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A time-independent Hamiltonian formulation of relativistic atomic structure and scattering prob-
lems is developed in which virtual-pair creation and annihilation eft'ects are explicitly included. The
method is discussed in the context of a specific problem —the scattering of a positron by a system
consisting of two electrons bound to a nucleus of charge Z. This provides the basis for a consistent
treatment of spontaneous positron production that can occur when Z exceeds a critical value
Z„=173. For Z not too much greater than Z„ the two-electron atom is stable and represents the
(doubly charged) vacuum state. In the approach adopted here the one-electron state, which is un-

stable against spontaneous pair creation, is viewed as a resonance in the scattering of the positron
by the two-electron target atom. The lifetime of the unstable state is determined, in the usual way,
from a knowledge of the width of the resonance. The formal resonance theory required to carry out
this analysis is developed here with the aid of an e8'ective-potential description of the scattering
problem of the type familiar from standard treatments of resonant processes in nonrelativistic atom-
ic and nuclear reaction theories.

I. INTRODUCTION

The effect of virtual-pair creation on the structure of
atoms is expected to be small, in general. Nevertheless,
in calculations of high precision, on systems of high nu-
clear charge Z, this effect can be significant. In an earlier
work' (referred to in the following as I) a time-
independent Hamiltonian formulation of the bound-state
problem in QED was developed in the context of the
resolvent-operator method of many-body perturbation
theory. The problem of including virtual-pair effects was
addressed there for a model hydrogen atom in which the
creation of only a single virtual pair is allowed. Here this
study is extended to the consideration of a class of prob-
lems involving a one electron atom in which Z is
sufficiently large (greater than a critical value Z„=173)
so that real pair creation is possible. The effect is then
rather more dramatic. The stability of the one-electron
atom is destroyed owing to the fact that creation of a
pair, with the additional electron filling the K-shell va-
cancy and the positron escaping in a continuum state, is
energetically possible. It is not our purpose at this time
to attempt a description of the physics of this process
which is sufficiently realistic as to allow for a detailed
comparison with experimental findings. Extensive stud-
ies of this nature, taking into account the dynamic effect
of the motion of the pair of heavy ions which momentari-
ly coalesce to form the superheavy nucleus, have been
carried out. It is, in fact, not clear at present whether
the existence of the spontaneous positron production
effect will be confirmed by the current round of experi-
ments. This issue, important as it is, will not be of con-
cern to use here. Rather, the focus is on methodology.
Of primary concern is the development of calculational
techniques for describing relativistic few-electron systems
in bound and continuum states. These techniques lend
themselves very naturally to the study of the dynamical

properties of the vacuum. This is a matter of fundamen-
tal interest the investigation of which is clearly warrant-
ed, quite aside from the current status of experiments.

The decay of the unstable neutral vacuum into the dou-
bly charged vacuum state, which is stable for Z less than
the value at which the first excited state enters into the
continuum (Z = 185), is studied here using standard reso-
nance theory —the one-electron unstable state appears as
a resonance in the scattering of a positron by the two-
electron atom. The level-shift formalism developed in I,
suitably modified to account for the fact that in the appli-
cation considered here the level shift is complex, provides
a convenient framework for the analysis. This formula-
tion allows one to obtain explicit expressions for the com-
plex level shift from whose imaginary part the decay rate
into the positron continuum state is determined. It
should be recognized at the outset that the main effect of
the vacuum instability is likely to be described reasonably
well by the lowest-order calculations given previously.
The work reported on here represents an attempt to ap-
ply the time-independent Hamiltonian approach, in the
form outlined in I, to the problem of determining higher-
order corrections in a systematic manner, with the in-
stantaneous CoUlomb interaction treated nonperturba-
tively.

The time-independent description of the supercritical
one-electron atom is outlined in Sec. II; this allows us to
introduce notation, to review the resolvent-operator ap-
proach, and to develop certain modifications in the for-
mulation of I which are required when the external field
is supercritical. The lowest-order approximation to the
neutral vacuum decay rate is rederived here as a simple
illustration of the formalism, and the means for generat-
ing higher-order terms in a well-defined perturbation ex-
pansion is provided. A formal description of resonant
positron scattering in a supercritical field is given in Sec.
III and this is used as the basis for a more elaborate
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"one-pair" approximation scheme which is worked out in
Sec. IV. This procedure, which amounts to the neglect of
the effect of two or more virtual electron-positron pairs,
is based on the method developed previously. ' The paper
concludes with a discussion and summary of results ob-
tained.

tions y„(x) which are orthogonal to the function r(x).
To describe this procedure, in the context of the present
problem, we first introduce some notation.

