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We present a schematic study of muon-pair production with capture of the negative muon
into the 1s;/2 ground state in relativistic heavy-ion collisions. The muon pairs are generated
by a time-dependent, screened electromagnetic field. Our numerical calculations are carried out
on a three-dimensional lattice with 20-30 mesh points in each direction, utilizing the B-spline
collocation method. Numerical convergence has been demonstrated using a Lorentz-boosted
screened Coulomb potential. For the system °” Au+°7 Au at collider energies of 0.2, 1.0 and 2.0
GeV/nucleon, we obtain probabilities for dimuon production with capture between 1.0 x 1072
and 7.0 x 1072 at grazing impact parameters. This may indicate that the electromagnetic
lepton-pair production is strongly nonperturbative.

I. INTRODUCTION

In ultrarelativistic heavy-ion collisions, electron- and
muon-pair production have been widely discussed as a
possible tool to help probe the formation and the de-
cay of the quark-gluon plasma phase of matter.!'? In the
conditions of such collisions, lepton-hadron final-state in-
teractions are usually small, and hence the leptons carry
direct information on the space-time region of creation.
The processes are also of fundamental interest in their
own right.

We have pointed out that the dominant background
to the hadronic (Drell-Yan) production of lepton pairs
will come from electromagnetic (em) sources and might
possibly mask the signals from the plasma phase.®*
The heavy ions in relativistic motion generate strong
time-dependent em fields with large Fourier components,
which give rise to sizable pair production. We want to
examine the latter process in detail. Several experimen-
tal groups at Brookhaven and at European Organization
for Nuclear Research (CERN) are concerned with design-
ing and building dilepton spectrometers with which to
probe the complex hadronic phases of relativistic heavy-
ion collisions. Detailed predictions of the electromagnetic
signals are important for these design studies.

The electromagnetic production of lepton pairs with
heavy ions is fundamentally different from the pro-
duction mechanism with protons or electrons because
the coupling constant is strongly enhanced. For very
heavy systems (Au+Au,U+U) the effective coupling con-
stant Za = 0.5; therefore, heavy-ion colliders provide
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a unique opportunity to study nonperturbative QED in
an entirely new energy regime. Currently, such heavy-
ion experiments are carried out at energies of about
10 MeV/nucleon.>® At these low energies, one studies
mainly the longitudinal part of the interaction, whereas
at relativistic energies the electromagnetic fields become
increasingly transverse.

As Gould” has pointed out, electromagnetically pro-
duced lepton pairs may also impose severe constraints on
the design of colliding beam accelerators such as the pro-
posed relativistic heavy-ion collider (RHIC) and the su-
perconducting supercollider (SSC). Pair production with
the capture of an electron is a leading mechanism for
destroying the intersecting collider beams, because it
changes the ionic charge state. Furthermore, if the cross
section for em pair production turns out to be large, it
will also have implications on the design of dilepton spec-
trometers which will search for decay products from the
quark-gluon plasma phase transition.

In the collision of two relativistic nuclei, the near-zone
electromagnetic fields become very large. Estimates in-
dicate that both muon- and tauon-pair production take
place with moderate probability.” These estimates are
based on perturbative treatments in which vacuum exci-
tations decay into pairs via timelike virtual photons. In
the case of real photons coupled to slowly varying fields,
the dimensionless parameter which sets the scale for pair
production is,3

weF
= (1)
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where w is the frequency of the photon field, m, is the
lepton mass, and F is the electric field. If the transverse
fields near heavy ions are sufficiently large and rapidly
varying, we expect to observe lepton-pair production cor-
responding to large values of k¥ from these fields.

