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We have calculated solutions of the Floquet equations for the photodetachment of an electron
bound in a one-dimensional Gaussian potential, by using a discrete basis set that includes continu-
um waves satisfying appropriate boundary conditions. These different solutions correspond to dom-
inant poles or to shadow poles of the scattering matrix; they originate from bound-state solutions in
the zero-field limit. We show that one of the “extra” resonances found in a previous complex-
coordinate calculation [J. N. Bardsley, A. Szoke, and M. J. Comella, J. Phys. B 21, 3899 (1988)] can
be traced to a shadow pole of one of the bound states of the zero-field system. This example pro-
vides further evidence that shadow poles may play an unforeseen and possibly important role in

multiphoton processes.

I. INTRODUCTION

A bound state or a resonance of a system is represented
by a pole of the scattering matrix. As a function of the
energy, the scattering matrix is defined on a Riemann
surface consisting of 2% sheets, where N is the number of
channels. In its physically realizable bound states, the
system has a (negative) real energy on a particular sheet,
the “physical” sheet; the real axis on this sheet is called
the “physical” energy axis. A pole of the scattering ma-
trix has an observable effect only if it lies close to or on
the physical energy axis; we call such poles the “dom-
inant” poles. It has been known for a long time, in the
context of elementary particle physics,! nuclear physics,?
and atomic physics,’ that each dominant pole is accom-
panied by a family of “shadow” poles lying on distant
“unphysical” sheets. That shadow poles may play an im-
portant role in multiphoton processes was apparently first
considered by Ostrovskii;* the subject was recently dis-
cussed at length by Potvliege and Shakeshaft.’

The photodetachment of an electron by a purely mono-
chromatic wave can be reduced to a time-independent
problem by making the Floquet ansatz. In the presence
of the field, the wave function of the electron is asymptot-
ically a superposition of infinitely many outgoing or ingo-
ing waves, each of them being associated with a specific
channel, i.e., with a specific number of absorbed or emit-
ted photons. The ‘“dominant” poles correspond to the
usual wave functions for photodetachment: the quasien-
ergy is complex, with a negative imaginary part propor-
tional to the decay rate. The wave functions associated
with the closed channels decrease exponentially at large
distances, while those associated with the open channels
are outgoing and for large distances explode exponential-
ly (like the “Gamow-Siegert waves” for one-channel reso-
nances). In other words, if E,, and k, =(2E,,)"/? are,
respectively, the energy and the wave number of the elec-
tron in the Mth channel, its wave function is asymptoti-
cally exp(ikyx), for x >0, in the case of a short-range
one-dimensional binding potential. With Im(E,,) <O, the
branch of the square-root function is such that
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Im(ky ) >0 [i.e., m/4<arg(k, ) <3m/4] if Re(E,;)<0,
or Im(k,,) <0 [i.e., —7/4<arg(k, )<0] if Re(E,;)>0.
However, solutions to the Schrodinger equation obeying
other boundary conditions [Im(k,,) <O for at least one
closed channel M, or Im(k, )>0 for at least one open
channel, when Im(E,,;) <0] might also exist: these corre-
spond to the “shadow” poles of the scattering matrix.

Frequently, shadow poles have no physical relevance.
However, in multiphoton processes, a pulsed laser has an
intensity profile, and as the intensity is varied continuous-
ly all of the poles move. For example, let us take the case
of a dominant pole passing downwards through the Mth
photodetachment threshold as the intensity increases:
the Mth channel becomes closed as the threshold is
passed (that is, the minimum number of photons required
for ionization becomes M + 1), but the wave number k,,
does not jump from Im(k,,) <0 to Im(k,,)>0; instead,
we have arg(k,,) < —m/4 immediately after the threshold
is passed, and the pole becomes a shadow pole. Most of
the shadow poles tend to follow (on different sheets) the
path of the dominant pole. When the dominant pole
passes a multiphoton channel threshold, it moves further
away from the physical energy axis, while one of its sha-
dow poles usually moves closer to this axis and thus takes
over the role of dominant pole.’ It might also happen—
and we see this below—that a shadow pole moves quite
differently from the dominant pole, and independently
becomes a dominant pole, thereby giving rise to an addi-
tional observable resonance.