Let
l
r & be the ket representing the resonant state and

let lr &&rl be the projection operator on to that state.
(The degeneracy associated with spin will be ignored here
to simplify notation. ) We define Q

=L ——lr & & r l, where

II. ONE-ELECTRON ATOM
IN A SUPERCRITICAL FIELD

A. Formulation

L'= g lu„&&u„l
( —mn

(2.3)

To establish procedures we review the resolvent-
operator method employed in I for the study of a one-
electron atom, and introduce a modification made neces-
sary by the fact that the positive- and negative-energy
solutions of the Dirac equation, which were used previ-
ously as basis functions, can no longer serve that purpose
when the external field is supercritical. That is, we con-
sider a situation in which the ground state has entered
the negative-energy sea and become a resonance as the
nuclear charge is increased beyond the critical value. To
construct an orthogonal basis under these circumstances
we follow a method originally devised some time ago by
Wang and Shakin for use in nuclear reaction theory. '

This is discussed first in the context of the first-quantized
Dirac equation and then carried over to the hole-
theoretic formulation adopted later on.

The Dirac Hamiltonian, in units with A =c= 1, is writ-
ten, in standard notation, as

h (x)=a ( i V )+Pm +—V,„, , (2. 1)

where V,„, has the Coulomb form —Ze /lxl away from
the nucleus but will be modified, in general, close up. For
Z sufficiently small a complete, orthogonal set of eigen-
functions may be constructed by solving the equations

h(x)uz(x)=s~u (x), s )0,
h(x)U„(x)=E„U„(x), E„(0 .

(2.2a)

(2.2b)

[Boundary conditions must be specified to complete the
definition of the continuum solutions. When, as above,
no indication is given the solutions may be assumed to
satisfy outgoing-wave boundary conditions at great dis-
tances. Later on it will be necessary to distinguish be-
tween outgoing- and incoming-wave solutions, and this
will be done by labeling the functions with superscripts
(+ ) and (

—), respectively. ] With Z now increased above
the critical value the state u], formerly the positive-
energy ground state, has disappeared, having e6'ectively
been replaced by a resonance in the negative-energy con-
tinuum. Let r(x) be a normalized function which
represents the resonant state to the extent that it resem-
bles the positron continuum wave function at the energy
of the resonance in the region close to the nucleus, falling
off at great distances as required by the normalization
condition. It wi11 be assumed in the following that r(x)
has been chosen so that its overlap with the set of func-
tions {u~, u 3, . . . I, whose energies all lie above —mc, is
effectively zero. The Wang-Shakin prescription allows us
to construct a modified set of negative-energy wave func-

projects on to the set of continuum solutions of the Dirac
equation with energies less than —m. Here and in the
following the sum over states is a generalized one,
representing an intergration over the continuum along
with a sum over any discrete states that might exist. We
now introduce the resolvents g and g ~ which satisfy

Q(z —h)Qg~(z) =Q,

L '(z —h)L 'g(z) =L ',
(2.4)

(2.5)

respectively. Now observe that the solution of Eq. (2.4)
may be represented in the form

g~=g —glr&(&rlglr&) '&rig . (2.6)

It then follows that a set of basis functions {y„}may be
defined as

(2.7)

Q= & ly &&y I. (2.9)

These states provide a basis which proves to be con-
venient in the analysis of vacuum decay. This will be
seen below in the context of the Hamiltonian formulation
of QED.

In the Schrodinger picture of QED the particle field
operator, when expressed in the modified basis intro-
duced above, may be expanded as

ltD(x)= g A u (x)+b r(x)+ g B„y„(x).

(2. 10)

The creation and annihilation operators are defined by
the anticommutation relations

with energies c.„&—m, where z approaches the real ener-

gy axis from below in the complex plane. These func-
tions, which are orthogonal to lr & and satisfy
Q(s„—h )Q ly„& =0, may be expressed in the form

ly. &=IU. &
—g(z)lr &[&rig(»lr &] '&rlU. &,

with z approaching c.„ from negative imaginary values.
The modified basis functions ly„& satisfy the same ortho-
normality relations amongst themselves as do the original
set lu„ &.

'
We have two mutually orthogonal sets of states

{r, uz, u3, . . . } and {y„y2,y3, . . . },and may now iden-
tify the projection operator Q as
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[A, A j=6 ~, [B„., B j=b„.„, [bb j=l,
(2. 1 1)

with all other anticommutators vanishing, along with the
specification of their action on the vacuum state. The
latter is taken here to be the doubly charged supercritical
vacuum, denoted as l0&. We have

may be determined, using a standard projection operator
procedure which leads to a convenient expression for
this matrix element. (It will be understood, without fur-
ther burdening the notation, that only the connected part
of the matrix element is retained in the calculation. )

With the projection operator q defined as 1 —lr & & r l, the
identity which proves to be useful in this analysis is

a, lO&=0, B„lo&=0, bio&=0; (2.12)
R(z}=Rq(z)+ [1+R~(z)H]l r & & r lR (z)lr &

the creation of a vacancy in the K shell is indicated, in
this notation, by where

X & r
l [1+HR q(z) ], (2.18a)

&r R(z)lr &=[z+c,„—&rl Vlr &
—&rlHR~(z)Hlr &]

(2.18b)

and where R ~(z) is defined by the resolvent equation

q(z H)qR —q(z)=q .