The excitation of pairs from such fields has been stud-
ied with a one-dimensional model.® The nonperturbative
creation of lepton pairs from the vacuum was estimated
by solving the time-dependent Dirac equation on a one-
dimensional collocation lattice. The electric field was
taken as uniform throughout the spatial lattice; its time
dependence was described by a Gaussian. The size of the
lattice and the strength and duration of the em pulse were
fixed to approximately correspond to those in a grazing
relativistic collision of two heavy nuclei. Preliminary esti-
mates from these one-dimensional calculations suggested
that relativistic heavy-ion colliders might serve as facto-
ries for producing heavy leptons and could even be used
to search for possible new generations of leptons, with
rest energies up to 200 GeV.%:3

In this paper, we present for the first time results of
three-dimensional calculations of muon-pair production
with capture. We solve nonperturbatively the equations
for the evolution of the vacuum perturbed by strong,
time-dependent electromagnetic fields. The advent of su-
percomputer technology has stimulated the development
of new techniques for obtaining highly accurate numerical
solutions to problems in quantum field theory.!® These
approaches, developed for solving gauge field theories of
strongly interacting particles on lattices, are applicable
to problems in nuclear and atomic physics and, generally,
to the nonlinear dynamics of complex systems. For rel-
ativistic fermion fields on lattices, problems relating to
the doubling of the spectrum and gauge invariance play
a central role in the numerical formulation.

Over the past several years, we have pursued a dis-
tinct approach which preserves the spirit of lattice gauge
theory.®3:11:12 We eliminate the field operators from the
theory in favor of representations of quantum state vec-
tors on a space-time lattice of collocation points. Both
state vectors and fields are given by expansions in terms
of basis splines. Lattice variational equations are ob-
tained from a discrete action formulation, yielding a set
of coupled matrix equations for the state vectors. This
method is particularly well suited to solve systems of
fermions coupled to classical fields on a lattice. The ad-
vantages of this method include the following.

(1) Accuracy and efficiency. Since the solutions can
be represented by piecewise polynomials of any degree,
unlimited accuracy is possible in principle. More to the
point, sufficient accuracy for practical purposes can be
achieved with a modest number of lattice points. This
is the crucial advantage which enables us to study three-
dimensional problems.

(2) Stability. The basis spline collocation method is
in itself extremely resistant to instabilities. We have de-
veloped techniques of building into our algorithms phys-
ical criteria such as dispersion relations and conservation
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laws. In this way, many notorious pathologies can be
eliminated, e.g., fermion doubling.

II. FORMALISM

The formalism of nonperturbative lepton-pair produc-
tion in relativistic heavy-ion collisions can be derived
from a semiclassical least action principle.® In the follow-
ing, we present an alternative derivation which is more
closely related to the approach by Reinhardt, Muller, and
Greiner!3 of et e~ production in nonrelativistic heavy-ion
reactions. The main difference between the two treat-
ments is that we neglect here the residual interaction
among the leptons at an earlier stage.®

Throughout this paper, we use a system of units with
h = ¢ = mg = 1. This implies that energies are measured
in units of the lepton rest mass, mgc?, and that our length
and time units are the lepton Compton wavelength A, =
h/mgc and Compton time 7, = A./c, respectively. For
the specific case of muon-pair production we have

moc? = 105.7 MeV ,
Ae = 1.87fm, (2)

Te=6.2x10"%s.
We start from the standard QED Lagrange density
Laep = $1°(1*i0u — )§ — 1P F* —#4,, (3)
where

7 = Hipron + e = —epT 7094 + 38, . 4)

In general, we denote quantum field operators by a hat
over the mathematical symbol, e.g. ¥ is the lepton field
operator. The first two terms describe the free lepton
field and the free radiation field, respectively. The cou-
pling term between the two fields, j“A,,, arises naturally
from the requirement of local U(1) gauge invariance of
the QED Lagrange density. The quantity j4,, is a con-
served external current, generated by the moving heavy
lons.