In this work we calculate some resonance poles for an
electron moving in a one-dimensional model potential in
the presence of an intense monochromatic field. The
same problem was recently investigated by Bardsley,
Szdke, and Comella.® They found “extra’ quasienergy ei-
genvalues at certain intensities, which they attributed to
the appearance of new bound states supported by the po-
tential at large intensity, as discussed by Bhatt, Piraux,
and Burnett.” However, these extra dominant poles most
probably originate as shadow poles that accompany the
zero-field bound state or resonance poles. We show that
this is certainly the case for at least one of the poles in the
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present example. Bardsley, Szoke, and Comella® used a
complex-coordinate rotation method for calculating the
quasienergies. However, in most cases, one must use an-
gles of rotation very close to 0 or much larger than 7/4
for observing shadow poles with this method [because
usually |Re(Ey )| >>|Im(E,,)| for the different channels
M), and therefore in practice it is very difficult or even
impossible to observe these poles using the complex-
coordinate rotation method. In order to find the shadow
poles as well as the dominant ones, we used a basis set
method in which the boundary conditions are imposed
explicitly, by including in the set a basis function that
behaves asymptotically like exp(ikyx), x >0, for each
channel M. The wave numbers k,, are varied until ob-
taining self-consistency with the resulting quasienergy.
This method is an extension to the multiphoton detach-
ment case of a method introduced by Bardsley and Junk-
er® for studying resonances in field-free atomic systems.
We note that it is often easier to obtain resonance eigen-
values corresponding to dominant poles (when the sha-
dow poles are not sought) by expanding the wave func-
tions on a suitable set of complex basis functions>*!° or
by using the complex-coordinate rotation approach (i.e.,
by imposing the boundary conditions implicitly). Our
method of calculation is described in Sec. II of this paper
(we refer the reader to the paper by Isaacson, McCurdy,
and Miller!! for more details), while our results are re-
ported in Sec. III.

II. METHOD

We consider the case of an electron initially bound by a
one-dimensional short-range potential W(x), interacting
with a monochromatic spatially independent laser field
described by the vector potential A ()= Aysin(wt). One
can seek solutions to the time-dependent Schrodinger
equation (we use atomic units throughout)

2w n=|-L - L g s we v )
ot ) c dx
by making the Floquet ansatz:
\I’(X = lélz e—lhwtdj (2)

The harmonic components 1y (x)
coupled equations

satisfy the system of

2
6+Nw+id——w

) dx IbN(x

:V+1/}JV*1(X)+V_1//N+1(X) N (3)

where the operators V', and V' _ are defined by the equa-
tion
i d
—A(t)——=V_e
¢ dx *
We are interested in solutions that are regular at the ori-
gin, and behave at large distances, outside the range of
Wi(x), as

—‘iwl+ V__eiwt . (4)
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Jexplikyx), x>>0 (5)

with
ky=[26+Mw)]"?*. (6)

The ranges of photon indices N and M are the same in
Egs. (3) and (5). As mentioned in the Introduction, the
choice of the branch of the square-root function in Eq. (6)
for the various k,, determines whether the solution corre-
sponds to a dominant pole or to a shadow pole of the
scattering matrix. We take as our one-dimensional po-
tential and field the same as in Ref. 6; the potential is
Gaussian:

W(x)=—0.63exp(—x2/2.65%), —w<x<+ow . (7)

This potential supports three bound states, the ground
state [denoted by (0)] and two excited states [(1) and (2)],
the second of which lies extremely close to the
continuum threshold (E,=—0.4451, E,=—0.1400,
E,=—0.00014). The field has an angular frequency
©=0.0925, its intensity I being variable. We expand
each harmonic component on a basis set of real square-
integrable functions, ¢,(x), which can represent the
short-range part of the wave function, within the range of
the potential, supplemented by a set of continuum func-
tions b(k,;x) which have the appropriate asymptotic
form. More explicitly, we write

U ()= cnndn(X)+ S dyagb(kpix) . (8)
n M

We took the ¢, to be harmonic-oscillator eigenfunctions,
6, (x)=N,H,(Ax)e *x*/2 9)

where A is real and positive, H, are the Hermite polyno-
mials, and N, a normalization constant. (Only functions
¢,, of the appropriate parity are included in the expansion

for each ¢¥5.) The continuum functions b are, for x >0
blky;x)= "O(x) , (10
with
O(x)=exp[—1/(e**—1)*] . (11)

O(x) is a cutoff function that is zero for x —0, small
within the range of the potential (where the set of the ¢,
functions is “complete”), and unity outside the range of
the potential. For x <0, b(ky;x)==xb(ky;—x), de-
pending on the parity of the ¥y(x). The cutoff function
provides a smooth connection at x =0.

