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There have been very few measurements of electron-loss cross sections for high-energy

(& 1 MeV) negative and neutral hydrogen projectiles interacting with gas targets. Previous
approaches to the estimation of these cross sections have been based mainly on semiempirical
fits aimed at tying the existing low-energy data to theoretical high-energy Born approximation
values. Such target-dependent approaches are reliable only for targets for which a su%cient
amount of experimental data exists. The more general approach presented here is based on the
free-collision model and uses global properties of the momentum-domain atomic form factor to
calculate electron-loss cross sections. The results are simple functions of E and Z, with a small
number of target-independent parameters. For each single-electron-loss cross section, o q o and

oo, q, fits to available data are presented.

I. INTRODUCTION

The calculation of electron-loss cross sections in
atomic collisions is a long-standing problem in atomic
physics, with important fundamental ramifications and
far-reaching practical applications. In spite of consider-
able effort over the past few decades, the single-electron-
loss problem is understood only in the high-velocity limit.
Even for the simplest processes of this kind, such as
single-electron stripping from H and H interacting with
a noble-gas target, there is no exact theory —or even
an approximation —capable of predicting electron-loss
cross sections over a broad energy range and for all pos-
sible targets.

At very high collision velocities, accurate results for
the electron-loss cross sections can be obtained using the
Born approximation' s (BA) and its variations. These
results and the associated concept of asymptotic collision
strength are applicable only for vp » u„where U„ is the
projectile velocity and v, is the equivalent bound electron
velocity. At the opposite limit of vp (( v„ the collision
is best described in terms of creation and dissociation of
molecular orbitals (MO), and an individual treatment is
needed for each target-projectile combination. Between
these two extremes there is a broad velocity regime, com-
monly referred to as v& v„but actually extending way
above and below the v&

——v, point, in which both the
BA and the MO approaches are not applicable.

While most of the existing experimental electron-loss
data lie in the region of vz v„ theoretically this velocity
regime remains largely terra incognita. The few theoret-
ical advances that have been made are mostly limited
to studies of specific cases in the vicinity of v&

——v, .
There has been some previous work for velocities be-
tween v& v, and the high-velocity limit but the ef-
fort is mostly focused on empirical fits to the scanty ex-

perimental data. While being of some usefulness, espe-
cially when designed to converge to the BA results at the
high-velocity limit, these target-dependent fits are pow-
erless when it comes to estimating the stripping cross
sections for targets for which no data exist. What is ob-
viously missing is a general approach for calculating cross
sections in the intermediate velocity regime for a broad
range of targets.

Apart from the obvious desire to further a basic under-
standing of fundamental ion-atom collision processes, an
additional motivation for this work is the goal of provid-
ing an accurate atomic data base for applied research.
For example, cross sections for negative-ion neutraliza-
tion in a gas neutralizer are of interest in various schemes
for neutral-beam heating of fusion devices. An exact the-
ory would be most desirable, but a useful temporary sub-
stitute would be a semiempirical model capable of gener-
ating electron-stripping cross sections (e.g. , for H and
H ) with reasonable accuracy over a broad range of ener-
gies and target atomic numbers. That is the goal of this
work.

A model based on the free-collision approximation is
described herein. This approach achieves the above-
stated goal without being unduly complicated. First, the
basic model and several alternative formulations are dis-
cussed. Next, calculations based on each formulation are
described. Then, for each case a small number of ad-
justable parameters are fixed by fitting to existing data
on various targets. Finally, a recipe for the estimation of
electron-loss cross sections is presented. As the approach
used here is quite general, it is reasonable to expect that
it can be applied also to more complex collision systems.

II. THE FREE-COLLISION MODEL

The free-collision model" (FCM) has been used exten-
sively in the past to estimate ionization cross sections.
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da 8z [Z —F(q)]z
dq v

(2.1)

where Z is the target atomic number, v is the collision

velocity, and F(q) is the atomic form factor of the target
atom. The momentum transfer q is given by

It is based on the assumption that the ionization of the

projectile can be regarded as Rutherford scattering of a
projectile's electron by the screened Coulomb potential
of the target atom. In other words the electron traveling

with the projectile nucleus is considered as essentially free

as long as the energy provided by the scattering process
exceeds the binding energy.