From the analogous relation

q(z Ho )qR —((z)=q,

(2.19)

(2.20)

H, =fd x 1(D(x)h(x)QD(x), we obtain the integral equation
2.14

The QED Hamiltonian is of the form H =HO+ V, where
the unperturbed part HO=HD+H„~ is the sum of the
particle and radiation-field energy operators, and the per-
turbation V=Hz+Hc represents the sum of the trans-
verse radiation-field interaction and the instantaneous
Coulomb interaction. With HD expressed, in normal-
ordered form, as

and with the field operator expanded as shown in Eq.
(2.10), one obtains the representation

R (z) =R)(z)+R ((z)qVqR (z), (2.21)

( —m
n

c ) —m

HD= g e A 3 Ebb ——g sBB„ which serves as the basis for a perturbation expansion of
R ~(z), and hence of the level-shift operator

( m

h„b B„—g b„'B„b .
c ( —m

n

(2.15)
T„„(z)—= &r l Vlr &+ &rlHR (z)Hlr &

which appears in Eq. (2.18b).

(2.22)

The off-diagonal element

~. -=&y. lb r & (2.16)

plays the role of a transition amplitude for the decay of
the neutral vacuum. Our main concern in the following
will be to develop a procedure for calculating higher-
order corrections to this decay amplitude in a systematic
fashion. The energy le„ l, with

e, =&rib lr &, (2.17)

represents the average energy of the resonant state.
Following the procedure of I, we study the resolvent

operator R(z)=(z H) ' whose it—erative solution gen-
erates the expansion which serves as a convenient start-
ing point for time-independent multiparticle perturbation
theory. An arbitrary matrix element of R (z) may be ex-
pressed as the convolution' of two terms, one represent-
ing the sum of all connected diagrams and the other, of
the form &OlR(z)l0&, accounting for the totality of all
vacuum components. In the following we analyze the
connected part, from whose pole singularity the energy of
the system, relative to that of the vacuum, may be deter-
mined.

Let us suppose that the nuclear charge Z is increased
continuously from below to just above the critical value.
If one followed the position in the complex plane of the
pole in the resolvent, one would see the pole move off the
real axis onto the second Riemann sheet. We study the
matrix element &r lR(z)lr &, from which the pole position

B. Lowest-order approximation

As a first approximation we ignore the interaction V, in
which case, in the eigenfunction expansion of R((z},only
the states which span the modified negative-energy con-
tinuum need be retained. Consequently, R((z) may be
replaced by the modified positron propagator

ly. &&y. l

QR ((z)Q = (2.23)
n

We then obtain the approximate level shift

&rl~ ly. &&y. lhlr &

Tq(z}=
Z+E„c ( —m

rl

(2.24)

An evaluation of the position of the pole in the complex
plane of the matrix element (2.18b) is complicated by the
fact that the level shift is z dependent. This pole position
may be determined by an iterative procedure which gen-
eralizes to complex energies the standard perturbation
expansion applicable to real eigenvalues. The first ap-
proximation, appropriate when the pole is suNciently
close to the real axis, is obtained by replacing the imagi-
nary part of z on the right-hand side of Eq. (2.24) by an
infinitesimal positive quantity, and the real part by lE, l.
In this approximation the pole appears at the complex
energy le„l —i I /2, where the width (or inverse lifetime)
I of the unstable state associated with the resonance is
determined as'
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( —m
n

l~. I'8(&. —E, ) (2.25) g'S,'„',"S,'„' = —2mi.( n'+ '~ T(s+ig) ~n'+'
&

in agreement with previous treatments. In the following
we outline a procedure for developing improved approxi-
mations, in a systematic way, taking into account the
eFect of higher-order QED perturbations.

27Tl Tn ~„

g'S"'*S"'=2mi(n'+'~ T(c,—i7))~n'

= 27Tl T„„

(3.6}

(3.7)

III. RESONANT SCATTERING OF POSITRONS

A. Generalized unitarity relations

The view of a decay process as representing half a col-
lision provides us not only with additional physical in-

sight but also allows us to apply some of the powerful
methods of formal scattering theory to the study of un-

stable states. ' In following such an approach here we
have a twofold objective. The primary goal is to set up a
systematic procedure for generating higher-order correc-
tions to the decay rate. At the same time we shall devel-

op a framework for calculating positron-atom or
electron-atom scattering amplitudes in the context of the
time-independent Hamiltonian formulation of QED,
analogous to that set up previously for the bound-state
problem. ' The relationship between the scattering and
decay problems is perhaps most clearly seen in the gen-
eralized unitarity relations which couple the free-free,
bound-free, and bound-bound transition amplitudes. We
begin by summarizing these relations, following the de-
velopment presented earlier, in which the distortion of
the basis states arising from the orthogonality constraint
is fully accounted for.

