler et al. , and the
thermal and orientational nonlinearities in liquid crys-
tal). ' In the latter cases, the z dependence of he may
also be represented by a sine function [e.g. , the z depen-
dence of the laser-induced thermal refractive index
change in a nematic-liquid-crystal film is of the form
sin(nzld)]. Using et(z, t)=eI(t)sin(nzld) in (6), and
substituting (6) into (11) above yield an equation for the
1th Fourier component of Ae

E„=QI„e
Equation (12) can first be integrated to give

t (t t')—
et = —Pf g QI„I„ i exp i P„ t ( t '

}— dt ',
0

n +I

(13}

by a similar equation with the replacement of D by the
appropriate elastic constant. ' ' In liquid crystals'
thermal and reorientational effects, ~0 is not involved.

To explicitly describe the roles played by the phases
and phase shifts among the beams and between the inten-
sity and index gratings we shall express the complex field
amplitude E„by a real amplitude QI„and a phase P„,
&.e.,

a(ae),
at

=(0&')—

where

where l' =k2, +4, +6 since n =+1,+3.
Also

(14)

2

I Dx kx I +Dz'd2 (12)

The reorientation effect in liquid crystals is described
I

Substituting Eqs. (13) and (14) into (8), we get the equa-
tion for the amplitude QI and the phase P of the cou-
pled optical fields

a+I
QI Pk —g Q—I,f g QI„I„,exp

Bz 2 ( 0

I

sin[/„ i(t') —
P t(t )]dt, (16)

ay. pk, y&I. ,f y„&I„I„,exp
az

t' —t
c so[/„ i(t') P, (t)—]dt . (17)

Equations (16) and (17) above are similar to those in Ref.
10, where only a perturbative solution is given. The per-
turbative solution assumes that the gain experienced by
the probe beam, b,I &/I, is small compared to unity.
Also, the diffracted beams are not accounted for.

On the other hand, in Ref. 5, one of the diffracted
beams (I3) is included in the calculation. However, the
three-beam picture used is only valid for a probe beam
(I, ) that is very weak compared to the pump beam; this
three-beam model, as we remarked earlier, will not be

able to describe the wave mixing dependence on the
pump to probe beam intensity ratio P (c.f. Refs. 4 and 6
on stationary multiwave mixing eft'ects).

To quantitatively describe recently observed experi-
mental results (Refs. 4 and 5), and to predict the depen-
dences of the probe gain on all the parameters involved,
it is imperative, as is done here, that at least four beams
be included in the formalisms.

Writing out Eqs. (16) and (17) explicitly for
m =+1,+3, we get

a —, „, ~ (~-~)i,,
,
—p 0 Q, e '[QI,I,sin[/, 2(t') —p, 2(t)]++I,I 3sin[p, 2(t') —p, z(t)]

+V I3I&»n[&3 2(t') —
(()i 2(t))]dt'

+QI3 f e '[QI, I3sin[p, 2(t') —p, 2(t)]

++I |I&sin[/ 1
2(t'}—p 1 z(t}]

++I 3I,si [p n3 2(t') —p, 2(t)] jdt'

++I 3 f e 'I+I, I 3sin[414(t } 0& 4(t}]

+QI3I, sin[y3, (t') y, ,(t)]Idt'— (18)
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I

Bz 2 . 0
QI

& pkp QI& f e '{Qrlr3sin[pl z(t') —
p l z(t)]

+Qr, r, »n[y l z(t ) —y, z(t)]

++I 3I lsin[p 3 z(t') —p, z(t)]jdt'
I

+V I 3 f e '{Qrlr, sin[pl z(t') —p, z(t)]

++I lI 3sin[p l z(t') —p l z(t)]

+QI3I sli n[p 3z(t') —tI), z(t)] jdt'
I++I f e '{+I,I sin[/, (t') P—, (t)]

++I 3rlsin[p 3 4(t') —
p l 4(t)]jdt'

I

QI —
3 pkp Q—I,f e '{Qrlr3sin[pl z(t') —p 3 z(t)]

+QI, I, sin[/ l z(t') —
p 3 z(t)]