Using atomic units, the differential scattering cross sec-

tion written as a function of the momentum transfer is

given by

8+Z2 [1 —f(q)]z
V2 q3

(3.1)

where f(q) is the normalized form factor expressed in

terms of the radial electron density p(r ) as

that it is mainly the general behavior of the form fac-

tors that determines the cross sections, and that target-
structure-dependent differences in the F(q) are relatively

unimportant (except, possibly, at extremely low veloci-

ties). Therefore, if a reasonably simple function of q and

Z can be found that reproduces the general functional

form of the F(q)'s, then the cross section calculations
can be greatly simplified without sacrificing accuracy.

As the first step toward achieving this goal, the cross

section expression in Eq. (2.1) can be rewritten in the

form

q = 2v sin-,2' (2.2) f(q) = rp(r)
0

(3 2)

where 8 is the scattering angle. To obtain the total ion-

ization cross section the expression in Eq. (2.1) is in-

tegrated over the momentum range from q;„ to q

where qm;„= v;, which is the velocity corresponding to
the ionization energy, and q~~„= 2v, which follows from
kinematic considerations.

At high energies the FCM results converge to those of
the BA, from which they are derived. As the energy is de-

creased, the calculated results will gradually diverge from
the physical cross sections due to the violation of the free-
collision assumption. However, this tendency to diverge
can be easily overcome by introducing semiempirical cor-
rections. The minimal velocity v; introduced above is a
simple example of such a correction, and a more general
approach will be presented in the next section. While
in principle similar corrections can be introduced in the
BA, the results are considerably more complex.

At the time of its introduction, the FCM was hampered
by the complexity of atomic form factor calculations. The
situation is now improved, and numerical calculations of
F(q) have been carried out for many atoms. s io Still, the
fact remains that even if the best available F(q) results
are used the FCM cross sections can only be calculated
numerically, never in a closed analytical form. As such
they are not easy to use in practical applications, where
quite often knowledge of the cross sect;ion's behavior over
a wide range of energy and/or possible targets is more
valuable than precision. That explains why the FCM
approach was not widely used in the past.

III. FORMALISM DEVELOPMENT

As noted above, the complexity of the FCM approach
is caused by the need to separately calculate the atomic
form factor for each target and for each momentum trans-
fer. However, examination of the existing data for the H
and H electron-loss cross sections shows that the func-
tional dependence on energy is remarkably smooth and
roughly similar for all targets. This seems to indicate

and where p(r ) fulfills

r p(r)dr = 1.
0

(3.3)

8z Z~ '"
[1 —f(q)]z

2 3 dq
v „q (3.4)

However, this expression implies a sharp cutoff at v;, con-
trary to the behavior of the experimental data. Therefore
it is preferable to use the more general expression

8sZ' '"
[1 —f(q)]zP(q, v;)

V 0
(3.5)

where P(q, u;) is an ionization probability, yet to be de-
termined.

Equation (3.5) can be significantly simplified using the
assumption that the electron density can be represented
by

(3 6)

where p is a universal function and R is a Z-dependent
scaling radius. A typical example of this type of elec-
tron density is the well-known Thomas-Fermi distribu-
tion. While admittedly less sophisticated and precise
than modern p(r) results, distributions of this form have
the advantage of easily yielding the target Z dependence
of the process under study, albeit with some loss of ac-
curacy.

Both Eq. (3.2) and Eq. (3.3) are based on the assumption
that the electron density is spherically symmetric. While
strictly true only for closed-shell atoms, this assumption
is nevertheless justified by the fact that in single-collision
measurements the target atoms are usually randomly ori-
ented. Therefore, unless a special eKort is made to polar-
ize the target, the measured cross sections are an average
over all possible target orientations.

Now, based on the previous discussion, the total loss
cross section is given by
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The substitution of Eq. (3.6) into Eq. (3.2) yields

r dr 1 r sin[qR(r/R)]

0 Rz Rs R qR

= f(s), (3 7)

where s = qR, and f(s) is also a universal function. Now,
using Eq. (3.7) in Eq. (3.5) the cross section can be re-
written in the form

8z Z "
[1 —f(s)]'P(s/R, v;)

V2 S 3

8mZ2R~ "
[1 —f(s)]zP(s, v; R)

V 0 S
(3 8)

In this last form the whole target dependence (except for
the Zz multiplier) is contained in the parameter R.