The scattering matrix may be decomposed as

By combining these equations with Eq. (3.5) we arrive at
the discontinuity relations

T'+ ' —T' '= —2~i~~' T'.+ 'T'
n'n Kl~ n' c cn

c

(3.8)

T„,„=Tq,„+T~„(E—
~s„~

—Tq ) 'T~„, n, n'W» . (3.9}

One of the elements of the level-shift matrix Tq has been
defined in Eq. (2.22) and the remaining elements will be
specified more precisely later on. Here we observe that,
as can readily be verified, the discontinuity relation (3.8)
will be satisfied provided that Tq satisfies

We are interested here in the scattering of a positron
by a stable target consisting of a nucleus of charge
Z & Z„ to which two electrons are bound. The positron
can annihilate with one of the bound electrons, leaving an
unstable one-electron atom. In the second half of the col-
lision the atom decays and the positron emerges in a
stable continuum state. This separation of the collision
into capture and decay processes may be represented for-
mally through a (Breit-Wigner) decomposition of the T
matrix as a nonresonant part T plus a resonant
remainder. We write [with superscript (+) understood
when no sign is given]

where

(3.1) T'+ 'q —T' 'q = —2@i~' T'+ ' T'
pa pa Kl~ pc ca (3.10)

S(l) —( ( —
)~ (+)& (3.2)

represents the scattering due to the distortion of the basis
states. In the following, to simplify notation, we write
~y„'

+—'& —= ~n' +—'&; as mentioned earlier the superscripts dis-

tinguish between outgoing-wave (+ ) and incoming-wave
(
—

) boundary conditions. We have

S„' „' = 2mi (n' —'~ T( ei+rt) ~n'+'&, (3.3)

where c, is the total energy and g is a positive
infinitesimal. The unitarity relation satisfied by the S ma-
trix may be expressed, in an abbreviated notation, as

g'S„,S„',=5„„; (3.4)

here the prime on the summation sign is meant to indi-
cate that only energy-conserving continuum states are in-
cluded. The matrix S"' satisfies a unitarity relation of
the same form, and this may be taken into account to
simplify the matrix equation obtained by substituting the
decomposition (3.1) into Eq. (3.4}. One finds that

In this equation the channel indices P and a may refer to
the discrete (resonant) state ~» & as well as to the continu-
um states but the sum runs over continuum states only.
The problem has now been shifted to devising a means of
constructing T~, subject to the discontinuity constraint
(3.10). This will be a simpler calculational problem, in

general, since the rapid energy dependence associated
with the resonance has been removed.

B. The level-shift matrix

Assuming the system to be in the state ~» & at t =0, the
probability amplitude for finding it in a continuum state,
labeled by the index n, at t = ~ is given by'

M„,= lim [i rt( U„' '~R (c+i rt) ~» & ], (3.11)
q~0+

with the limit understood here and in the following to be
one in which g approaches zero through positive values.
From the identity (2.18) we obtain the relation

R (z) I» &
= [ I +R '(z)H ] I» & [z —

I E„l —T,', (z) ] ',
S(2)TS( & ) +S(1)TS(2)+S(1)fS(2)S(2)~S(1)—O (3.5)

(3.12)

Further simplification is achieved by applying the unitari-
ty property of S"' once again to obtain

which in turn implies that

M„„=T~~, [z —~e, ~

—Tg (E+i g)] (3.13)
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with

T&, ,
= hm [ig& u(-) lR ~(a+ iq)H lr &] .

Pt 1' O+
(3.14)

T„'„.= & rl(H+HR'(s+~g) Vln(+'&, (3.22)

It is also necessary to complete the definition of the
level-shift matrix with the relations

(The notation anticipates the relationship, to be estab-
lished below, between this T-matrix element and the level
shift. ) We are then led to study the state vector

and

T„', + „+ =&n'+'IV+ VR~(c.+ig)V~n( ') . (3.23)
'~) = lim [ i—riRq(E i7(—i)~u( ')] .

q~o+
(3.15)

Rtc=RO —Ro)r)((r(Ro[r)) '(r[RO .

Distorted basis states are defined as

(3.16)

The procedure now to be followed is analogous to that
which led to Eq. (2.8), here restated in the language of
hole theory. With Ro(z)=(z Hu) —' we have, for the
resolvent R It defined in Eq. (2.20), the representation

As remarked earlier, an iterative solution of the in-

tegral equation (2.21) for the resolvent R~ can serve as
the basis for a perturbative construction of the level shift.
Equivalently, elements of the matrix Tq may be shown to
satisfy a set of coupled integral equations to be solved
perturbatively, or perhaps in some more general fashion.
These latter equations are obtained by combining the in-

tegral equations for Rq with the relations which define
T ~ and then employing the eigenfunction expansion

/n(*)) = lim [+iriRNI(akiri)/u„'*')];
g~o+

(3.17) ~c(+)) (c(+)~
RI|(a)=

a+ivy / E, f

(3.24)

we then find that

~n( —'& = ~u(-)
& R,(s—+ig)~(r &

X[(r~R,(s+iri)~r)] '(r~u„'+-') .

The resulting set of equations are of the form

T$ =Bp+QBp, .
~

~T,~.1

F-+ l 7l E'C

(3.25)

(3.18) The "Born" amplitudes are defined as

[The compatibility of this representation with that shown
in Eq. (2.8) follows from the fact that Ro, projected onto
a one-body subspace, differs only by a sign from the
Dirac propagator g.]