By varying the action integral

SqED = / 'z Laep (5)

with respect to the field operators 1 and A we obtain

the Euler-Lagrange equations of motion for the quantum
fields

[7#(i0 + eAu) — 1]9(z) = 0 (6)
and

0, F" (z) = 1 (2) . (7)

Because the external heavy-ion current is much larger
than the leptonic current, one may neglect the latter in
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first approximation. Furthermore, we shall assume that
the external gauge field may be treated classically

OuFei(z) = 16 (2) - (8)

Thus, the two field equations decouple and we are left
with the Dirac equation (6) for the lepton field 1 which
may be recast in Schrodinger form

N o -
Hpy(r,t) = i-a—tw(r,t) 9)
with
Hp = o (=iV + eAext) + B — €AY, . (10)

We study the electromagnetic production of lepton pairs
in a reference frame in which one of the nuclei, hence-
forth referred to as the target, is at rest. For simplicity,
recoil effects are neglected. The target nucleus and the
muon interact via the static Coulomb field A%. The only
time-dependent interaction A% (t) arises from the classi-
cal motion of the projectile. It is natural to decompose
the Hamiltonian Hp into a static Hamiltonian Hy and
the time-dependent em coupling between the muon field
and the projectile nucleus

HD(t)=H0+Hp(t), (11)
where the static Furry Hamiltonian is given by

Ho=—ia -V + f—eAY (12)
and the interaction term

Hp(t) = ea-Ap(t) —eAd(t) . (13)

The static part of this Hamiltonian, originally introduced
by Furry!* for atomic physics problems, describes the lep-
ton field in the presence of the strong external Coulomb
field of the target nucleus. In this way, binding energy
effects to all orders in the coupling constant (Za) are
taken into account. By contrast, the perturbative treat-
ment of QED developed by Feynman and Dyson uses the
free Dirac Hamiltonian for Hy, and is thus limited to
weak fields.

Following the usual practice, we expand the field oper-
ator ¥(r,t), defined in Eq. (9), into a complete orthonor-
mal set of single-particle basis states. We consider two
convenient choices for this basis.

(1) The Furry basis {xx(r)}, i.e., the stationary eigen-
states corresponding to the static Hamiltonian Hy de-
fined in Eq. (12)

Hoxi(r) = Exxe(x) .

(2) The time-dependent basis {¢;(r,t)} corresponding
to the full Dirac Hamiltonian Hp(t) given in Eq. (11)

(14)

.0
HD(t)¢j(r,t) = 1E¢j(r,t) . (15)
Let us first expand the fermion field operator in terms
of the Furry basis, with operator-valued expansion coef-
ficients ()
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B t) = 3 ax(t)x(x) exp(—iExt) (16)
k

From the anticommutation relations for the fermion field

operators ¥,% one readily obtains

(ap, ) = {al,al} =0, {aw,al} =6, (17)

i.e., these operators describe the creation and annihila-
tion of muons in the static Coulomb field of the target
nucleus. After inserting the expansion of the field oper-
ator (16) into Eq. (9) and utilizing Eqs. (11)-(13) one
finds the equations of motion for the annihilation opera-
tors a(t)

idit&k(t) =3 aw () Ok [ Hp (1))
.

X exp[i(Ek - E)cl)t] . (18)

The last equation shows that the Fock space opera-
tors ar(t) are time-dependent, because of the interaction
Hamiltonian Hp(t).

We now expand the fermion field operator in terms of
the basis states ¢;(r,t) defined in Eq. (15). The corre-
sponding particle destruction operators are denoted by
aj,

¥(r,t) = ) a;ei(r,1) . (19)
j

Inserting (19) into (9) and making use of Eq. (15) we

obtain
¢j’> =0,

.d . .
l'a—t'aj = Zajz <¢J
J‘l

i.e., the annihilation operators &; are time independent.
This is not really surprising since the single-particle basis
{¢;} contains the full time development of the collision.

In our case, the initial state is the unperturbed QED
vacuum state [®g) = |0). All the states with energies less
than —mc? are occupied in the vacuum state, while com-
binations of particle-antiparticle excitations correspond
to other possible states.

We shall assume that the dynamics governing the time
evolution is unitary. This has several important conse-
quences. Since the initial state is a single Slater deter-
minant, the time-evolved state will be a Slater determi-
nant of time-dependent one-body states, which preserve
completeness, orthonormality, and anticommutation re-
lations. Thus, all of the particle-antiparticle excitations
corresponding to lepton-pair production and emission are
contained in a single Slater determinant. Under the ex-
ternal field, the single-particle states x; defined in Eq.
(14) evolve into the perturbed states ¢;(t) according to
the time-dependent Dirac equation (15).