In Appendix A it is shown that Eq. (3.7) can be used
to deduce the asymptotic behavior of the function f(s),
in the limit of small and large values of s. It is also shown
there, using the fact that the scaling radius R (and there-
fore also s) is determined only to within a multiplicative
constant, that the simplest possible choices for a function

f(s) satisfying these asymptotic conditions are

f.(&) =,z+1 (3.9)

for a density function with a singularity at the origin,
and

1f„s)=
(s +p)(s +p ')' (3.10)

where 7 is an arbitrary positive constant, for a regular

p. Both forms of f(s) will be used in the subsequent
calculations. It could be argued at this point that since
electron densities are well known to be regular, the singu-
lar form should not be considered. It turns out, however,
that the singularity assumption has a negligible eR'ect on
the total-cross-section results, while (as will be shown
in the next section) greatly simplifying the resultant ex-
pressions. This point will be elaborated further in Sec.
V.

Before the integral in Eq. (3.8) can be evaluated, a sim-
ple representation of the ionization probability P(s, v;R)
is needed. In general, P(s, v;R) ~ 0 as s ~ 0 and
P(s, v;R) is expected to asymptotically approach unity
(or at least a constant) as s goes to infinity. Since, given
the assumption of a rotationally invariant p(r), the ion-
ization probability cannot depend on the direction of the
momentum transfer, P(s, v;R) should be an even func-
tion of s. Two simple guesses for P are either a sharp
cutoff, i.e. ,

S2
P2(s, v;R) =

S + ViR 2 (3.12)

Both forms will be used in the next section. Note that v,
is expected to be of the order of the equivalent electron
velocity v, but not necessarily equal to it.

In atomic scattering calculations, a specific functional
form of the electron density is usually assumed, and
then its Fourier transform yields the form factor. In the
present case this procedure can be inverted and the elec-
tron densities (or equivalently the scattering potentials)
corresponding to the form factors in Eq. (3.9) and Eq.
(3.10) can be obtained using an inverse Fourier trans-
form. This is done in Appendix B, where it is shown
that the form factor in Eq. (3.9) corresponds to the time-
honored exponentially screened Coulomb potential, while
the one in Eq. (3.10) is related to a hydrogenic electron
density, i.e. , a I/i' potential changing to an exponentially-
screened Coulomb potential at large distances from the
origin.

IV. ANALYTICAL CALCULATIONS

When the form factors f, or f„and the ionization
probability functions Pq or P2 are substituted in Eq.
(3.8) the resulting cross sections can be calculated an-
alytically. Some simplification and also some insight into
the relative importance of various factors can be obtained
using the substitution: u = I/sz. Introducing the nota-
tion

1

(2v R)

a(u) = f(s)l. =.—,

1 4z Z)Rz

p(u, P) = P(s, v;R)i, ~ „-i,
(4.1)

yields for the electron loss cross section

K=K 1 —g Q pQ) CLQ (4.2)

q. (u) =
Q+ 1

Q2

(u+7)(u+~ ')'

(4 3)

(4.4)

while the target ionization probabilities are given by

Here the whole cross-section dependence on the physical
parameters of the collision is contained in the coefficient
z and the (energy- and target-dependent) parameters n
and P.

Using the u representation, the approximated form fac-
tors for the singular and regular case respectively are
written as

1 for s&v;R, (3») 1 for u & P
0 for u)P, (4.5)

or a gradual transition from no ionization to full ioniza-
tion, i.e.,

pz(u, p) = (4 6)
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(&+ 1)(P+1)
(4.7)

Formula&ion s2. Using g, and pz in Eq. (4.2) yields

depending on whether a sharp cutoff' or a gradual transi-
tion is assumed. The various combinations of these func-

tions give rise to four different cross-section expressions,
which are as follows.

Forrnulatiou si. Using g, and pi in Eq. (4.2) yields

Formula&ion ri. Using g„and pi in Eq. (4.2) yields

1 y4
o. =r, , (p —a)(&-& ')' ~(~+v)(p+v)

—4

(~ + ~ ')(P + 7 ')
~

» (&+7)(P+7 ')
V —V

' (P+V)(o+7 ')

p fp —» +plO'=K —ln
(p —»)~ (a;+» a+ 1 j (4.8)

Formulation rs. Using g„and pq in (4.2) yields

(4 9)

(7-& ')'(P-7)'(P-& ')'

X
7'(P —V)(P —V ')' V '(P 7')(P— V)' —( . P V i— , , + P+, —

I

V' —2 i I(P V ')»
Cl+f 6k+ P v —v ') Q'+P

—
I V '+2,

I (P —7)'»
7 —Y ) o'+7 (4.»0)

Note the difference in complexity between the results
of the singular and regular formulations.

