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Hyperradial adiabatic treatment of de, + t collisions at low energies
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Using the hyperradial adiabatic expansion method, dp+t collisions at thermal energies are stud-

ied in a two-state approximation. Analytic expressions for the lowest two hyperradial adiabatic po-
tentials and their nonadiabatic correction terms are derived to order 1/R for large values of hyper-
radius R.

I. INTRODUCTION pR =MdRd+pdrd =M, R, +p, r,

The hyperradial adiabatic expansion method' has been
applied to atomic three-body systems such as the doubly
excited states of H and He. For molecular systems,
it has an advantage over the conventional Born-
Oppenheimer (BO) representation, since it has no con-
stant spurious couplings. In fact, hyperradial calcula-
tions have given better results for energies of the HD+
ion' and (dtp)+ (Refs. 8 and 9) than the BO represen-
tation using the same number of expansion terms. The
hyperradial expansion is also expected to be useful for
collision processes. At present, however, there is no
practical application except for the simple e+H elastic
collision. '

The object of this paper is to examine the applicability
of the hyperradial method to the collision processes, us-
ing as an example the dp+t system at thermal energies.
This process is important in the muon-catalyzed-fusion
research. In Sec. II the method is summarized briefly.
Results are given in Sec. III. In Appendix A analytic
forms of the two lowest hyperradial adiabatic potentials
and their nonadiabatic correction terms are given explic-
itly to order 1/R for large values of hyperradius R.
These formulas will be useful for future applications.

II. FORMULATION

For a three-body system composed of a deuteron d, a
triton t, and a negative muon p, we define Jacobi coordi-
nates (Rd, rd) and (R„r, ) as shown in Fig. 1, and re-
duced masses as

where the arbitrary mass parameter p is chosen to be

1 1 1+
p m] md

In the following, we use the units fi=e =m =1 with

m mp

1

md +m]
(4)

The total Hamiltonian after separating the center-of-mass
motion is written by

R +h(Q;R) .
1 1 d g d

2p R' dR

The adiabatic Hamiltonian h(A;R ) contains R as a pa-
rameter. Five angular variables are represented by 0 col-
lectively.

Hyperradial adiabatic basis functions F (A;R ) and.
adiabatic potentials UJ(R ) are defined by eigenfunctions
and eigenvalues of h,

[h —U (R)]F (0;R )=0 .

For each total angular momentum (J,M ) and total parity
p, the total wave function is expanded as

' '=R Qy, (R )F (0 R ) .
J

1

Md

1

md+m„ m

1 1 1

M, m +m md

1 1 1
7

p] m mt
(lb)

where md, m„and m„are the masses of d, t, and p, re-
spectively. The hyperradius R is defined by FIG. 1. Jacobi coordinates (Rd, rd ) and (R„r,).
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and

(dP)is+t~(dP)is+t (Sa)

(dp)(s +t ~(tp))s +d (8b)

Substituting Eq. (7) into the Schrodinger equation, we ob-
tain a set of coupled equations for y (R ). However, as
has been discussed by Macek, "it is difficult to solve these
equations in general because of the long-range couplings.

In the following, we consider the collision system
dp+t at thermal energies and take into account only two
open channels,

tial separation between basis functions Fd(0;R) and

Ft(Q;R ). Considering the asymptotic form of the
effective potential (13) and the short-range nature of the
coupling terms, the radial wave functions satisfy the fol-
lowing boundary conditions as R ~~:

1 . Jm.
y,.(R)~5~ d sin K,R-

SC,
J 2

1/2

Pd P

In this two-state approximation, there appears no long-
range coupling. The radial functions g~(R) satisfy the
following coupled equations:

1 + Vd(R ) Eyq—(R )
2p dR2

Jm
Xexp i ER—

2

as Rj~ ~,

where EJ =+2p(E —
s~ &

). Since
' 1/2

R —+ R+0
p RJ

(16)

(17)

1
Wd, (R )+2P(R ) y, (R)=0,d

2p
(9a) the total wave function satisfies the physical boundary

conditions for R.~ ao,

1 d + V, (R) Ey, (R—)
2p dR2 '~'~const X ' sin kj Rj-

Rj k
Jm
2

W, d(R) —2P(R) yd(R)=0,1 d

2p
(9b) +f,' d'exp i k R, —

Vi(R) = U (R)+ 15

8pR
W) J(R),1

2p
(10)