We now perform a canonical transformation from the
particle and hole operators to particles and antiparticles.
From the annihilation operators a; defined with respect
to the Furry basis, Eq. (16), we define antilepton creation
operators via

.0
HD—l-a-z (20)
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ISI k<F

(21)
where k < F denotes energies below the Fermi energy
—mc?. Similarly, we define antiparticle creation opera-
tors with respect to the full time-dependent Dirac Hamil-
tonian (15)

:&ky

B,tza,c, k<F. (22)

By equating the two representations of the field operator,
Egs. (16) and (19), one finds the following connection:

B = S an(ulin) + 3 B (elxn)

n>F n<F

(23)

where k < F. We can now calculate the number of an-
tileptons generated from the time-evolved QED vacuum

state |0(¢)) = U(¢)|0),
)

S
k<F
ﬂkﬁk |0) .
Using Eq. (23) we find that the number of antileptons
created after the reaction is given by projecting the time-
evolved single-particle states ¢x(t — oo0) with negative
energy (k < F) onto the complete set of Dirac continuum
states x, with positive energy (n > F)

Z Z [(xnlox(t — OO))|2

k<F n>F

N_ (t) = <0(t)
=>_(l

k<F

(24)

N_(t — o) (25)

For the specific case of lepton-pair creation with capture
of the lepton into a given bound state ¢y we only have to
consider the time evolution of one bound state ¢o(t) ac-
cording to the time-dependent single-particle Dirac equa-
tion.

III. ELECTROMAGNETIC FIELDS

We saw in Sec. II that the physics of pair production is
defined by the electromagnetic fields of two particles in
relative motion. We choose a frame in which one heavy
ion, the target T, is fixed, while the other, the projectile
P, moves by. These fields enter the Hamiltonian in the
form defined by Egs. (11)-(13).

In order to keep the calculation of the external fields
as simple as possible, we assume a spherical and homoge-
neous charge density for both nuclei. Within this approx-
imation, the static Coulomb interaction between target
nucleus and muon is given by

—eA3(r) = —(Zra)f(r, Rr) ,

where Zp and Rr denote the charge number and root-
mean-square charge radius of the target nucleus and

L, r>R
f(r R) = {21,2(3—;{—1), r<R.

(26)

(27)
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In the fixed-target frame of reference, the projectile
moves with constant velocity 3; along a straight-line tra-
jectory in the z direction, with impact parameter b. If the
reaction plane is chosen to be the y-z plane, the classical
trajectory of the projectile is given by

:cp(t) =0, yp(t) = b, Zp(t) = z?; +ﬂft .

The time-dependent em interaction between projectile
nucleus and muon can be generated by a Lorentz boost
of the static field. This results in

—eAp(r' (1)) = —(Zpa)1s f(r' (1), RP)

(28)

(29)

Ap(r' (1) = B AB(r' (1)),

where Zp and Rp are the atomic number and mean
square radius of the projectile. The quantity r'(¢) is the
distance between the muon and the center of mass of the
moving projectile

() = {22 + (y = 0> + 2flz —zp(P}/? . (30)

The beam energy in the collider frame of reference is
given by

(Bxin)e = moc* (7. — 1), (31)

where v, denotes the Lorentz factor. As stated above,
our calculations are carried out in the fixed-target frame
in which the kinetic energy of the projectile is given by

(Ekin)f = m062(7j - 1)a Y= (1 - ﬂ})_llz . (32)

The Lorentz factors in the two reference frames are re-

lated by
y=2Eo1, (33)

IV. NUMERICAL IMPLEMENTATION

In the course of Sec. II, we reduced the problem of
pair production with capture to that of solving a time-
dependent single-particle Dirac equation

¢

Hy(t) = i5; (34)
where
H=a (-iV-eA)—ceAo+8. (35)