Before proceeding, one should notice that the formal-

ism described above is incomplete. The f(q) expressed
in Eq. (3.2) is just the elastic part of the atomic form
factor. The omission of the inelastic part is not ex-

pected to change significantly the functional dependence
of the calculated cross sections on the collision energy
(except, possibly, at the low-energy end). However, there
is quite probably an additional target Z dependence, be-
yond that which is included in the simple formulation
presented here. In principle it should be possible to es-

timate explicitly the contribution of inelastic processes,
using a formalism similar to the one described above.
This was not done here because the complexity of the
resulting expressions would be increased enormously. In-

stead, since one of the declared goals of this work was

simplicity, it was assumed that the inelastic contribution
can be approximated by multiplying the results of Eqs.
(4.7)—(4.10) by a Z-dependent multiplier Q.

Traditionally, when using the Born approximation,
the cross sections are presented as a product of an

energy-dependent factor, and of the asymptotic collision-

strength parameters I. These parameters can also be
obtained from Eq. (4.2). However, in the present formu-
lation the intimate connection between the I's and the
electronic wave functions of the colliding atoms is lost, so
that the value of this result is somewhat dubious. Nev-

ertheless, for completeness sake, the detailed procedure
and calculated results are shown in Appendix C.

V. RESULTS AND DISCUSSION

The four formulations sq, sg, rq, and r2 for the
electron-loss cross section, given in Eqs. (4.7)—(4.10),

I

contain three unknown quantities, namely v;, R, and p.
As noted above, the inelastic correction adds a fourth

unknown Q. The first unknown, v;, is a property of the

projectile alone, while the other three are expected to be

target dependent.
Based on existing simplified atomic models the tar-

get dependence of R is expected to be of the form
R = ROZ+". For the sake of simplicity it is assumed
that also 7 and Q can be approximated by similar ex-
pressions, i.e., 7 = yoZ & and Q = QOZ++, respectively.
With these substitutions, the electron-loss cross sections
include seven (five in the case of the singular formula-

tion) target-independent parameters. As noted above,
the intent here is to predict cross sections for all pos-
sible targets over a broad range of energies. Therefore,
having five (or even seven) adjustable parameters is not
excessive.

The values of the parameters were obtained by fitting
the cross section expressions in Eqs. (4.7)—(4.10) (multi-
plied by Q) to existing experimental values of electron-
loss cross sections for Ho and H colliding with He, Ne,

Ar, and Xe targets. Figures 1 and 2 show the data,
which span the energy range from 2 keV to 14 MeV.
The datai2-23 are from a 3AERI compilation, ~ except
for two newer data sets 2 in the 1—7 MeV energy
range. The fitting was done using the MINUIT optimiza-
tion routine.

The o'0 ~ results for each of the four different formu-
lations mentioned above are shown in Figs. 3(a)—3(d).
The left (right) half shows results for a gradual (sharp)
ionization cutoff, while the top (bottom) half displays
results for the singular (regular) formulation. The fig-
ure shows that reasonable fits were obtained in all cases,
over a very broad energy range, and for all the targets
used (range of Z from 2 to 54). The only possible prob-
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FIG. 1. Single-electron-loss cross-section data for H col-
liding with He, Ne, Ar, and Xe.

FIG. 2. Single-electron-loss cross-section data for H col-
liding with He, Ne, Ar, and Xe.

lem areas are low-energy (( 50 keV) results for Ar and
Xe targets. However, Fig. 1 illustrates that experimental
results from various laboratories differ by considerably
more than their reported uncertainties. This clearly in-

dicates that at least part of the low-energy data is not
reliable. Therefore, until new and consistent data for
low-energy electron-loss cross sections will become avail-

able, it is difBcult to judge the quality of the fit for high-
Z targets at the low-energy end. Still, in general, the
FCM cross sections seem to reproduce the existing data
down to significantly lower energies than could be ex-
pected given the free-collision assumption inherent in the
model.

