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Analytical and algebraic solutions of the rotating Morse oscillators: Matrix elements
of arbitrary powers of (r —r, ) exp[ —ma (r —r, )]
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Analytical expressions for the matrix elements ( v'J~(r —r, )'exp[ —ma (r r, )]—
~
uJ ) of a rotating

Morse oscillator are obtained, where I is a non-negative integer and m is any number. These matrix

elements are also obtained by a recursive method that obviates the need for using explicit eigenfunc-

tions. This procedure is based on the hypervirial theorem together with the second-quantization

formalism. The results permit the diagonal (v =v', J=J') and off-diagonal (vAv', J=J') matrix

elements of the operator (r —r, )' to be calculated.

I. INTRODUCTION

There are many problems of interest to chemists and
physicists, such as molecular-scattering transition proba-
bilities, oscillator strengths, or the study of the interac-
tion of coherent radiation with molecules, where it is
necessary to determine rapidly and accurately the matrix
elements of an operator of the form
(r —r, ) exp[ —ma (r —r, )].'

Because the most popular potential model in the
theory of diatomic molecules is the Morse potential,
many authors have given general expressions for the ma-
trix elements of different quantum-mechanical operators
of the Morse oscillator. ' However, the use of the re-
sults obtained in these papers to calculate the matrix ele-
ments of higher vibrational levels usually involves com-
putational difficulties due alternation of signs in the sum-
mations. "' Analytical expressions for the diagonal ma-
trix elements of (r r, )' (I =1,2—) and an algorithm for
computing the matrix elements of arbitrary powers of
(v'J~(r —r, )'~uJ) have been published recently. ' The
authors themselves note that the results of the algorithm
seem to be quite poor.

In this paper we evaluate matrix elements of the opera-
tor (r r, )'exp[ ma (r ——r—, )], where r, and a are the pa-
rameters of the Morse potential, I is a non-negative in-

teger, and m is any real number. We first obtain for these
elements analytical expressions which avoid the
difficulties due to the alternating sign. Second, using
operator algebra, we obtain recursion relations which fa-
cilitate these calculations especially when many matrix
elements are needed, because we only have to evaluate a
few matrix elements analytically to run the recursion re-
lations up to any value of l, m, and the vibrational and
rotational quantum numbers. Our expressions can be
used to calculate both diagonal and off-diagonal
rotational-vibrational matrix elements.

II. ROTATING MORSE OSCILLATOR

A. Eigenvalues and eigenvectors

If we write the Morse oscillator in the form

V(r)=D, I 1 —exp[ —a (r —r, )]]

where D, is the dissociation energy from the minimum in
the potential well and a is related to the force constant
and anharmonicity, the effective vibrational-rotational
potential keeping the Morse form will be

V,tt(r) =Pc+P,y +Pzy (2)

Qo=D, J(J+1)l(cr p ),
Qi = —2QO/p»

Q&
=Qo(3/p' —1/p),

(4)

where o =(2pD, )'~ /ai)'t, J is the rotational quantum
number, and the parameters p and f adopt different
values depending on whether we use the Pekeris or the
Elsum and Gordon models. ' '

Likewise the corresponding eigenfunctions can be writ-
ten as

where

J(z)=X Jexp( z l2)z" Lz „(z)— (5)

z =2cr Jexp[ —a (r r, )], —

b =2o.JJ —2v —1,
o J =(2pP2)' /(aA'),

X„J=[abv!/I(b+v+1)]'

and Ll, „(z)are the Laguerre polynomials given by'

with y=1 —exp[ —a(r r, )]. Th—e first term of Eq. (2)
represents the unperturbed Morse potential and the fol-
lowing three terms are the approximation to the centrifu-
gal component i)'t (J+1)/(2pr ). We define the
coefficients Po, P, , and P2 to be

Pc =Qo+ Q, (1—f)+Qp(1 f)—
P, =Q,f +2Q2f (1 f), —

P2=D, +Q2f

with
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U
( 1)~ v+b

Lb, (z)= g
or alternatively by the Rodrigues formula

Lb „(z)= —,exp(z)z [exp( —z)z' ] .
1 —b d v+b

dz'

The eigenvalues can be written as

a'
(q'x )„,=( —1)'a '(2o )

as' , ,
X(2 )

—s( m+s)

If we now use Eq. (7) for V, .J and Eq. (8) for +
obtain the equation

( i )
( —1)'N JNJ

U J, VJ
a (2o J) v!

(15)

O'J

F F,
, ~'+FO—0 4

(9)

I=0

1)i b +U

v t i)st

where u =u+ I/2, Fo=Po+P, +P2, F~ =P, +2Pz, and

F2 =P2.