The subscript on % is now suppressed for clarity. We
shall solve (34) on a collocation lattice, formed by dis-
cretizing space in three Cartesian coordinates. The use
of Cartesian coordinates avoids the pathologies of rotat-
ing frames and the complicated metrics of spherical co-
ordinate systems. The relativistic electromagnetic fields
exhibit no usable symmetry in any case. The resulting
algorithms have a pleasing conceptual and logical sim-
plicity, which far outweighs any loss of efficiency because
the representation is suboptimal with regard to the spa-
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tial distribution of lattice points. Time is treated on a
different footing as we shall explain below.

In the collocation approach, the wave function is ex-
panded in basis splines, and the residual error set equal
to zero at each collocation point. When the coefficients
of the basis expansion are eliminated in favor of the val-
ues of the solutions at the collocation points, Eq. (34) is
replaced by a matrix equation

.0y

Hy(t) = e (36)
where we use an underline for matrices and an arrow
for vectors in collocation space. The wave vector i has
components ¢(’)(§a;t) labeled by the spinor index and
the collocation point, and H is given by

H=G (—iD-eA)—edy+8. (37)

The structure of the matrices D, and A, will be ex-
plained shortly. The same equations can be derived from
a discretized action principle, in which integrals over
space are replaced by matrix products,

/ & p(r)* Qp(r) — 2’23 . (38)

In general, (36) is not self-adjoint, so that wave functions
in the adjoint space satisfy a transposed equation

9p
1 = =
H'p(t) =1 3 (39)
It is easy to see that (36) and (39) together guaran-
tee such results as the conservation of inner products,
o(t)tp(t)=const.

The operator Eq. (37) has the appearance of the usual
Dirac Hamiltonian with electromagnetic interactions, ex-
cept that the differential operators are replaced by ma-
trices in collocation space. However, the construction
of these matrices is moderately delicate. For simplicity,
we outline this procedure in one dimension. The spinor
¥(£,1) is expanded on a set of M, Nth-order basis splines,
ul¥ (z),

M

vz, )= uf (=) (1)

i=1

(40)

The spline function uf'(:c) is made up of a series of piece-
wise continuous polynomials of degree N — 1 joined at
support points z;. The calculations in this paper are all
carried out with periodic boundary conditions, which are
easily imposed by wrapping around the last N —1 splines.
We choose to work with odd order splines, for which the
collocation points are taken as

Eazw&’uz__{_. (41)
This prescription for the collocation points is optimal for
equally spaced support points and adequate for most ap-
plications. The spinor evaluated at the collocation points
is obtained from the expansion coefficients by the matrix

1403
transformation,
Yo = Z Baj ¢j )
J
(42)
Baj = uj(€a) -

In our application, we always fix the number of colloca-
tion points equal to the number of support points. All
operators can be obtained in collocation space as simple
matrices; for example, the nonrelativistic kinetic energy
operator in one dimension is given by
T§ = —3Bj; BI*,
(43)
Y= d*y
7 dx? o€

where the raised indices on the matrix B are used to
denote the inverse operation. Local operators, like the
fields A#, are diagonal matrices in this representation.
In summary, the collocation points define a lattice on
which the calculations are performed; neither the splines
nor their support points appear explicitly again, once the
derivative operators have been calculated.

The difficulties of extending this approach to the first
derivative operators appearing in the Dirac equation are
manifested in the problem of “fermion doubling.” The
problem of the doubled spectrum for lattice fermions oc-
curs in all numerical formulations of the Dirac equa-
tion in coordinate space.!®!® In dynamical problems,
high-momentum components appear in the wave func-
tion more or less at random, and grow exponentially. In a
stationary problem the spurious solutions can be avoided
by eliminating the lower component and discretizing an
effective Schrodinger equation. This is usually not prac-
tical for dynamical problems, and in any case, restricts
the types of observables which can be considered with
the method. The general procedure which resolves this
1s obtained from a Cholesky decomposition of the kinetic
energy collocation matrix,

T=-iD"D*. (44)

This decomposition uniquely defines the matrices D¥,
and is a generalization of elementary forward and back-
ward difference formulas corresponding to left and right
differentiation on the lattice.