Comparison of the left half [(a) and (b)] and the right
half [(c) and (d)] of Fig. 3 shows that the low-energy
behavior is reproduced better using the gradual, rather
than sharp, cutoff formulations. Given the fact that col-
lisional ionization is known to occur at collision veloci-
ties well below Bohr velocity, this result was expected.
Note that at high enough energies all four formulations
yield virtually identical results regardless of the particu-
lar form of ionization probability used.

Comparison of the top half [(a) and (c)] and the bottom
half [(b) and (d)] of Fig. 3 reveals that there is practically
no difference between the quality of fits obtained using
a regular electron density, as opposed to one with a sin-

gularity at the origin. This can be explained by noting
that the form factors for singular and regular formula-
tions de'er only in the region of very large momentum
transfers. This region is accessible only at very high col-
lision velocities, and even then its contribution to the
total cross section is limited. Moreover, since the cross
section depends on the form factor only through the com-
bination 1 f(s) [see Eq.—(3.8)], even this small contribu-
tion is (to first order) independent of the form factor. In

other words, the assumed (integrable) singularity of the
electron distribution influences the result only through a
modification of the screening in the immediate vicinity
of the origin, where (as is well known) the screening is

negligible anyway.
It could still be argued on pure theoretical grounds that

the regular formulations are preferable to the (apparently
nonphysical) singular ones. However, for practical appli-
cations the singular ones are preferable, because the re-
sults are similar, while the expressions obtained are much
simpler. Since the results presented here are no longer
Strictly based on first principles, a localized violation of
physical reality in a largely inaccessible region is a small
price to pay for the resultant simplicity.

The o i 0 results are shown in Figs. 4(a)—4(d). The
data are from Fig. 2, where the disparity in results from
dÃerent laboratories is even greater than for the o.o 1

data of Fig. 1. The qualitative comparison of fits is sim-
ilar to the o'o i case, and all of the above observations
apply. One could argue, of course, that the FCM based
approach developed above is strictly a single-electron for-
malism, and that applying it to a two-electron ion like
H is not justified. However, empirical evidence shows
that (except possibly for extremely low collision veloci-
ties) o' i o scales with energy and target Z in the same
way that oo i does. Therefore, it is not unreasonable to
expect the same formalism to fit both processes.

VI. RECIPE FOR ESTIMATING
ELECTRON-LOSS CROSS SECTIONS

The values of the parameters obtained by fitting the
formulas in Eqs. (4.7)—(4.10) to the existing experimen-
tal H and H data for o.o q and o q 0 are presented in
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TABLE I. The parameters used to calculate gp, q.

Parameter

Rp
&R

p

Cg
Yp

Cp

Sy

0.50
0.34

-0.53
7.39
0.35

S2

0.70
0.40

-0.54
5.85
0.29

Formulation

0.50
0.11

-0.73
7.30
0.35

10.1
0.39

r2

0.70
0.11

-0.73
5.81
0.29

14.0
0.38
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FIG. 3. Results obtained from fitting the four formulations (a) sq, (b) rq, (c) sq, and (d) r2 to the uQ q data from Fig. l.
Here the symbols and curves refer to H + He (D, solid line), H + Ne (P, dashed line), H + Ar (p', dash-dotted line), and
H + Xe (&, dotted line).
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TABLE II. The para. meters used to calculate cr

P arameter

VT

~o
&R

p

Cq
3p

Sy

0.35
0.26

-0.34
41.6
-0.25

S2

0.28
0.26

-0.34
39.2
-0.26

Formulation

0.33
0.24

-1.03
34.8
-0.18
1.22
1.37

T2

0.25
0.23

-0.95
32.4
-0.18
1.43
1.20
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FIG. 4. Results obtained from fitting the four formulations (a) sf I (b) r), (c) s2, and (d) r2 to the o ) p da, )a from Fig. 2.
Here the svmbols and curves refer to H + He (6,, solid line), H + Ne (Q, dashed line), H + Ar (g, dash-dotted line), and

H + Xe (&, dotted line).
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Tables I and II, respectively. Altogether there are seven

parameters, namely v;, Rp, C~, yp, C~, Qp, and Cq. As
stated above, these parameters can be used to estimate
electron-loss cross sections for H and H, for any target
and virtually any collision energy.