+Qr 3I lsln[p 3 z(t') —p 3 z(t)]jdt'
I

++Il f 'e" " "{QI, I3sin[p l 4(t') p3 4(—t)]

++I 3r, sin[/ 3 4(t') —p 3 4(t)] jdt'
I

+QI3 f 'e" " "{QI 3I3sin[p 3 Q(t ) Ij() 3 6(t)] jdt' (20)

QI3 pk—p QI,—f e '{+Ilr lsin[pl z(t') —
$3 z(t)]

++I lI 3sin[p, z(t') —
$3 z(t)]

++I r3, si n[p 3z(t') —
$3 z(t)] jdt'

I+&I,f 'e" " "{QI,I 3sin[pl 4(t') —&34(t)]

+QI3I ]sl [n$3 4(t') —
p3 4(t)] jdt'

t (I' —I)/~&++I 3 e 'QI3I 3sin[$3 &(t') —
$3 6(t)]dt' (21)

=Pkp 7rpe '(1 —e ' ')

I
+

I]

' 1/2
I

e ' I&I icos , 2
t' —

] 2 t

++I lI 3cos[$ l z(t') —p, z(t)]

++I 3r, cos[p 3 z(t') —pl z(t)] jdt'
' 1/2

3+
I]

(t' —t ))/~4
e '{QI&I3COS[pl 2(t') —

pl z(t)]

+Qr, r, cos[P, z(t') —
Pl z(t)]

++I 3I,cos[p 3 z(t') —p, z(t)]jdt'

I
+

I]

' 1/2
Ij'e" "'"{&r,r3cos[p, 3(t ) Q, 4(t)]

+QI3r, cos[$34(t') —p, 4(t)] jdt (22)
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I1+ I

' 1/2

1/2

++I ]I]cos[p 1 2(t ) p —1 —2(t)]

++I 3I ]cos[0 3 2{t ) '(t' ] 2(t)l jdt'

t

I I, , t' —,t

1/2

++I ]I 3cos[p ] 2(t') —p ] 2(t)]

+QI3I]cos[$3 2{t')—(t —] 2(t')] jdt'

I

e I 1I3COS 1 4 t 1 4 t

++I 3I]cos[$ 3 —4(t') ——P ] 4(t)] jdt'
(23)

=k3+pko ~OIoe '(1 —e ' ')

I . 1/2

+
I3

I (r' —I )/~z
e ' I1I 1COS 12 t' —

32 t

1

I3

+V I—]I—3cos[]()—] 2(t') —
p3 2(t)]

+QI3I]cos[$3 2(t ) —p3 2(t)]jdt'
1/2

4

e I,I 3COS, 4 t —
34 t

' 1/2

f e 't V I,I 3cos[$36(t ) Ijk3 fj(t)]jdt'

az
=k 3+Pko rIoe '(1 —e ' ')

1/2

+ I
I

e I]I3COS 1 2 t 3

++I ]I]cos[p ] 2(t') —
])I] 3 2(t)]

++I 3I ]cos[$ 3 2(t ) f—3, —2(t)]jd
' 1/2

I (t tj/74
e I+I ]I3cos[p —] 4(t') —p 3 4(t)]-3 0

1/2
3

—3I]cos[4—3, —4{t ) 0—3 —4{t)]jdt

J e 'I+I I33cso[ ]t3 6(t ) $ 3 6(t)]jdt' (25)



41 TRANSIENT MULTIWAVE MIXING IN A NONLINEAR MEDIUM 1549

Notice that there are three gratings, and therefore three-
grating decay time constants ~2, ~4, and ~6 involved. This
is very different from the two-wave mixing model con-
sidered by Vinetskii et al. , and the two-wave and three-
wave models by Eichler et al. , where only one grating
and therefore one decay time constant ~2 is used.