In our basis-spline-collocation approach, the Hamilto-
nian is replaced by a matrix (37) whose structure is sparse
and blocked. Overall, H has a 4x4 spinor structure,
within which the elements are matrices in collocation
space. The wave functions have four spinor components,
each of which is a vector in collocation space t[)gg, hav-
ing indices 1, j, k corresponding to the spatial coordinates
z,y,2. The potentials A, are diagonal matrices

[A,Liie (2 5K ijk) . (45)

Each component of a-ﬁ, say az D, 1s a 4x4 supermatrix
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with two nonzero blocks symmetrically placed about the
diagonal. These blocks contain the L- and U-decomposed
matrices explained above. Thus a; D, contains QI and
D, where D7 DY is a representation of d%/dz?,

0 oDt ]

a,,Qz = [ —0’1Q_ 0 (46)
Matrices such as D} are diagonal in the other two space

indices

[Qj]i’i(s(j’klljk) ) (47)

while o, denotes the usual 2x2 Pauli matrix. In sum-
mary, all of our numerical procedures reduce to a series
of matriz times vector operations

¢'out = ﬂ"l)in = Z flb]ock'/’in y

blocks

(48)

which can be implemented with high efficiency on a vec-
tor or parallel supercomputer. A complete analysis of
pair production proceeds in three steps.

(1) Definition of initial state. A stationary eigenstate
of the matrix Dirac equation is constructed

Hy, = Eoy, (49)
using a damped relaxation algorithm
Q(H'l) = _,ﬁ(i) +D(H - E(i))i(‘) ,
(50)

E(i)zﬁtﬂ.}ﬁ,

where the damping operator D is given by (in matrix
form)
a-p

D=At(vIi+p8+=— _1. (51)
( )

"
We have found that the following parametriza-
tion: p=3.0, v = —0.74, At=4.5 is satisfactory for the
calculations described in this paper. The operator D is
constructed to remove the high-frequency components of
the residual. This method does not depend on the spec-
trum of H being bounded from below. Once more, the
implementation reduces to a series of matrix times vector
operations. Further details, including a rationale for the
choice of parameters and methods for constructing D in
three dimensions can be found elsewhere.!”

(2) Propagation in time. Time is discretized in the
sense that the interactions are taken as constant in each
of a series of successive small intervals (¢,¢ + 7). In
each interval, the solution of the time-dependent single-
particle Dirac equation is obtained exactly from the Tay-
lor series expansion of the time development operator

U+t

P +7)=U(t+ 7,1)P(t)
= exp(—itH)¥(t)

N , . .
- (1 +5° t’—%g)—) 10) (52)

STRAYER, BOTTCHER, OBERACKER, AND UMAR 41

which can be implemented numerically by a series of ma-
trix times vector operations.

(3) Projection of the final state 1 (c0) on a complete set
of continuum eigenvectors x,. In particular, the antilep-
ton energy distribution is given by the projections on the
eigenvectors of the negative energy continuum. The free
Dirac continuum states

Holxns) = (=i - V + B)|xns) = Enlxns) (53)

are known analytically; the quantum numbers n and s de-
note the energy and spin, respectively. However, it would
be inconsistent simply to evaluate these functions at the
lattice points; rather, we must generate the continuum
states directly on the lattice. Our numerical procedure
is to generate the relativistic continuum eigenvectors x

from the corresponding nonrelativistic continuum states
¢,, defined by

Ign = Tng-n

which can easily be obtained on the collocation lattice.
One finds the following connection:

(54)

0

oo = MO+ Ho/ ) [ ] (55)
where N is a normalization factor, and E,, = £+/1 + 27,.
Note that, even though we use the free Dirac Hamil-
tonian, the above procedure incorporates some of the
Coulomb distortion effects by generating continuum
states that are orthogonal to the exact Coulomb bound

states on the collocation lattice.