The combination of Eqs. (2.21) and (3.15) implies that

—(ct(+)i Vie(+))

8„=&"+)IHlr &=8;, ,

8„,=(r V(r) .

(3.26)

(3.27)

(3.28)

'&+R '(E ig) V—ln
'

From the definition

(3.19)
It is readily ver'ified that the solutions of Eq. (3.25) satisfy
the appropriate discontinuity relations (3.10). We note
that Eq. (3.25) may be put in the alternative form

T~, , =(~(„)q~H~)r )-
we are led to the expression

T, , =( ' 'lH+VR'Hl ) . (3.20)

(3.21)

The final state in the matrix element Tq(, satisfies the

physically appropriate incoming-wave boundary condi-
tions. The matrix elements which appear in the discon-
tinuity relations (3.10), on the other hand, involve only
outgoing-wave continuum states. Once these auxiliary
amplitudes are determined the physical matrix elements,
such as that which appears in Eq. (3.20), can be con-
structed by applying transformations, similar to those
shown in Eq. (3.6) and (3.7), involving the (presumably
known) matrix S "'. One frequently deals with a particu-
lar partial wave, in which case the transformation from
one form of T-matrix element to the other involves only
multiplication by a phase factor.

The identification of T (+) =—T„„asjust defined, with

the bound-free element of the level-shift matrix is estab-
lished by showing that the discontinuity relations (3.10)
are satisfied. This is easily done using the resolvent equa-
tion

R ~(s+i g) —R q(r. —iq) = 2~iy' I'P,""&&
—q',""l .

T$ =Bp +AT), .
~

~8,
1

C C

(3.29)

T~ =8„„+g8„, Tq„.1

E, +17] E,
(3.30)

The elements Tq„which appear on the right-hand side
can be evaluated as

T,'„=8,„+g T,', ' —I, I

8,.„
1

C+ l 7/ E'c'
(3.31)

once the submatrix Tq, has been determined. From this
point of view the problem of the decay of the neutral vac-

Since the intermediate continuum states which appear
in the integral equations involve arbitrarily large numbers
of particles in general, these equations do not serve as the
basis for calculation as they stand. Let us suppose that
the sum over states has been truncated in some fashion.
(A specific model which accomplishes this is proposed in
Sec. IV.) Suppose further that the (now finite) set of
equations obtained by allowing P and a in Eqs. (3.25) to
range over all continuum channel indices has been solved.
It then follows from the form of Eqs. (3.25) and (3.29)
that the remaining elements of Tq, those involving the
resonant state ~r ), can be constructed by quadratures.
Specifically, we have
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uum has been converted into one requiring the solution
of a nonresonant positron-atom scattering problem, with
radiative corrections included. This idea is developed
further in Sec. IV.

The discontinuity equation
—3/2 sU, (x) =l. e 'exp(ik, . x), (4.4)

valued polarization index A, With the radiation field

quantized in a box of volume I. the photon wave func-
tion is of the form

T(+ )q T( —)q 2 ~ T(+ )qT( —)q
rr rr ~ rc cr

when combined with the reciprocity relation

T( —)q (T(+ Iq).
pa ap

(3.32)

(3.33)

with k, -e '=0 in the Coulomb gauge which has been
adopted here. Matrix elements of these interactions are
evaluated with the aid of eigenfunction expansions of the
field operators, such as the one shown in Eq. (2.10). Al-
ternatively, we may write

leads to a more general expression for the resonance
width than that given earlier in Eq. (2.25), allowing, in
particular, for radiative decay modes. We find that, un-
der the assumption that the width is sufficiently small,

(3.34)

IV. ONE-PAIR APPROXIMATION

A. Integral equations of the Dyson-Schwinger type

Further progress in the analysis of the level-shift ma-
trix can be made only after the dynamical model is
specified in more detail. To begin this process we exam-
ine Eq. (3.30) for the element Tq„. The continuum states
which appear in the sum over channels are just those for
which the Born amplitudes B„, are nonvanishing. This is
then an appropriate place to recall the form of the
particle-field interaction V=Hc+HT. We have

2

Hc —
—,fQD(x)1(D(x) ~,

~

PD(x )QD(x )d x d x

(4.1)

and

HT=e f 1(JD(x)a/~(x). A(x)d x . (4.2)

The vector potential A(x) has (in the notation of I) the
plane-wave expansion

A(x) =g (2k, )
' [a,U, (x)+a, U,*(x)], (4.3)

where a, and a, are the photon creation and annihilation
operators as usually defined and s is an index which
specifies both the photon momentum k, and the double-

with the energy parameter c in the definition of the level
shift evaluated at the resonance energy ~s„~. [Recall that
the sum in Eq. (3.34) is over energy-conserving states
only so that channels with threshold energies lying above
~s„~ are not included. As mentioned earlier, corrections
introduced when the assumption concerning the width is
relaxed can be calculated by a successive approximation
procedure, but we shall not pursue this matter further
here. ] The importance of conforming to the constraints
imposed by the requirements of unitarity and reciprocity
in developing approximations to the level-shift matrix
should be clear from the derivation of Eq. (3.34). These
constraints are automatically satisfied in the calculational
method to be described below.