P (R ) (Fq=d
Ff

WJ J (R ) = F) 2 FJ
dR

(12)

where E is the center-of-mass total energy, and subscripts
d and t represent the channel (8a) and (8b), respectively.
The effective potentials V~(R ) (j=d, t ) and the coupling
terms P(R ) and W, ,'(R ) are defined by

(19)

xR', 0(rj ) YJ M(R) ),
where R„'Jt'(r ) is the normalized radial function of a
muonic atom (jp), 1'&M(RJ) the spherical harmonics,

and k =+2MJ(E —sj &
) the asymptotic relative momen-

tum in channel j. We have used Eq. (A6) in deriving Eq.
(18). The integrated cross sections for processes (Sa) and
(8b) are given by

o', d =4m' g (2J+ 1)lf,d I

d j J=o

III. RESULTS AND DISCUSSION
where basis functions are normalized as ( F IF ) = 1.
The angular bracket represents integration over angular
variables Q.

As R ~ Oo, the effective potentials V, (R ) behave as

(13)V (R),+ +J J1 2pR2 R4
yd(R)=R (1+dI'/+ . ),
y, (R)=R'"(tI'Q+r,"Q'+ .

)

(20a)
where c, „ is the energy of the muonic atom (jp),

(20b)
Jp.

J~+ 2n
(14) For the second regular solution,

We have carried out numerical calculations for the
process (8) with J=0. Two regular solutions of the cou-
pled equation (9) are obtained by solving it starting out
with the following generalized power-series expansions
for small R; for the first regular solution,

and the coefficient P is given by

M 2p.
P = —— 1 — [J(J+1)+—,

' ]J
—

4 p2p3 3M2
J J

These formulas are derived in Appendix A. The coupling
terms vanish exponentially as R ~ 00 because of the spa-

y (R)=R (d' IIR+d','R InR+ . ),
y, (R)=R i (1+t OR+ )

(21a)

(21b)

The explicit form of Eqs. (20) and (21) are given in Ap-
pendix B. A linear combination of these two regular
solutions yields the radial functions which satisfy the
scattering boundary conditions (16).
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We have adopted the Runge-Kutta-Gill method to
solve Eq. (9) numerically. The adiabatic potentials V, (R )

and coupling terms P(R) and IV, ;(R ) are calculated nu-

merically in our previous paper for 0&R 25 by a vari-
ational method using spheroidal coordinates for angular
variables Q. Nuinerical results for VJ(R ) are well repro-
duced by the asymptotic form Eq. (13) for R ~ 20. There-
fore for R ~25 we use Eq. (13) for VJ(R ) and set P(R )

and Wt '(R ) equal to zero. It is confirmed that the use
of this simplification for R ~22. 5 does not change the
final results.

In Table I our results for the elastic (8a) and the @-
transfer (8b) processes at center-of-mass incident energies
E; =E—cd, =10 and 10 eV are compared with
those of perturbed stationary state (PSS) method' and of
the distorted atomic orbital (DAO) method. ' Both PSS
and DAO results are in the two-state approximation. In
the DAO method, basis functions for each channel j are
defined by eigenfunctions of the total Hamiltonian with
the relative Jacobi coordinate R fixed. Thus they satisfy
the exact boundary conditions for both channels and,
therefore, there appears no spurious coupling. In the PSS
method, ' the reduced mass of the adiabatic Hamiltonian
is defined as that of a dp atom. Therefore the dissocia-
tion energy of the incident channel is given correctly.

For the p-transfer process, the DAO results are in
good agreement with the variational calculations' and
with the experimental results' deduced from the muon-
catalyzed-fusion data. On the other hand, the PSS cross
sections are much smaller than the DAO cross sections.
This discrepancy is attributed to the poor description of
the final channel wave function in the PSS method. ' In
the present formalism, the basis functions satisfy the
correct boundary conditions as R ~~. However, there
exist long-range couplings of order 1/R with the states
neglected in our two-state approximation. Because of
these couplings, improvement over the PSS results is not
quite sufficient. For further improvement, more states
are necessary in the expansion.