V. RESULTS

A complete solution of the lepton-pair production
problem requires the propagation in time of a large num-
ber of single-particle Dirac continuum states. We have
deferred a direct attack on this problem for the present,
though we are pursuing simplified approaches. Rather,
we shall focus on the more tractable problem of muon-
pair production with capture of the negative muon into
the 1s;/, ground state of the target muonic atom. This
requires that only one bound state be propagated back-
wards in time [see Eq. (25)].

The first step is the calculation of the eigenstates of
the static Hamiltonian. For the specific case discussed
here, we need only the ground state of the muonic atom
1%7Au. The static Coulomb interaction between tar-
get nucleus and muon is evaluated from Eq. (26) for
a homogeneous nuclear charge distribution with a ra-
dius R = 1.40 x AY3 fm. Using the damped relax-
ation method discussed in the preceding section, we have
varied the size of the lattice to test the convergence
of our results. At first we employed a uniform cubic
lattice with N = Ny;NyN, = 203 lattice points using
third-order splines. The collocation points were placed
at —19.0A., —17.0A,,...,4+19.0)\., where A, denotes the
muon Compton wavelength. We find a total ground-
state energy of Eiot = 0.8975m“cz which corresponds
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to a binding energy E; = —10.8 MeV. (For comparison,
a point nucleus would have a much larger binding energy
of —19.3 MeV.) The rms radius of the ground-state wave
function is found to be 4.79,.

In the second set of calculations, we increased the
number of lattice points to N = 303 resulting in Eyo
=0.9045m“c2 and Ey = —10.1 MeV, respectively, with
a rms radius of 5.35), for the ground state of the
muonic atom. For these static calculations, we used
two convergence criteria: the relative change in energy
(En+! — E™)/E™! was always less than 107!? and the
energy fluctuation 5 = ((H?) — (H)?)'/2 was required to
be less than 10~¢. The latter requirement turns out to be
more stringent. On the 302 lattice the damped relaxation
method required about 100 iterations to converge.

The time-dependent single-particle Dirac equation is
solved on the same lattice using the Taylor series ex-
pansion of the time development operator, Eq. (52); we
consider a maximum number of 15 terms in the series ex-
pansion of the exponential operator. In practice, about
8 terms in the Taylor expansion suffice to preserve uni-
tarity at the 1 part in 109 level.

Because of limited computational resources we were
not able to solve the infinite-range dynamical Coulomb
problem which would have required a substantially larger
lattice size. Therefore, we carried out model calculations
for a screened Lorentz-boosted Coulomb interaction be-
tween projectile nucleus and muon, i.e., the interaction
given in Eq. (29) was multiplied by a factor

exp{—['(t)/r:]"} (56)
15 T T T T T T T T
10 — =
E_ L i
5 .
= 4
0 1
0 100 200 300 400 500
t/‘rc
FIG. 1.

Muon capture probability into the 1s,;, ground
state as a function of time (in units of the muon Compton
time). The muon pairs are produced electromagnetically from
the QED vacuum in collisions of 197 Au+127Au at a collider
energy of 0.2 GeV/nucleon. The impact parameter amounts
to ten muon Compton wavelengths, i.e., 18.7 fm. The cal-
culations are performed on a uniform cubic lattice with 30°
collocation points.
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FIG. 2. Muon capture probability as a function of the

impact parameter (in units of the muon Compton wave-
length) for °” Au+'°"Au collisions. Depicted is the proba-
bility of muon capture into the 1s,;, ground state of one
of the ions following electromagnetic pair creation from
the QED vacuum at three different collider energies: solid
curve, E=2 GeV/nucleon, 20° lattice; dot-dashed curve, E=1
GeV /nucleon, 20° lattice; dotted curve, E=0.2 GeV /nucleon,
30° lattice.

with r, = 20A..