QD(x)= g A u (x)+ g D„U„(x), (4.&)

) —m
P

( —m
n

~n ) =B„~O) for c&,

~n, s ) =D„a, ~0) for cz,

~p, n, n') = A D„D„.~0) for c3 .

(4.6)

It is the Coulomb interaction Hc which connects the
state ~r) to the three-particle states of type c3. There is,
however, a simplifying feature, based on the introduction
of a "Coulomb photon, " which allows us to treat the
one-step process of pair creation as a two-step process in
which a Coulomb photon, having first been emitted by
the positron, then creates the pair. The fact, which was
pointed out previously in I, that we may formally com-
bine Coulomb and transverse photons, is more than a cal-
culational convenience since the combined photon propa-
gator is covariant, and this is of crucial importance in the
renorrnalization program. For our present purposes,
however, the essential point is that, anticipating the in-
troduction of the Coulomb photon, we may omit the sum
over states of class c3 in Eq. (3.30), which for convenience
we now rewrite as

2

Tq„=B„„+g JB„,g, T,q . (4.7)

Here Br, , for example, is the Born matrix element con-
necting the continuum channel c, with the resonant state
and g, represents the propagator for channel c, . (In-
tegration variables for the intermediate-state channels c,
and c2 are suppressed to simplify notation. ) Similar
reasoning allows us to reexpress Eq. (3.31) as

in which the resonant state has not been explicitly
separated off, as it was in Eq. (2.10). This alternative
form is the appropriate one to use in dealing with mul-
tiparticle intermediate states since then there is no re-
quirement that resonant and nonresonant states be
separated.

In order to work with a reasonably tractable model we
do not consider all possible virtual excitations but only
those in which the original positron is accompanied by an
additional photon or an additional electron-positron pair.
(This is essentially the one-pair approximation adopted in
I.) We introduce three channel labels —c„c2,and c3-
to denote the class of intermediate states which, in this
model, appear in the integral equation (3.30). These
states are of the form
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2

Tg=B,.„+g f Tqg 8.„, i =1,2 .
j=l

constraint) by the doubly distorted waves
(4.&)

/n)=n/n) . (4.14)

These equations are noncovariant and approximate, but
are in other respects analogous to the standard Dyson-
Schwinger equations of covariant QED. As pointed out
earlier in the more general context of Eqs. (3.29) —(3.31),
the elements Tq and T~, i = 1,2, may be constructed by
quadratures once the scattering amplitude T)2 has been
determined. Here we shall show this directly by deriving
explicit and calculationally convenient representations of
the amplitudes Trr and T,,

To begin the analysis we look at the integral equation
for Tf, . It is readily verified that the solution may be ex-

pressed in terms of Tf2 and an auxiliary amplitude tf, .
defined as the solution of the one-body equation

where we introduced the abbreviations

Br2 =Br2+ Br1g 1B12 (4. 16)

and

In the following it will be understood, without the impo-
sition of additional notation to indicate it explicitly, that
this replacement has been made. Accordingly, we drop
all terms in which the factor t f, appears. Then, after
combining Eqs. (4.7)—(4.12), we have

rr Brr + rig 1B1r+ Br2g2B2r

+ Br2g2T 2g2 B2'r (4.15)

t tl' 811' +f t f1 "g 1"81"1

The solution is

(4.9)

B2r = B2r + B21g1B1r (4.17)

T&1 =t&1 + f T~2g28» + f f T&2g2821 g 1-t t 1

(4.10)

Since a numerical solution of Eq. (4.9) is relatively easy to
obtain we next focus our attention on the matrix element
Tt2. The relevant integral equation may be written as

One easily sees how the lowest-order approximation
shown in Eq. (2.24) is recovered by ignoring all radiative
corrections in the more general result just derived. In a
similar way one finds the representations

Tf, =B,„+fB„g,B,„+f f 812g2T)2g28 „2(4.18)

and
T f2

—t j2+ f t jl g 1 t f 2 (4.11)
t, = 2, + f (2g2 2, (4.19)

where we defined

t f2=812+ f8, 2 g2. T)2 . (4.12)

The remaining matrix elements to be determining (taking
into account the fact that reciprocity may be used to re-
late pairs of off-diagonal elements) are T'f„and T)„, and
these may also be expressed in terms of T).2, as may been
seen immediately by inspection of Eq. (4.8).

The preceding analysis has shown that the essence of
the dynamical problem lies in the construction of the am-
plitude for positron-photon scattering (modified by the
removal, in the manner described, of resonance effects) in
the presence of the target atom, This problem is ad-
dressed below.