For the elastic process, there are no experimental re-
sults to compare with. The present results agree very
well with the DAO results. The PSS results are also in
good agreement with these two, because the incident
channel wave function is not very bad for such low ener-
gies.

APPENDIX A

In this appendix, we present the expansion coefficients
as R ~ ao for the lowest two adiabatic potentials UJ(R )

and their diagonal nonadiabatic correction terms IV~ J(R )

to order 1/R . This expansion is a generalization of
Macek's work for two-electron atoms, and can be ap-
plied to three-body systems of arbitrary mass ratio.

We choose the five angular variables as Q=(a, r&, R&),
where

Pd
tana =

d

1/2
Td

Rd

Then, the adiabatic Hamiltonian h is written by

1

2pR

1 d2 (J—&)'
sina cosa+

sina cosa cos a

$2

sin a
Zd—4
l'd

Zf Zd Zf+
Rd,

(A2}

p
Pd

' 1/2

Ra (A3)

as an independent variable and expand it in inverse
powers of R,

' ll'2

h =h +— (Z) —1)Z, + h + .(p) 1 d 1

R p

(A4)

where I = i rz X V—„and Rz, is a distance between d and

t. Considering a general Coulomb three-body system, we
denote the charges of d and t by Zd and Z„respectively.
As R ~~, the adiabatic functions are concentrated in a
narrow region near a=0 which is the valley of the
Coulomb potential. This corresponds to dij, +t channel
because of the definition (Al}. Throughout this appen-
dix, we consider this channel only. Expression for the
other channel, tp+d, is given by interchanging the sub-
scripts d and t.

Following Macek, we rewrite the adiabatic Hamiltoni-
an h by using, instead of a,

TABLE I. Elastic and p-transfer cross sections (in units of
10 cm ) for dp+t collisions. E, is the center-of-mass in-
cident energy.

where

sina cosa
1 d 1

2pd dp 2pdp

Zd

E, (eV)

10

10

Method

Present
DAO'
PSS'

Present
DAO'
PSS'

'Reference 12.

Elastic (o.z z)

1.7
2.0
2.2

2.3
2.3
2.8

Transfer (cr, z)

9.1

16.0
3.9

2.9
4.9
1.2

Xsina cosa . (A5)

We consider an eigenvalue problem for the Hamiltoni-
an h' ' in the limit of large R. The boundary conditions
are taken at the point p=(~/2)+p/p&R~ao. Since
the operator h' ' is hydrogenic except for the factor
sina cosa and its inverse, the eigenvalue is given by Eq.
(14) and the normalized eigenfunction for a given
(J,M,p ) is given by
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1/4

(0;R)= pR
Pd sina cosa

The angular bracket is the integration over angular vari-
ables 0 with the volume element

X (cosO)2)( ~'(((0, 8,@), (A6)
dQ=sin acos adadrddRd . (A13)

where P( (cos8) is the normalized associated Legendre
polynomial and 0 is an angle between rd and Rd. The an-

gular part of the eigenfunction (A6) is defined by
Wigner's D function, ' D M((p, 8,4), as

' 1/2
~(J 3r p) O

1 2J+1
m 0& & 4

X [D M((p, 8,4)
+p( —1)J+ D M(p, 8,4)],

U(-"=(11 ~h'-2)~1t ) =

&0),o, o~h' '~4 ,(0, 0&

1/2
Md Z, (Zd —1)

2p pd Zd

9
4p

(A14)

(A15)

We define

The second- and the third-order coefficients of Ud(R ) are
given simply by

(A7)

where (8,4)=Rd and q& is azimuthal angle of rd around
Rd.

The asymptotic expansion of the adiabatic potentials
and basis functions are obtained by treating higher-order
terms of expansion (A4) as a perturbation. They are
given explicitly by

and

0),o, o~pcos~ @n, (,0

n%1 I &d, 1 d, n

Wn, o, o Wn, o, o~P~)4), 0,0

n/1 &d, n

to write the fourth-order coefficient as

(A16)

(A17)

h( —3)—

Z, MdP
(g+Zdg)cos8,

p
' 3/2

Md
Zf p

p

l2
h' '= (J—l) +——4—

2p 3 3a

(AS) (
p

1 1,0,0
36p a

'2
Z, Md

(g+Zdrj)
p

(A18)