B. Ladder Operators

We use the factorization method proposed by Infeld
and Hull in which we consider the Schrodinger equa-
tion as a class I, F-type factorization problem (a pro-
cedure described by Huffaker and Dwivedi ' for the un-

perturbed Morse oscillator) to obtain a set of raising and
lowering operators which act on the vibrational quantum
numbers v. These operators are given by

20 JJG+(u) = A„2oJbx ' — —4a 'ozx
6 —1 dl'

(10)

X(2o&) ' z' z'+ e 'dz,—s " id U+b —z

0 Zv

u ~ u' (16)

where we have replaced 2tr Jexp(ar, ) by infinity and
t =v —v'+i+s —1. This integral can be evaluated by
means of v integrations by parts. If m WO, after
differentiating, the results are

(
—1)'+'N„qN„J

(a'x ) v'J, vJ i+1(2 )mu ~

v'+b'
Xg, . (to+1 —u)

0 l.

X I (b +t o+1) Q(b, t ol), (17)

where tO=v —v'+i+m —1, and

G (v) =B„,2o Jbx — +4a crux
+JJ

1 1 d
b+1

1 if v=0
(t —u+1) = '

0 t(t —1) (t —u+1) if vAO, (18)

and the Q(b, to, l) function is defined for values of l ~ 4 by
the following equations:

where

b —1
A

V

b+1
v —1

b+2
b(b +u)(u +1)

b —2
b(b+v+1)u

1/2

1/2

(12)

v 1

Q(b, to, 1)= Ii(b +to+1)—ln(2o J )+ g
k=o to

Q(b, t„2)= [Q(b, t, , 1)]'+Q(b, t, , 1),

(13) Q(b, to, 3)=[Q(b, to, 1)] +3Q(b, to, 1)Q'(b, to, 1)

+Q"(b, to, I ),

(19)

withx =exp[ —a(r r, )]. —
The action of these operators on the vibrational wave

function is given by Eq. (14),

G+(u)%', =4„+,,
G (u —1)%„=%„

with G 4'0=0.

(14)

III. MATRIX ELEMENT CALCULATIONS

A. Analytical expressions for the

( u'J~(r r, )'exp[ ma (r r, )]~uJ ) ma—trix elem—ents—
Setting (r r, )'exp[ ma (r—r, )]=—q'x, we c—an

write the corresponding matrix elements as

Q(b, to, 4)=[Q(b, to, 1 )] +6[Q(b, to, 1)] Q(b, t ol)

+3[Q'(b, to, 1)] +4Q(b, to, 1)Q"(b, to, 1)

+Q'"(b, to, 1) .

Here O', 0", and 0"' denote the first, second, and third
derivatives. In general, we can write

v —1

Q'"'(b, t, , 1)=qi'"'(b +t, +1)+(—1)"n g
k=o (to

(20)

where 4""' is the polygamma function of order n. It
should be easy to obtain expressions for l values higher
than 4, but of course the complexity rises with the l
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value. However, we would emphasize that our expres-
sions reduce the rounding errors because we only have
one summation over an alternating sign. Also many of
these quantities only need to be evaluated once for the
different powers of q.

Maybe the most interesting case is when m =0 and
then we can evaluate the matrix elements (q'), J,z= (v'J~(r r—, )'~uJ ). Some recently published papers ob-
tained expressions for the diagonal ( u = u ', J =J' =0)
(Refs. 8, 17, and 18) and off-diagonal (uAv', J =J'=0)
(Refs. 8 and 17) cases. These expressions are somewhat

complicated and require a great deal of computation to
obtain only one matrix element. Our procedure permits
both diagonal and off-diagonal matrix elements to be de-
rived from less sophisticated expressions as well as being
useful for values of JAO. So, setting m =0 and calculat-
ing the successive derivatives, after solving the integral in
Eq. (16) and some algebraic manipulation we obtain
analytical expressions for the powers of q.

We present in the following expressions values corre-
sponding to the first power

(q )„z=a ln(2a J )
—+(b)+ g16+1

( 1)U
—u'+1

(q )„,„J=
a (v —u')(b +u —u') (21)

v!I (b +u +1)bb'
u'!r(b'+u +1)

' 1/2

U)U'.