By combining results we can arrive at a more concise
representation of the matrix element Tq with which we
are here chiefly concerned. We observe, firstly, that the
wave operator 0, with elements

&11=&» +fg»-tf 1 (4.13)

appears throughout premultiplying the basis states ~n ).
The "potential" B11 represents the effect of vacuum po-
larization on the propagation of the positron in the
Coulomb field of the nucleus. (Since the vacuum is dou-
bly charged the Coulomb contribution to vacuum polar-
ization has the effect of shielding the nucleus, so that the
positron at great distances "sees," as it should, a charge
of Z —2 rather than Z. ) To take this self-energy correc-
tion into account in the formalism developed thus far we
need merely replace the basis states ~n ) (which, it will be
recalled, are themselves distorted by the orthogonality

as well as representations of the elements T,2 and T„
which we do not write explicitly. As already mentioned,
the dynamical complexity of the model is seen to be con-
tained, essentially, in the amplitude T(2 describing
positron-photon scattering in the presence of the external
supercritical field. The structure of this amplitude is ex-
amined in greater detail in the following.

B. Further reduction of the level-shift matrix

T~P= W P+ 8 1g]T P . (4.20)

One readily verifies that the discontinuity relations for
T~& [they are of the form shown in Eq. (3.10) with only
channels c, and c2 appearing in the sum in the model
considered here] will be satisfied provided that the
simpler relations

W'
tl

' —W'
P

' =
2mig

' Wl
2

' W—
21tl

'.
,

c2

(4.21)

In Eq. (3.9) an expression for the T matrix is displayed
in which the resonant state ~r ) is "subtracted out, " leav-
ing a level-shift matrix which is a smoothly varying func-
tion of energy in the neighborhood of the resonance.
This subtraction process may be carried one step further
by removing all one-body intermediate continuum states,
the states ~n ) belonging to channel e„ from the level-
shift submatrix Tq& (a,P=1,2). This leaves a reduced
matrix, 8'

&, which has a simpler structure. This latter
matrix plays the role of an effective potential in a linear
integral equation
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~21 B21 + ~22'g2 B2'1

~12 B12+ B12'g2' ~2'2

(4.22)

(4.23)

and

~11'=B11'+ ~12g2B21' (4.24}

in which channel c, is missing in the sum over states, are
satisfied by the effective-potential matrix. Once the
effective potential has been determined one would solve
the one-body integral equation (4.20) for the element T fz,
at which point the element T)2 could be obtained by
quadratures from Eq. {4.20).

The equations which determine the effective potential,
in a manner such that the discontinuity relations (4.21}
are satisfied, are similar in form to those for the level
shift, but with channel c, eliminated from the sum over
intermediate states. Let us suppose, to begin, that the
element W2z has been determined. (A procedure for do-

ing this, in the context of the one-pair model, is outlined
in Sec. IV C.) One then has

order to avoid repetition of material presented earlier. '

The point we wish to emphasize is that the analysis draws
heavily on techniques introduced originally in the context
of the integral equation approach to nonrelativistic
three-body scattering theory, in the form developed by
Faddeev" and others some years ago. The Faddeev
equations effectively sum up successive scatterings of
different pairs. Each two-body collision is described by
the interacting Green s function for the pair. This is par-
ticularly convenient for our present purposes since it fa-
cilitates the separation of the pair interaction into a
Coulombic contribution and a part, involving pair an-
nihilation and creation, which can be expressed in terms
of the renormalized photon propagator. Corresponding-
ly, the effective potential in this three-body model can,
after some formal manipulations (of the type employed in
earlier studies of the analogous nonrelativistic problem' ),
be shown to satisfy an integral equation in which
Coulomb and pair annihilation interactions are separately
summed and introduced as input to the equations. The
result is of the form

To be consistent with our earlier discussion leading to
Eqs. (4.15)—{4.19) we will drop the self-energy term 8»
in Eq. (4.24) with the understanding that the basis states
~In ) are to be replaced by the distorted waves defined in

Eqs. (4.13) and (4.14). The problem has been shifted to
that of constructing the matrix element %22, and we now
turn our attention to this matter.

~22' B23 G 3B32' (4.25)

Only a brief outline of the formal procedure for con-
structing the matrix element 8'22 will be given here in

C. The K matrix

To begin we note, for the sake of orientation, that with

%22 set equal to zero a very simple expression for the
level shift is obtained. The positron-photon interaction,
in such a model, is one in which the photon is absorbed
and reemitted, an arbitrary number of times, and this
amounts to the introduction of a renormalized positron
propagator accounting for this radiative correction. To
include the effect of virtual-pair creation one must choose
a nonvanishing form for the element W2z. In the one-
pair model introduced in I and adopted here, a photon, in
the presence of a spectator positron, can be transformed
into a positron-electron pair. The Born matrix element
for this transition from channel c2 to c3 is denoted as
832 There are two types of interactions that can take
place in channel c3 under the constraints of the model-
the pairwise Coulomb interaction is one type and pair an-
nihilation and creation is the other. Let G3 denote the
propagator which fully accounts for these interactions.
The system makes the transition from channel c3 back to
c2 by pair annihilation; the relevant matrix element is
B23 An explicit notation for these propagators and ver-
tex functions is given in I. In the more schematic (and,
one hopes, transparent) notation employed here the ex-
pression for the effective-potential matrix element 8'22
takes the form

ren~22' +22' + K22"g 2" ~2"2' (4.26)

K'+, ' —K'-, ' =O22' 22' (4.27)