The calculation is done as follows.

(1) The scaling radius R is obtained using the param-
eters Rp and C~, and the relation R = RpZ+", where Z
is the target atomic number.

(2) The values of n, P, and z are obtained using R, v;,
the collision velocity v (in atomic units), and the substi-
tutions in Eq. (4.1).

(3) If one of the regular formulations is used, p is ob-

tained using 7 = ypZ
(4) The values of z, o;, P, and, if needed, 7 are used

in one of the equations (4.7)—(4.10), depending on the
formulation chosen.

(5) The cross section (in atomic units) is obtained by
multiplying the result of the previous step by the appro-
priate value of Q, given by Q = QpZ ~.

Based on the previous discussion there seems to be
no advantage in using one of the regular (as opposed
to singular) formulations, while the amount of calcula-
tional effort is increased appreciably. It was also seen
that the gradual (rather than sharp) cutoff formulations
are preferable. Therefore the best combination of overall
accuracy and ease of use is obtained using formulation s2

[Eq (4.8)l

VII. CONCLUSIONS

Analytical expressions for the electron-loss cross sec-
tions of hydrogenic ions were obtained using the FCM
and simple estimates for target atomic form factors. Us-
ing only a few target-independent parameters a good fit
has been obtained to the existing experimental data for
He, Ne, Ar, and Xe, over an enormous energy range. Ob-
viously the model can be extended to other projectiles,
and possibly, with some modifications, to all the atomic
processes in which the cross section can be expressed in
terms of the form factors of the interacting atoms.

It may be that some of the assumptions used in the
present work are too naive. Furthermore, the accuracy
of the model might be further enhanced by using more
detailed form-factor approximants. However, simplicity
and ease of use should be balanced against precision, and
new complicating factors should be introduced only when
the benefits of doing so can be clearly demonstrated.
Further development of this model must await a more
extensive and more reliable set of experimental results.
Experimentalists should strive to make low-uncertainty
measurements over the widest possible range of collision
velocities and target atomic number.
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APPENDIX A: SIMPLE APPROXIMATIONS
TO REDUCED FORM FACTORS

From Eq. (3.7) the reduced form factor f(s) is given
by

f(s) = tp(t) ct,
0 s

(A1)

where p fulfills

f t p(t)dt = 1.
0

(A2)

The form of Eq. (Al) implies that f is an even function
of s, and that it can have no poles for real values of s.
Moreover, the asymptotic properties of f for small and
large values of s can be deduced from Eq. (Al) regardless
of the exact functional shape of P.

For s « 1 a Taylor series development of the integrand
in Eq. (Al) yields

OQ ( ts
f(s) = tP(t) I

t-
p i, 6 )

= 1 ——(t2)
6

= 1 —0(s ). (A3)

For s &) 1, an asymptotic series representation of f can
be obtained from Eq. (Al) using integration by parts.
The first few terms of the series are

(A4)

2

f(s) =,, +., (A5)

where a is an arbitrary constant. If a singular p is not
acceptable, then the simplest function will be

a2b2
f s

(s2 + a2)(s~ + b2)' (A6)

~here now the function contains two parameters, b and

Therefore, if p is regular at the origin, then f behaves
asymptotically like 1/s~. This result is well known. ~s ~s

On the other hand, if p has a 1/t singularity at the origin
[which is allowable because the integral in Eq. (A2) will
still converge), then f is of the order of 1/s for large
values of s. While not corresponding to a real physical
situation, this result is nevertheless useful. The reasons
for this are explained in Secs. III and V.

The simplest possible function whose small s behavior
follows Eq. (A3) and whose asymptotic large s behavior
corresponds to the singular case of Eq. (A4), is given by
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c. It should be noted, however, that R in Eq. (3.6) is
defined only to within a multiplicative constant, and the
same is true for s = qR. This freedom can be used to
further simplify the expressions in Eqs. (A5) and (A6).
By properly choosing the constants the result for the sin-
gular formulation is

written as

p(r) =
4 I „, —p(r) I, (88)

where p(r) is the electron radial density. Substitution of
Eq. (88) into Eq. (87) yields

f() =,, (A7)
Z

4(r) = — r (r —r)p(r )dr .
r

(89)

APPENDIX B:FORM-FACTOR INVERSION

From Eq. (3.7) the reduced form factor f(s) is given

by

f(s) = tP(t) dt.
0 s

(81)

Applying an inverse Fourier transform snd using the fact
that both p and f are spherically syrrunetric, yields

2 - sin st
p(t) = — sf(s) ds.