For the other powers we use the following notation:

«=in(2cr I ),
' 1/2

u'!bb'I (b'+u'+1)
v!I (b+u+1) (22)

I (b+to+ I)
I (b'+i +1) '

The powers of the matrix elements of q' (1&i&4)
have therefore the following form:

U U

(q ),J=2a '«(q )„I+a «+4 (b—)+'0'(b) 2+(b) g—(b+i) '+2
i=1 kl

I —1 l v —i

+2b g [i(b+i)] ' g ——g —+0'(b+i)
i=1

(23)

t I 0 l v —i
(q )JJ=2a '«(q), ,JJ+a ( —1)" "P„„g. a; 2%'(c)+2 g ——2 p-

i=0 ' , k k, k
(24)

(q')„,= 3a '«(q ),z —3a «(q)„J

+a «3 —4 (b) —3%(b)%'(b) —+"(b)+3[%(b)+4'(b)] g ——6+(b)
k k&( 1kl

+6
kl k=1 k=1

i —1 l v —i
3b g [i(b+—i)] ' 4 (b +i)+4'(b+i)+2%'(b+i)

v —i l i —1
1

i —1v —i

+2 g —+2 g ——2gg-
k &(, kl k &(, kl k=ll=]kl

(25)

(q ),.J„J=3a '«(q ),.J,J —3a «' (q), J,J

U'

+a '( —1)' ' +' XI3„,, g a,.
gI

T

0
1 U

—i
3% (c)+34'(c)+6%(c)

k =1 k=1

V —i 0—6 g —+6
k &(=1 kl k &(=1

—6 g —g-
kl (26)
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(q ),j=4a 's. (q )„j—6a a (q )„j+4a ~ (q)„j
+a —z +4 (b)+6k' (b) kP'(b)+3[ kP'(b)] +4k'(b)%" (b)+qI'"(b) [—4k' (b)+ 12%'(b)kP"'(b)] g-

k

U U

+12[kP~(b)+qI'(b)] g —24—kP(b) g +24
, kl , klm

1

klmnk &(&m &n=1

+ g b[i(b+i)] ' 4k' (b+i)+12k'(b+i)kP'(b+i)+4k'"(b+i)
i=1

i —1 l v —i

+ [12k' (b + i)+ 12k''(b +i)]
k k 1k

+24k'( b +i )

+ X +X X — X X — X
k &(&, klm k=1(& 1klm k &(, , klm k &1 & 1klm

(q )'j j 4a K(q ) j j 6a lr(q )pj j
+4a 'lr'(q )„„+a( —1)" "P„,

to! 0
~

v' —i l
X g a, kp3(c)+12k'(c)kp'(c)+4%"(c)+12[k' (c}+kp'(c)]

i=o " , k k=, k

(27)

+24%(c)
0 v' —i

+24
I& =1 1=1 k &(& =1

0 ] v —I

+24 +-
1mk

'0 U' —i—24
, klm

—24
k &(&, klm

(28)

where v ) v in all the previous equations. For Eqs. (21) and (23)—(28) the summation vanishes when the index is
greater than the upper limit.

Using this procedure we could obtain expressions for higher powers of q. One sees, however, that the complexity of
the equations is rising with /. Our expressions avoid the rounding-error inconvenience, but require too much calcula-
tion to determine only some matrix elements. In conclusion, we feei that it is necessary to find another procedure
which would facilitate extension of the computation both with the order of the power of q and with the rotational and
vibrational quantum numbers, and then to use exclusively the analytical equations for lower powers of the operators.

B. Recursion relations for the & Jv~(r —r, )'exp[ —sa (r r, )]~vJ ) ma—trix elements

If we use the off-diagonal hypervirial theorem, with x as operator, we obtain

~ d
ka s (x'), q„q—2kas(x' , (E, J E,q)(x'), q, , o, J

P v'J vJ

where k =Pi/(2p, }.
Using the expressions for the ladder operators [Eqs. (10) and (11)],we can derive the following relationships:

(
, d ab, 2acrJo JJ +1 —1 s+1x' = — &x')„,„j+ &x' ),.„j+aoja„:,&x' )„., „dr UJ J 2 "' b+1

(29)

(30}

(
~ d

dP v'J vJ

ab, 2aa Jo.JJ +, , +,( x ) 'j j ( ) 'j j a j+ ( ) 'j + j (31)

which together with Eq. (29) permits us to obtain the recursion relation for x' operators:

4o JJb
(s +s+F)(x'+'), j„j+B„)[s(s—b)+F](x'+'), j, ,j+A, '[s(s+b)+F](x'+'), j„+,j=0,

b —1

where

(32)
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crj(E,.j E—,j)F=

Taking into consideration the identity

x'=( —a)'q'x',
l

(33)

the successive derivatives permit to obtain recursion relations for the matrix elements (q'x') and their lower powers.
So, differentiating I times, we obtain for I EN and s ER

4o.JJb I —1

( —a)'[(s —1)s+F](q'x')„j„j+(—a)' 'l(2s —1)(q' 'x'), j„j+2(—a)' g' k(q' x')„.j„j
b —1 k=1