It is not difficult to ensure that approximations to the K
matrix will satisfy this relation, in which case the com-
plete set of generalized unitarity relations, Eqs. (4.21),
(3.10), and (3.8), are guaranteed (by the structure of the
integral equations from which they are determined) to be

Here g2'" represents the photon propagator, renormal-
ized by the inclusion of self-energy corrections associated
with virtual-pair creation and annihilation, in the pres-
ence of a spectator positron. [See Eq. (3.3) of I for a more
explicit definition. Note that in I we were dealing with a
system consisting of two electrons and a positron, while
here we have two positrons and an electron, so that some
rather trivial changes must be made in transcribing the
formulas of I to the problem under present considera-
tion. ] The kernel Kzz was referred to in I as the E ma-
trix. As shown there [see Eq. (3.20) of I] the K matrix
can be expressed in terms of the Green's function of a
system of three particles interacting through Coulomb
pair potentials. It was also shown how variational
methods of the Rayleigh-Ritz type could be used to ob-
tain approximations to the K matrix which allow for sys-
tematic improvement by suitable choice of trial functions.
Such methods, which include the availability of a
rigorous minimum principle, are applicable in the present
problem as well. Let us recall that the validity of the
minimum principle follows directly from the fact that the
three-body intermediate states appearing in the construc-
tion of the K matrix have a spectrum of energy eigenval-
ues lying above the energy parameter in the Green's func-
tion, which is the resonance energy ~c, „~ in the case at
hand.

There is another important consequence of the above-
mentioned spectral property, which is that the E matrix,
evaluated at the resonance energy, satisfies the particular-
ly simple discontinuity relation
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W)). = B)2g2B2) + B)2g~ W22 B (4.28)

Evidently, our discussion of the decay problem, which fo-
cused on the determination of the element W22. , is direct-

ly applicable to the scattering problem; the intimate con-
nection between the two becomes particularly clear from
this point of view. We remark that when a virtual pair is
produced the positron is created in a state which may be
thought of as a superposition of resonant and non-
resonant components. Production of the resonant com-
ponent corresponds, physically, to a scattering process in

which the incident positron collides with one of the
bound electrons in the target; this electron makes a tran-
sition to an excited state, leaving behind a vacancy in the
target. One is dealing here with a fundamental mecha-
nism for the interaction of projectile and target, the dy-
namics of which is completely contained in the E matrix.
Indeed, the particle-hole excitation mechanism is an im-

portant one under the more general circumstances of pos-
itron or electron scattering from a target which, by suit-
able choice of Fermi level, is taken as the ground state of
the system. The formalism developed here should pro-
vide the basis for the analysis of relativistic scattering and
decay problems in which the Coulomb interaction is ac-
counted for beyond the lowest orders of perturbation
theory.

satisfied. It is clear that the Hermiticity property of the
K matrix [which follows from Eq. (4.27) and the recipro-
city condition] is its most essential feature with regard to
the development of approximation methods for bound-
state and scattering problems.

If one were primarily interested in positron-atom
scattering, rather than the decay problem, construction
of the effective-potential matrix element W» would be of
primary concern. Once this element is known the
scattering parameters can be determined by solving the
relatively simple one-body integral equation (4.20) and
then making use of Eqs. (3.9). From Eqs. (4.22) —(4.24)
we find that

distinct advantages as well, and these make its continued
study worthwhile. This is particularly so with regard to
atomic bound-state and scattering problems where non-
perturbative treatments of the Coulomb interaction are of
crucial importance. An earlier study of the bound-state
problem in a one-pair approximation' has been extended
here to scattering processes, and this provides an addi-
tional illustration of the applicability of the time-
independent approach to relativistic atomic physics. To
provide focus to the discussion we have examined the
problem of neutral vacuum decay in a supercritical field.
By treating this process as the second stage of a resonant
collision one is able to bring to bear on the problem some
of the formal apparatus of collision theory. Specifically,
the unitarity property has been used here as a means for
systematically "subtracting off" one- and two-body
states, thereby allowing us to introduce a Hermitian ker-
nel, the E matrix, which contains the essential dynamics
of a system of three particles interacting CoulombicaBy.
The structure of the E matrix is precisely that studied
previously' and we have not reproduced that analysis
here. One finds that the procedure for constructing the E
matrix can be formulated in terms of a Rayleigh-Ritz
variational principle. Here we have shown how the E
matrix enters into the determination of scattering and de-
cay amplitudes.

A fairly general expression for the decay rate of the
neutral vacuum is given in Eq. (3.34). The decay ampli-
tudes appearing there are defined explicitly, in Sec. IV, in
the context of the one-pair model. This allows for the in-

troduction, in a manner consistent with unitarity, of
corrections to the lowest-order formula, Eq. (2.25), which
arise from the virtual creation and annihilation of a single
photon and of a single electron- positron pair. In the
course of the analysis we have obtained, in Eq. (4.26) and
(4.28), the basis for an effective-potential treatment of rel-
ativistic atomic scattering which allows for extensions
beyond the Dirac-Hartree-Fock techniques that have
been used for the most part up till now.
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