0 t

Using also the fact that f(s) is an even function of s

allows to express the reduced electron density p as

p(t) = . sf(s)e"'ds,

which, evaluated using contour integration, yields

p(t) = —) Res sf(s)e"'

where the sum is over the residua in the upper half plane.
Now, as the radial electron density is assumed to be of
the form [see Eq. (3.6), text]

(85)

the final result for p(r) is

p(r) = ) Res sf(s)e"~"

The electrostatic potential for a spherically synunetric
charge density is given by

I

gp it 2
@(r)=4s, r p(r )dr

r ~ 0

4~ )'
p(r )dr — r (r —r)p(r )dr

& o rr

(87)

and the result for the regular formulation is

1fs =
(s + p)(s' + 'y ')'

where p is an arbitrary constant, yet to be determined.

Now, using again the scaling assumption p(r)
(1/R ) p(r/R), and the notation t = r/R, @(r) can be
rewritten as

z
@(r) = — t (t —t)P(t )dt . (810)

t

Substitution of the density P(t) from Eq. (83) into Eq.
(810) yields

@(r) = . (t —t)dt sf(s)e"' ds .(Bll)
%ted t —OO

I
Using the additional substitution u = t —t and chang-

ing the order of integration we get

18t 48t44(r) = . sf(s)e'"ds ue""du, (812)
QQ 0

which, using the well-known result

1 1ue""du = lim . = ——, (813)
0 &~+0 2$ —6 s

can be converted into

Z 1-
f(s)e'"—ds (814)

7CCP ~ S

Evaluation of this expression using contour integration
over the complex upper half plane yields finally

4(r) = — ) Res
~

f(s)e'"-2Z - (1-
(s

4(r) =—

e ~ r/ —e
p(r) = R,„ (818)

):«s I

f(s)"'"'-" i, (»5)

where again only the residua in the upper half plane are
counted. Specifically the pole at $ = 0 is excluded, being
the limit of a pole in the lower half plane.

The results (84) and (815) can be applied to the re-
duced form factors f, (s) and f„(s) which were introduced
in the text. For f, (s) the results are

p(r) =, e ")'~,1
(816)

C(r)= —e "i",-r R (817)

i.e. , the well-known exponentially screened Coulomb po-
tential. For f„(s) on the other hand we get

where p(r ) is the full, three-dimensional charge density.
In the spherically symmetric atomic case p(r) can be

i r/R —i -p r/RZ e —p e~()=—~r 7-7 ' (819)
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which, while being similar to the previous result at very
large values of r, yields a finite electron density at r = 0.
The divergence for y = 1 is on1y apparent. Actually
the limits of (B18) and (B19) for 7 = l can be easily
evaluated and the results are

1
p(r) = se

"
283 (B20)

~() =-' -'" (~+,",) (B21)

Apart from the scaling radius R these results are iden-
tical to the ones obtained using a hydrogenlike 1s wave
function.

APPENDIX C: ASYMPTOTIC COLLISION
STRENG TH PARAMETERS

The asymptotic collision strength I is formally given

by

(C l)

Z~R~ P(P —1 —lnP)
2 (P —l)s (C4)

ZsR2 P
(7 —7 ')'(P 7)'(P——

V ')'

x (P 7)(P -7') 7'(-P V')+-7 '(P 7)-

Z R2 7 '
p +

(V —7 ')' P+7 P+7 ')
i„v(P+7 ')

7 —7-' 7-'(P+ V)

(C5)

and for r2,

which, using the cross section from Eq. (4.2), text, yields

Z2g2I= [1 —g(u)] P(u, P)du.
2 0

(C2)

Specific results for the four cases discussed in the text
a,re for s] )

Z2R2 P
2 P+1'

—2, ~(P —p ) lnP7
p —y &

+2
g I(P —7) lnPV (C6)

(-4 p —y 'l

Of course, all the results above need to be multiplied
by the inelastic correction factor Q (see Sec. IV, bottom).
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