+8, ] (
—a)'[(s —1)(s —1 b)+—F](q'x')„,j,

l —1

+( —a) 'l [2(s —1)—b](q 'x')„»„]j+2( a)] —2 g' k(q] 2x'), ,

k=1

+ ~. ( —
) [( —1)( —1+b)+F]( ' '&„„„+(— )' 'l [2( —1)+b](q ' ')„.„„,

l —1

+2( —a)' g' k(q' x'), ,j +]j =0.
k=1

(34)

The steps for computing with Eq. (34) are (a) setting
/=1 and knowing the matrix elements (x'), j„jand

( qx &pj Qj one obtains all matrix elements of the form
(qx'), j„jstep by step, using the recursion relation given
by Eq. (34); and (b) setting l =2 and knowing the matrix
elements (q x')QJQJ one obtains all matrix elements of
the form (q x'), j„j.Repeating the process, one can ob-
tain all the matrix elements for any value of I and s. The
initial matrix elements can be derived easily. For the
(x'), j„jmatrix elements, one only needs to know
( x )pj Qj and then to use Eq. (32) repeatedly with
s +1=$. If s is an integer power, we can evaluate all the
matrix elements without knowing any initial matrix ele-
ment. ' However, if s ER in general, from Eq. (16) (with
u =u'=0 and l =0), one obtains

In general, for the 1th power, we can write

1 —i
(q'x') = g . q(b]+s)a

li=0

X (q X )pjpj

where

4 (b+s)= Ii(b+s) —ln(2o j)

]II'(b+s)=, %'(b+s), with i )0.= d'
ds'

(38)

(39)

(,)
bI'(b +s)

(2cr j)'I (b +1)
(35)

&ojoj ( a) (x &ojoj

=a '[ln(2o j)—%(b +s)](x')pjpj
82(q' '&„„=(—.)-', ( ')„„

C)S

(36)

={—a)

X I a[in(2o j) ]II(b +s)](qx')Qj Qj—

0 '(b +s)(x )pjpj] (37)

and differentiating with respect to s the rest of the neces-
sary matrix elements ( qx )Qj Qj are

To compute with these equations one uses the asymp-
totic expansions for gamma and polygamma functions
where, due to the higher values of b for the fundamental
state of diatomic molecules, we only need a few terms in
those expansions.

When s =0, our recursion relation is even more
economical because ( x ), j,j=5,„., and we only need to
know initially the elements (q )Qjpj which we can derive
from Eq. (38) with s =0. In this case, we cannot obtain
the diagonal and off-diagonal matrix elements simultane-
ously by Eq. (34), because if we make v =v' then F =0,
and if we make v'=v+1 then F=b+1. These results
cancel the coefficients of the matrix elements and so we
cannot evaluate them. If we need to calculate the diago-
nal matrix elements, we must evaluate the off-diagonal
elements of the higher powers, and setting v =v'=0
(F =0) in Eq. (34), we can obtain the (q') „j„jin terms of
the (q'+')„j,j and (q' '), .j,j.
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IV. CONCLUDING REMARKS

We have derived analytical expressions for the matrix
elements of arbitrary powers of (r r, —)'exp[ —ma (r
—r, )] for the rotating Morse oscillator. Our procedure
permits us to obtain analytical expressions for the matrix
elements of the powers of the (r r—, ) operator, both di-

agonal and o6'-diagonal with respect to the vibrational
quantum number and diagonal only for the rotational
quantum number. These expressions have been obtained
easily, and their computational treatment is straightfor-
ward. The only difficulty is the algebraic complexity if it
is to be done by hand. This difficulty too is avoided if
algebraic processors are used.

Using the operator algebra we have generated a recur-
sion relation which makes it to obtain matrix elements of
the powers of the internuclear distance without any com-
putational difficulty (i.e., to calculate up to the 1th power,
we only need to evaluate initially I polygamma functions).
This expression [Eq. (34)] is very useful when we need
many matrix elements or higher powers of (r r, ). —

%e have checked the results obtained using the analyt-
ical equations and the recursion relation, and they coin-
cide. As to the results from numerical integration of the
Schrodinger equation with a rotating Morse oscillator
with the centrifugal term J(X+I)lr, we obtain the
same numbers up to U =5, J =5, and l =4 (if J =0 we
can raise the vibrational quantum number up to v =10
and I =10 with really good results), using the H2 mole-
cule as an example [our numerical results completely
agree with those obtained from Eqs. (4) and (5) of Ref.
17]. However, our procedure has the important advan-
tage that we can compute with our expressions on a hand
calculator. Moreover, they can be used in problems
which need analytical solutions for these matrix elements.
The next step in our research will be to introduce the
necessary modifications to the Pekeris potential to obtain
good values for the matrix elements with high values of
the rotational and vibrational quantum numbers, with the
goal of comparing them to the approximation-free nu-
merical integration of the rotating Morse oscillator.
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