The Schrodinger equation (3) is transformed into a ma-
trix eigenvalue equation by projecting it onto the basis
functions, without complex conjugation. This operation
gives rise to matrix elements involving a product of two b
functions, b(ky;x )b(ky;x ), such as

[ 7 dx blhkysx (E+Nwb(ky;x) (12)
that do not formally converge if Im(k,,-+k,,) =0. They

can be defined as the analytic continuation of their alge-
braic expression for Im(k,.+ky)>0 to the region
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Im(k,.+ky ) <0 (see, for example, Ref. 11). It is there-
fore useful to choose an expression such as (11) for the
cutoff function, since ©(x) can in this case be expanded
in a series of powers of exp(—x /a), which converges
rapidly at large distances.

The interesting eigenvalues and eigenvectors are calcu-
lated by the inverse iteration method. Finding the Flo-
quet eigenvalues now comprises finding the correct k;, of
Eq. (5), such that the output from the inverse iteration
process, &, is equal to k3 /2. One can thus try to mini-
mize the quantity |6 —k2 /2|2, but problems arise when
the numerical calculation converges to a local minimum
of |6 —k3 /2|* which is not a true zero; it is often neces-
sary to have the input wave numbers k,, very close to
their correct values for achieving convergence. Good
starting values were easy to choose in our case, from the
quasienergies reported by Bardsley, Szoke, and Comella®
for intensities at which they correspond to dominant
poles; we have no difficulty reproducing their results. We
followed the trajectories of these eigenvalues towards
their zero-field limits by gradually changing the strength
of the field.

III. RESULTS

We present our results in Figs. 1 and 2 in a format
similar to that of Fig. 11 of Ref. 6, to allow for a direct
comparison. Although we performed our calculations in
the velocity (p- A) gauge with the A? term removed, we
added the ponderomotive energy to the Floquet energies.
Thus the threshold appears to shift upwards (see the bold
lines in Figs. 1 and 2) linearly with intensity. Also, as the
Floquet energies are defined only modulo w, we can
transpose the real parts of all Floquet energies into the in-
terval from O to w(=0.0925). We note, though, that the
parity of the state shifted by nw is P, =Py(—1)", where
P, is the parity of the field-free bound state.

0.04
3 0.03}
8 /]
€ 0.02
ij— 0.01F P ~~7
AR N R N T N MO A NS W74 B
0003 5 0 s
Intensity (10" w/cm?)

FIG. 1. Real part of the Floquet energy of three poles (form-
ing state A4) connected to the ground state, as a function of field
intensity. The energies are shifted into the interval
0<Re(E) Zw, and the ponderomotive energy has been added; a
threshold thus appears as a straight bold line with positive
slope. As the curves stay within the interval 0 < Re(E) <0.04,
the picture has been drawn only for this interval. The three
curves are indistinguishable up to an intensity of 6X101
W/cm?, when the pole that was dominant at small intensities
(which now is a shadow pole; its curve is denoted by — — —)
starts to move away from the other two poles. These other two
poles finally separate, but only slightly, after they cross the
second threshold. Here the shadow pole (which was dominant
at intermediate intensities) is denoted by - - - - .
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FIG. 2. Real part of the Floquet energy of three poles (form-
ing states B and C) connected to the first excited state, as a func-
tion of field intensity. A bold line denotes a threshold. A dom-
inant pole is denoted by a solid line. The energies are drawn
modulo w(=0.0925), therefore a pole that disappears over the
top of the graph reappears from the bottom at the same intensi-
ty. One sees the interchange of roles (dominant vs shadow) of
the two poles forming state B around ;¢ =3X 10'* W/cm?.

The authors of Ref. 6 find five different states in their
calculations, denoted by A4 through E in their Fig. 11.
Two of these are continuously connected to the zero-field
eigenvalues of the lowest two bound states [ 4 —(0), and
B —(1)]. The other three states (C, D, and E) appear as
“additional Floquet states” for a certain intensity range.
We investigated the movement of the energies of these
states as a function of laser intensity, by following the tra-
jectories of the poles on their respective sheets on the en-
ergy Riemann surface.