Initially, the projectile nucleus is located at a distance
of —25), giving rise to a negligible interaction potential
at the position of the target nucleus which is fixed at
the center of the cubic lattice. Calculations were per-
formed for a straight-line trajectory and uniform veloc-
ity; the beam energy was varied between 0.2 and 2.0
GeV/nucleon in the collider frame of reference, and im-
pact parameters between 2 and 30A. were considered.
The dynamical calculations required typically about 600
time steps. The norm conservation of the wave function
is an important indicator for the numerical accuracy of
the dynamical calculations. We found that the norm was
generally conserved with an accuracy of about 1 part in
108. Figure 1 shows the time dependence of the probabil-
ity for capture into the ground state of the muonic atom
following pair creation from the QED vacuum. We see
that the probability P(t) rises sharply as the nuclei reach
their distance of closest approach; at large distances, P(t)
reaches a constant value, an indication for the numeri-
cal convergence of our calculation. The bump in P(t)
shortly after the distance of closest approach is caused
by the nonadiabaticity of the process and is typical for
Coulomb excitation processes.

The dependence of the muon capture probability on
impact parameter at three energies is shown in Fig. 2. For
the system 1°7Au+1%7Au at collider energies of 0.2, 1.0
and 2.0 GeV/nucleon we obtain probabilities for dilep-
ton production with capture between 1.0 x 10~2 and
7.0 x 10~2 at the grazing impact parameter b = 8.8)..
These capture probabilities are several orders of magni-
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TABLE I. Results for electromagnetic muon-pair produc-
tion from the QED vacuum in *7Au+!®7Au collisions at a
collider energy of 0.2 GeV/nucleon. The numerical calcula-
tions are performed with B splines of order 3 and a colloca-
tion lattice with 302 lattice points. Listed is the probability
for capture of the u~ into the 1s,,, ground state, P~, and
the corresponding positive continuum excitation probability,
P*, as a function of the impact parameter b (in units of the
muon Compton wavelength).

b P~ pt

2.0 2.391 x 1073 3.139 x 107!
10.0 9.704 x 10~* 1.582 x 107}
20.0 9.779 x 10~° 2.518 x 1072
30.0 6.397 x 107° 2.189 x 1072

tude larger than those calculated in first-order pertur-
bation theory by Momberger et al.,'® who find a total
capture cross section of ¢ = 3.7 x 10~° barn in U4U
collisions at Ejs, = 10 GeV /nucleon. This confirms our
expectation that em lepton-pair production is strongly
nonperturbative in relativistic collisions of very heavy
ions. Table I summarizes the muon capture probabil-
ity and the positive continuum excitation probability at
different impact parameters.

VI. CONCLUSIONS

The primary goal of our program is to solve nonpertur-
batively the equations for the evolution of the QED vac-
uum perturbed by strong, time-dependent electromag-
netic fields. In this paper, we have presented for the
first time three-dimensional lattice calculations for dilep-
ton production by the strong transient electromagnetic
fields that are generated in relativistic heavy-ion colli-
sions.

The main purpose of the present calculations is to

demonstrate the feasibility of the numerical method. The
present results are not yet very accurate, essentially be-
cause of the size of the collocation lattice dictated by
the computational expense. For the same reason, we em-
ployed a screened time-dependent em interaction between
projectile and muon. Therefore, the present calculations
should be regarded as a feasibility study rather than a
final result. We estimate that realistic calculations on e~
or u~ capture require 70-100 points in each direction. We
will also explore the use of nonlinear lattices, to which
the B-spline method is well suited, for QED problems.
Further refinements of the formalism will be necessary
for impact parameters less than grazing, because the de-
celeration of the nuclei during interpenetration must be
taken into account. Also, for central collisions, we can
no longer describe the nuclei as homogeneously charged
spheres; instead, form factors for the nucleons will be
needed.

Although our calculations are somewhat schematic, it
is interesting to note that we obtain pair production with
capture probabilities which are several orders of magni-
tude larger than those obtained in first-order perturba-
tion theory.!® This could signal the breakdown of the
first-order perturbation approach in the strong-coupling
regime (Za = 0.5) or might be caused by the atomic
basis expansion used in Ref. 18. These matters require
further investigation.
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