III. GENERAL DISCUSSION

Equations (18)—(22) show explicitly the coupling of
the four laser-beam intensities and phases. They reflect
both transient two wau-e mixing (TTWM) terms and tran
sient multiwave mixing (TMWM) terms. If we focus our
attention on the right-hand side of the equation for the
probe-beam intensity I „for example, these terms can
be clearly identified. The TTWM terms involve only the
probe beam (I, ) and one other beam (e.g., terms con-
taining QI, QI, I1, or QI 3+I 1I 3 QI3+I3I1,
etc.). On the other hand, the TMWM terms involve at
least two other beams besides the probe beam (e.g. ,

QI1+I1I3, "v/I, QI 3I „QI3+I 3I1, etc.).
For the purpose of the present discussion, we will

denote a typical TTWM term by T2. From the first line
of the right-hand side of Eq. (19) an example of T3 is

T (I)=+I,f 'e" ' "&I,I,
0

X sin{ [p 1(t') —pi(t')]

—[p,(t) —
i)),(t)])dt' .

QT, =+I„,
QI, =+I,0,
&I,=0=+I, .

(31)

(32)

(33)

From Eqs. (18)—(25), and these initial conditions, we get,
at z=0,

[iii3(t, 0) —P, ( t, O) ]+[P,( t ', 0)—P, ( t ', 0)]=—, (34)

[P 3(t, 0)—P, (t, O)]+[P,(t', 0)—P, (t', 0)]=—,
2

'

(35)

for all t'.
If the two incident beams are coherent,

p, (t', 0)—p, (t', 0)=const=p 1(0,0)—pi(0, 0), which we
can conveniently set equal to zero. We therefore have

and/or growth of the beams involved depend, to a large
extent, on the phases and phase shifts, and the intensities
of all the beams (incident and diffracted). They in turn
depend on the initial conditions.

To study the dynamics of these processes, we will con-
sider step-function input lasers, i.e.,

0, t&0
10, —10( ) I t &() (30)

10, —10~

The initial conditions for the amplitude of the beams are
therefore

On the other hand, transient multiwave mixing terms
may be denoted as T, . An example is

T (I)=+I,f e 'QI, I3
0

1(0,0)=$,(0,0) =0,
$3(t, O) = —((,(t, O) =~/2,

,(t, O) = —P, (t, O) =m. /2 .

(36)

(37)

(38)
X sin{ [$1(t') $3(t')]—

-[P 1(t)—P(t)]jdt' . (27)

From Eqs. (18)—(25), we can also prove that

aI = —aI,
az

(39)

Similar terms may be identified in the phase equations.
The terms corresponding to (26) and (27) above are, re-
spectively,

where I=I,+I,+I3+I 3, i.e.,

P I =P 10+ -10 (40)

T2(I) =
1/2

1 f t (t' —t )/r& ~ I , I1
0

Xcos{[P,(t') —Pi(t')]

T (P)=
' 1/2

1

—[0-1(t)—01(t)] I

«'
(28)

f ( t ' t 1/~z+—
0

Xcos{[p, (t') —$3(t')]

[4-i(t) —01(t )]]«'

(29)

It is obvious that the contribution from these transient
two-wave and multiwave mixing terms to the generation

where I0 is the total input intensity at z =0.
These explicit classifications of intensity and phase in

accordance with their two-wave or many-wave transient
mixing effects are important for comparison between the
transient case under consideration here and the station-
ary case considered in previous studies. In the stationary
case, i.e., t »r, all the phases will be stationary (i.e.,
Bp/Bt=0). An examination of all the two waue mixing-
terms show that in this regime, they contribute negligibly
to the variation in intensities because of the sine factor
[c.f., Eq. (26) for T2(I)], although they still contribute to
variations in the phase because of the cosine factor [c.f.
Eq. (28) for T2($)]. On the other hand, because the mul-
tiwave mixing effect involves more than two beams at a
time, and therefore two different phase shifts [c.f. Eq. (27)
for T (I) and Eq. (29) for T (P)] in general, their contri-
butions to the intensity and phase variations persist even
for a large time.
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Because of the presence of both two-wave and mul-

tiwave mixing effects, and the strong coupling of all the
phases, in general, there wi11 be strong interference effects
between these processes. These interference effects will

be strongly governed by the presence or absence of the
diffracted beams, which in turn depend largely on the
phase mismatches K+3d, where d is the interaction
length.