Let us first look at state A (see Fig. 1): It crosses two
thresholds (downwards, at I, =2X10"® W/cm?, and at
I,c=12X10" W/cm?). At each of these crossings a sha-
dow pole exchanges its status with a dominant pole (see
also Fig. 3). Thus we have three poles to follow: the first
one is dominant for 0= <1I,., the second one will be
dominant for I, =<1 =<I,., and the third one for I above
I,-. We see that their real parts lie close together. Nev-
ertheless, there are certain differences, and the poles
(dominant and shadow) do not cross the threshold at ex-
actly the same intensity nor do they have similar imagi-
nary parts at threshold.

This fact is much more visible in Fig. 2; let us look at
state B: it crosses only one threshold (downwards, at
I,c~3X10" W/cm?), then turns around and moves
roughly parallel to the threshold. This state, therefore, is
formed by a dominant pole and a shadow pole, which ex-
change roles around I, and move rather differently for
larger intensities. In particular, we see in Fig. 2 that for 1
above 9X10!* W/cm? the pole that formed state B at
small intensities (i.e., that was dominant at zero field)
crosses the threshold upwards and thus again becomes a
dominant pole. This last additional pole was not report-
ed in Ref. 6; it would be seen only for relatively large ro-
tation angles of the complex-coordinate rotation.
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FIG. 3. Schematic sketch of the trajectories of some poles
connected to the ground state (the same poles as shown in Fig.
1) in the complex energy plane. For the sake of clarity, the
imaginary parts are not drawn to scale, thus the Im(E) axis has
no units. The various poles appear to be close to each other but
in fact are on different sheets of a multisheeted Riemann sur-
face. A dominant pole is drawn as a solid line; as it crosses a
threshold for N-photon detachment (indicated by the short vert-
ical lines, N=46,5) it becomes a shadow pole and is drawn as a
dashed line. The markers on the trajectories indicate the posi-
tion of the pole for a certain intensity (in units of 10> W/cm?):
O represents 0.0; O represents 4.0 (only in Fig. 4); A represents
13.0.

Now we follow the pole denoted as state C (still on Fig.
2) towards smaller intensities. It crosses the threshold
(downwards for decreasing intensity, that is upwards for
increasing intensity) at I,-=1X10" W/cm? and
changes from a dominant pole to a shadow pole, that
finally ends up at the energy (and correct parity) of the
first excited bound state (1) at 1=0. This means that
state C is just the appearance of one of the shadow poles
connected to state (1). This particular shadow pole hap-
pens to move in quite a different direction on the energy
surface than its two partner poles that form the state B
(Fig. 4), and therefore it becomes, for intensities
I, <I<I+=6X10" W/cm? a dominant pole at an
unexpected energy, in addition to the dominant pole
forming state B.'?

We also tried to follow the poles of states D and E to
intensities below which they become shadow poles, but
we could not find their zero-field limits; we were unable
to follow state E below I=6X10'* W/cm? (after its real
part showed two avoided crossings, and its imaginary
part became large and positive), while state D seemed to
acquire a large negative imaginary part of the energy for
I—0. Also, it was not possible to follow the poles origi-
nating from the second excited state (2) towards larger
field intensities, because their energy moved extremely
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FIG. 4. Schematic sketch of the trajectories of some poles
connected to the first excited state (the same poles as shown in
Fig. 2) in the complex energy plane. See Fig. 3. N=2,1,0 here.

close to zero.

Figures 3 and 4 show the trajectories in the complex
energy plane of the poles shown in Figs. 1 and 2 (not
quite to scale, for the sake of clarity; therefore the Im(E)
axis has not been given a scale). The field intensity is in-
dicated by markers on the curves. The trajectories trace
rather intricate paths; the curve of the pole forming the
first excited state at small I (in Fig. 4) stays on the same
sheet of the Riemann surface and intersects itself at
larger intensities. The same is true for the curve forming
state B at large I. The intersections of the different sha-
dow poles connected to the ground state (Fig. 3), in con-.
trast, are not true intersections, as these poles are on
different sheets of the Riemann surface. These poles, and
one of the poles forming state B, have positive imaginary
parts for some intensities, but only in regions where they
are shadow poles, and therefore not physically observ-
able. That shadow poles could move onto the upper half
plane has been observed before in the case of a zero-range
potential.*!3 The pole forming state A at large intensi-
ties, which is a shadow pole for I <I,, is allowed to and
indeed does pass above the threshold for five-photon de-
tachment. Therefore, at very small intensities, the posi-
tion of this pole is quite remote from the physical energy
axis. We see that the paths taken by poles on the mul-
tisheeted energy surface, as they move away from the
physical energy axis, can be rather complicated.
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