2 l2
h' 4'= ' (J-—I)'+

2p2 15

Z, M p

p

7p
180a

5Pd
(g+Zdr) )cos8

6Md

+ ( g +Zd g )P3(COSH)

Pd d
X —(g —Zdg )P2(cos8)

d
(A9)

(A 10)

Here the quantity a is related to the dipole polarizability
of a hydrogenic atom' and is given by a= —

—,'pda . By
solving the inhomogeneous differential equation,

(h' —ed 1}1(=(3a /2 —p)p) () (), (A19)

the function ij'j is obtained in a closed form as
P=g) 0 0(3a —

P )Pda/2. Substituting these exPressions
for a and 1( into Eq. (A18) and carrying out integrations,
we obtain

where P„(cos6)) is the Legendre polynomial,
(=md!(md+m„), g=m„/(md+m„), and
a= 1/(Zdpd). For the lowest adiabatic state with nor-
mal parity p =(—1), the basis function and the adiabatic
potential are expanded as

9 Pda
U,' "=——,ta'(Z, M )'(g+Z, )'

p

——'[J(J+ 1)——'] I (A20)

Fd(Q R )=lP( 00(0 R )

1 + Pn)0 PnlO 410,0 +
2

~d, n

(Al 1)

~d, d(R) 3 ~d, d +
4 ~d, d

1 ( 2) 1 ( 4j

R ' R
(A21)

The diagonal nonadiabatic correction terms are obtained
by substituting Eq. (Al 1) into Eq. (12),

Ud(R) =Ed, +
1/2

Md Z, (Zd —1)

p R

(A12}

where

a'-"= d 2 3
d, d 41,0,0 3 41,0,0 (A22)



41 HYPERRADIAL ADIABATIC TREATMENT OF dp+ t. . . 149

( 4) 1 — 2d 2

Wdd = —
Q R Qpp

6pQ

R
6pg ' ' dR R 4p

(A23)

In this appendix, we have assumed implicitly the
three-body system composed of distinguishable particles.
Nevertheless, the results obtained can be applied to the
system containing two identical particles such as two-
electron atoms. In this case, the adiabatic potential and
the diagonal nonadiabatic correction term have the same
asymptotic expansions for both symmetric and antisym-
metric states. Further, the restriction to normal parity
p=( —1) is not necessary for present analysis. The ex-
pansion for the lowest two states with abnormal parity
p = —

(
—1 ) will be obtained similarly.

without Coulomb interactions, i.e., the first term of Eq.
(A2). By treating the Coulomb interaction as a perturba-
tion, we obtain the following expansions for effective po-
tentials, Eq. (10) and coupling terms, Eqs. (11) and (12),
where j,j' are either d or t;

p,(R)~, + +U, +U, R+
l (l + 1 ) Cj

ZpR 2pR

P(R) p' '+p"'R+

(B2)

(B3)

A, =l„+j. =—', ,

do, o=& to, o=0

(B5)

(B6)

(B4)

with ld =—', and I, =—', . Substituting these expansions and

Eq. (Bl) into the radial equation (9) and equating the
same terms of generalized powers, we obtain the follow-
ing two regular solutions. For the first regular solution,

APPENDIX B

In this appendix, we give the explicit form of the gen-
eralized power series (20) and (21). Following Klar, ' we
assume the expansions for the radial functions;

Cd
dt p= t) p= 7P

—3 (0)

t~ )=0,

(B7)

(Bg)
(nr2]

yd(R)=R ' g g d„R "(lnR)
n=o m=o

(n y2]

y, (R ) =R g g t„R"(lnR )
n=0 m =0

(B1a)

(Blb)

For the second regular solution,

A, =l, +1=—', ,

do, o =0 to,o= & (B10)
where (dpp, tpp)X(0, 0) and the square brackets
represent integer part. In order to determine A, , d„
and t„,we expand in powers of R the effective poten-
tials and the coupling terms in Eq. (9). As R~0, the
basis functions tend to hyperspherical harmonics' which
are the eigenfunctions of the adiabatic Hamiltonian h

Cr
d1,0 P,o

s (0)

—i
(

s C p'p' ——'C p'p' —w'p' —Sp'")

d2, o=o

(Bl 1)

(B12)
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