IV. NUMERICAL RESULTS

In this section, we present the solutions of Eqs.
(18)—(25) for some experimentally accessible quantities,
using some exemplary set of values for the interaction
length d, the intensities, wave mixing angles, etc. From
the previous discussions on Eqs. (18)—(25) for the cou-
pled wave equations, Eq. (11) for b,e, and Eq. (12) for r,
we note that these multiwave mixing processes depend on
a few fundamental quantities which are identified as fol-
lows. If we concern ourselves with diffusive types of non-
linearities, i.e., ignore ~0 in Eq. (12), then the fundamental
unit of time is r2 From . Eq. (12) for be, we note that
another fundamental parameter is the quantity rzPIO,
which gives a measure of the dielectric constant charge
induced by the total intensity. Apart from these two pa-
rameters, the other obvious parameters are the wave mix-
ing angle 8 [which affects r2 through k„dependence on 0
in Eq. (11)], the interaction length d, and the absorption
constant a. Equations (18)—(25) are solved by temporal
integration in units of t lr6, since r6 is the shortest time
scale. The choice of values for rzPIO is governed by ex-
perimental data in studies where transient wave mixing
induced probe gain has been observed. Typically, rBIO
should be on the order of 10 or 10 (i.e., the refractive
index change has to be on this order), for d =0. 1 —0.5

mm or so, for a sizeable probe gain to occur. We will re-
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FIG. 3. Dependence of the diffracted beam I3 as a function
of the normalized time T=t/~6(9) for 8=0.01 (uppermost
curve), 0.015, 0.02, 0.025, and 0.03 rad (lowest curve) for the
same parameters as in Fig. 2.

turn to this more experimental oriented discussion in Sec.
V. Using these typical "practical" values for r6, P, d, Io,
etc. , the solution of the coupled equations (18)—(25) yield
several new interesting observations.

Figure 2 shows plots of the normalized time ( T= t lr6)
dependence of transmitted probe-beam intensity I,(d)
for several values of the wave mixing angles 6). [Note
that v2, 'T4, and v6 are all functions of the wave mixing an-

gle, c.f. Eq. (12)]. The general trends of the probe-beam
intensity as a function of the normalized time (tlr6) are
similar to those of the diffracted beams I3 and I 3 shown
in Figs. 3 and 4, respectively. For 8=0.01, there is an in-
itial "bump" followed by a gradual approach to a
steady-state value of 12.5 (not shown in Fig. 2, but can be
seen in Fig. 5). The highest gain [defined as
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FIG. 2. Dependence of the transmitted probe beam as a func-
tion of the normalized time T= t/w6(8) for various wave mixing
angles in radians ( 8=0.01,0.015,0.02,0.025, 0.03,0.05,0.07).
The uppermost curve corresponds to 8=0.01. The other pa-
rameter used is PI = 10 sec ', I,(0)/I, {0)=0.01, d =0.5

mm, o.=1 cm '. As a reference, ~6 for 8=0.01 is 3X10 ' sec.

FIG. 4. Dependence of the diffracted beam I 3 as a function
of the normalized time T=t/~6(8). There are nonzero contri-
butions only for 8=0.01 {uppermost curve), 0.015, 0.02, and
0.025 rad (lowest curve), for the same parameters used in Fig. 2.
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FIG. 9. Dependence of the maximal multiwave mixing medi-
ated probe-beam gain on the wave mixing angle (in radians).

time-dependent phases P„P „P3, and P 3 for /=0. 02,
respectively. Starting from P& =P,=0, one notes that at
t/ r=s10, P &

—$, =70'(Fig. 7, for 8=0.01).
A common feature of Figs. 2-4, and 6 is the drastic

drop in the multiwave mixing effects (gain, diffraction,
etc.) as a function of the wave mixing angle. This is
exemplified by Fig. 9, which plots the gain of I, as a
function of angle 8. The gain drops from a high of about
25 at 8=0.01 to unity (i.e., no gain) at 8=0.03. There
are ttoo distinct reasons for this dependence on 8. One is
the more obvious phase-mismatch factor EC3 involved in

the four-wave and multiwave mixing effect. The phase
mismatch in distance d is given by Esd =k 8 d. Using
A, =1.06 imam, d=0. 5 mm, k3d =0. lm for 8=0.01 and

k3d =m. for 8=0.03. Clearly, the diffracted beams will be

quenched for 8)0.03, contributing therefore negligibly
to the gain of I

The drop in the two-wave mixing gain (plotted in Fig.
10) is basically due to the diffusive nature of the nonlinear
process [c.f. Eq. (11)] and the consequent dependence of
the relaxation time ~ on the wave mixing angle
r& 'aD„k„1 =D„l E sin (8/2) [ignoring the D„(n/d ), .
as we have done throughout all the numerical calcula-

I

' 1/2

tions], i.e., r&-sin (8/2). Consider now the two-wave

mixing term in the I, Eq. (19), we have

8 I
-PkoIt I e 'QI

z 0

X sin{[/ &(t') —P&(t')]

In our numerical calculation, we use the normalized time
T=t/r2 (there is no rs in two-wave mixing), Eq. (41)
above becomes

8 I
Z

0

X sin{[/, (T') —Pt(T')]

(42)

The corresponding equations for P~ and P &
are

=PkorIoe '(1 —e )+Pkor
1

f eT r+I, I,cos{[P,(T') —P, (T')]—[P,(T)—$,(T)]}dt', (43)

I)
=PkorIoe (1 —e )+Pkor

1/2

I e QI, I,c so[{P,(T') —P,(T')]—[P,(T)—$,(T)]}dt' . (44)
0

The magnitude of QI, and P's are very sensitively
dependent on the coefficient prIO appearing in these in-

tegrals, i.e., I
&
(z) is very sensitively dependent on

p BIO. Since r drops off rapidly with increasing 8, the
gain in the intensity of the transmitted I

&
also decreases

rapidly with increasing value of 0 for a fixed input inten-
sity Io. In Ref. 10, an approximate solution of Eqs.
(41)—(44) above are given, valid for small gain

AI, /I ] & 1. The approximate perturbative solution
shows that EI, /I, is proportional to (prIo), similar
to what we deduced above. Obviously a quantitative
evaluation of I's and P's must also take into account the
variation of P and I inside the integral and their subse-
quent effect on the integral itself. This can only be done
numerically, as we have in getting the result plotted in
Figs. 2—4, 6, 9, and 10. The results confirm our observa-
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FIG. 10. Dependence of the maximal probe-beam gain in

transient two-wave mixing on the wave mixing angle.

tion that the two-wave mixing effect is very sensitive to 7,
or more appropriately rI3IO, and the wave mxing angles,
as are the four-wave and multiwave mixing effects.

V. FURTHER REMARKS AND COMMENTS
ON EXPERIMENTS

There have been numerous experimental studies of
transient wave mixing effects in various materials in the
past. Observations of large gain in thin nonlinear media
where diffractions are present are made only recent-
ly. ' '" The motivation for carrying out the preceding
analysis lies in our need for a quantitative theory that in-
cludes effects due to these participating diffracted beams,
and that allows one to see explicitly the role played by
various parameters such as laser intensities, intensity ra-
tio, wave mixing angle, thickness, nonlinear coeScient,
hand the various time scales. Using the preceding theory,
one can quantitatively analyze the recently observed
effects in semiconductor and liquid crystals, which, re-
spectively, involve a laser of a widely varying time scale
(picosecond and millisecond) and relaxation dynamics.
In the case of the silicon experiment by Eichler et al. ,
the observation of large wave mixing gain even at a rela-
tively large angle (8 up to 18 ) is simply due to the in-
creased intensity of the picosecond laser used [I,(0) is
100 mJ/cm in 50 ps] and the matching of the short laser
pulse to the grating diffusion time constant of large an-
gles.

The increased input pump beam intensity and its short
duration have two important effects. One is the realiza-
tion of a large optically induced dielectric constant
change in a time (laser pulse width) comparable to the
grating diffusion time. The other is the accompanying
large (intensity-dependent) phase modulation effect which
dominates over the phase mismatch (which depends on
the wave mixing angle) experienced by the diffracted
beam, as we will presently discuss.

In the experiment by Eichler et a1., the value of
P=( 2naN, z/hv) —is —0373 cm J ', for N,

20 ——
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FIG. 11~ Theoretical curve for the dependence of the probe-
beam gain on the wave mixing angle in the transient wave mix-

ing experiment by Eichler et al. (Ref. 5) on silicon with pi-
cosecond laser. Dots are experimental points deduced from Fig.
1 of Ref. 5. Long-dashed line is the theoretical curve obtained
using a two-wave mixing model.

-10 ' cm, and a=10 cm ', and h v=188' 10 ' J at
A. =1.06 pm. For a wave mixing angle of 10', for exam-
ple, r6 is on the order of 79 ps (r2 of 700 ps). This gives a
value for 7.613I of 5.5X10, which, in accordance with
our preceding analysis, will produce large probe beam
amplification effects. Such effects were reported by
Eichler et al. "and our recent study. '

At other angles of wave mixing, the associated grating
diffusion time contants are matched to a better or lesser
degree with the laser pulse duration, contributing to the
angular variation in the observed gain. Using the experi-
mental parameters mentioned above, and other experi-
mental parameters [d =0.4 mm, I&(0)/I

&
(0)= 100,

a=10 cm ', an intensity-dependent beam loss a=19
cm ' deduced from Ref. 5(b)], we are able to obtain a
theoretical fit of the experimental curve [Fig. 1 of Ref.
5(a)] for the angular dependence of the probe gain' (cf.
Fig. 11). It is important to note that even for large angles()3' where the phase mismatch k3d is greater than m),
where the side diffraction is usually thought to be
quenched, the diffractions (especially I3) nevertheless ac-
tually play a substantial role in providing gain to the
probe beam via the multiwave mixing effect. This may be
seen in the plot [cf. Figs. 12(a) and 12(b)] of the z depen-
dence of I3 for the same set of parameters used in getting
Fig. 11, for 8 ranging from 4.01' to 13.90'. As a result of
both phase mismatches [from k3 on the right-hand side
of (24)] and comparable or even larger phase modulation
effects [other terms on the right-hand side (24)], the
diffraction can be of substantial magnitude within the
nonlinear medium. This, together with the increased
matching of the laser pulse with the grating diffusion
time constant, all contribute to large probe-beam gain
effect even at large angles. For these angles, if one had
used purely two-wave mixing picture (i.e., throw away
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FIG. 12. Calculated dependence of the magnitude of the diffracted beam intensity I3 on the interaction distance z, using the same
set of experimental parameters as Fig. 11, for various wave mixing angles: (a) 4.01, 4.30', 4.58', 4.87', 5. 16', 5.44', 5.73', 6.02', 6.30';
(b) 6.88', 7.45', 8.31', 9. 17', 10.31', 11.46', 13.98'. Note that the magnitude of the diffracted beam inside the nonlinear medium could
reach a value far greater than the value at the exit plane (at z =0.4 mm) as a result of phase modulations and energy transfer among
the beams.

I3,I,), the theoretical results will deviate (in magnitude
and form of dependence) far from the experimental obser-
vations (c.f. Fig. 11, dotted line). A multiwave picture,
accounting for not only these diffractions, but also the
inevitable phase shifts and modulation effects, is a neces-
sity.

Using the parameters pertinent to liquid crystals, we
can also explain recently observed large probe-beam
amplification effects involving millisecond CO2 laser
pulses and the thermal nonlinearity. In the experiments
performed by Khoo et al. , and similarly by Sanchez,
Kayour, and Huignard, the beam ratio used is about
100:1. The total change in dielectric constant Ae induced
by the laser near the phase-transition temperature T, (for
T T, =40' to T—= T, ) estimated to be on the order of
Ae=2n b n -2X 1.5 X0.05=0. 15. The dielectric con-

stant grating amplitude he& is therefore on the order of
Act -(1/100)he-1. 5 X 10, i.e., rsPI = 10 . Al-
though this value for rsPI is smaller than in the silicon
experiment, the smaller crossing angle used and the rela-
tively longer pulse (40 ms compared to the grating decay
time vs=3 ms) may explain why an equally large probe
amplification effect (gain =20) was observed. Detailed
measurement of these amplification effects in liquid crys-
tals using CO2 laser pulses are currently underway and a
quantitative comparison between the theory and experi-
ments wi11 be presented in a future publication.
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