
PHYSICAL REVIEW A VOLUME 41, NUMBER 3 1 FEBRUARY 1990

Positron-hydrogen-atom S-wave couyled-channel scattering at low energies
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Results are presented for both inelastic and rearrangement scattering of positrons by hydrogen
atoms for total angular momentum of zero. Sector adiabatic basis functions in hyperspherical coor-
dinates are used to form a 43-coupled-channel scattering expansion for energies below the H(n =4)
threshold. Partial cross sections out of e++H(1) into H(1), Ps(1), H(2), Ps(2), and H(3) are shown,
as are those out of p++Ps(1) into H(2), Ps(2), and H(3). Considerable resonance structure is ap-
parent in all of these cross sections.

I. INTRODUCTION

A positron scattering with a hydrogen atom is concep-
tually one of the simplest rearrangement processes; it re-
sults in positronium formation in addition to the usual
elastic and inelastic processes. Positronium (Ps} is a hy-
drogenic atom consisting of an electron and a positron.
If zero energy is defined by the ionization energy, the hy-
drogen state with a principle quantum number n has an
energy of —pH/2n a.u. , whereas the Ps energy levels are
given by —1/4n a.u. The reduced mass of hydrogen is
pH=0. 999456 a.u. If the initial state is a positron plus a
ground-state hydrogen atom, then four distinct energy re-
gions exist. Between —0.5 and —0.25 a.u. only elastic
scattering is possible. Between —0.25 and —0.125 a.u. ,
the Ore gap, positronium formation is the only nonelastic
process. Above —0.125 a.u. excited states of the final
atom, either H or Ps, are energetically allowed. Above
0.0 a.u. ionization, or three-body breakup, is possible.
This work will stay at scattering energies below three-
body breakup. We use notation such as H(3) to denote
the hydrogen atom n =3 states, and specify a particular
angular momentum state by H(3p).

There has been considerable theoretical interest in
e++H for many years even though there are not yet any
experimental results. For low energies Humberston has

reviewed both the early works' and the current status of
the problem. Even after three decades of work this sys-
tem is still relatively intractable with only the zero total
angular momentum elastic phase shifts for energies below
Ps formation known precisely.

Results in the Ore gap, where both elastic scattering
and Ps formation can occur, are not as consistent as for
purely elastic scattering. Many calculations of the
positronium-formation cross section ' ' ' have
been made but no two agree in both magnitude and
shape. It is generally accepted that the results of Hum-
berston are the best to date, even after taking into ac-
count the 10% uncertainty he reports.

At energies greater than the opening of the H(2} chan-
nel, but below the ionization threshold, results are very

sparse. In this energy range there have been calculations
using the Born approximation and the impulse approxi-
mation, ' but both approximations are often inaccurate
by as much as two orders of magnitude at energies this
low. A two-state calculation of the Ps(1) formation cross
section in this energy range gave results of the same or-
der of magnitude as the Born approximation. Two calcu-
lations' ' have used a three-state approximation and ig-
nored Ps formation to calculate the H(1)~H(2) partial
cross section at one energy in the energy range of in-
terest. None of these methods is expected to be accurate
in this energy range.

Mittleman has predicted a series of resonances below
the threshold of each excited state for e++H. The
existence of the resonances has been confirmed
numerically' ' and formally by Treml. Resonance
positions have been found below the thresholds of H(2), ',
Ps(2), and H(3), and below H(4) and Ps(3).

Only the total angular momentum of zero partial wave
for positron-hydrogen-atom scattering is examined in
this work. Scattering energies are varied between the
elastic threshold and the threshold of H(4). Cross sec-
tions out of the initial state e++H(1) into Ps(1), H(2),
Ps(2), and H(3) are reported, as are cross ections out of
p++Ps(1) into H(2), Ps(2), and H(3). The reactive
scattering method of Pack and Parker, ' which uses
adiabatically adjusting principal axis hyper spherical
(APH} coordinates, has been modified and used for this
Coulomb problem. Forty-three adiabatic basis functions,
not asymptotic states, are used to solve the coupled-
channel equations. An infinitely massive proton is not as-
sumed, but spin efFects are ignored.

Section II provides a summary of the theory and calcu-
lations. Scattering results are presented in Sec. III, and
Sec. IV concludes this work.

II. THEORY AND CALCULATIONS

The reactive scattering method of Pack and Parker has
been published elsewhere; ' thus, this section will con-

41 1303 1990 The American Physical Society



1304 B.J. ARCHER, G. A. PARKER, AND R. T PACK 41

d= m; m,.1—
p M

(2)

The total mass is M, m; is the mass of the separated parti-
cle, and the system reduced mass is given by

p ( A B c/M) (3)

APH coordinates, ' which treat all three arrange-
ment channels equally, are defined by

(g2+ 2)1/2

[(g2 s2)2+(2S . )2] /

tan8=
2S;s;sin e;

2S, s,
tan2g;=

2 2
.

S —s

The hyperradius, which has units of length, gives a mea-
sure of how far apart the particles are and serves as the
scattering coordinate, while the angular coordinates give
the configuration of the particles. Ranges of the two hy-
perangles are 0 ~ 8 ~ n /2 and 0 ~ y; & 2m. y; depends on
i only by definition of the origin.

The kinetic energy operator is

T = Tp+Th+ T, +Tc,
where the radial T~, Coriolis T~, and "hypersphere" Th,
terms are

T ——
P

TC

T ——
h

a, a

2' Bp Bp
p'

i%cos8
pp2sin2g

4 a (20) a + 1 asin(20)
21Mp sin(28) 88 88 sin 8

(6)

The rotational term is written as

T = AJ +BJ +CJ (7)

centrate on the application of the theory to three parti-
cles interacting via Coulomb potentials. APH coordi-
nates ' use three Euler angles to describe the tumbling
motions of the plane defined by the three particles.
Motion of the particles in the plane is described by three
internal coordinates.

Supppose that two of the particles form an atom whose
radial vector is r, and that the vector from the center of
mass of the atom to the third particle is R, A set of
mass scaled Jacobi coordinates ' for the ith arrangment
channel is then defined by

si di ri

S, =d;R, ,

cose; =S; s;/S;s;,
where the mass scaling factor is

' 1/2

where the coefficients are

Ti, + fi J(J+1)+ C — A' A +
2 2 8pp~

+ V(p(, 8,y) 4,„(8,y;p() = 6',~(p()4,~(8,g;p()

(10)

at fixed values of the hyperradius p&. The three-body po-
tential is just the sum of three Coulomb potentials

V(rA, rB, rc)=— 1 1

I'g Tg P'g

where r z is the distance between the proton and electron,
r~ is the distance between the positron and electron, and
r& is the distance between the proton and positron. In-
version of Eq. (4) provides the radial distances r, .3'

As has been described previously, ' Eq. (10) was solved
numerically using the finite-element method. For this
work, solutions of Eq. (10) were found at 267 p& in the
range 0.3 ~p ~ 120.0 a.u.

At small and medium hyperradii the surface functions
have amplitude in most of the (8,y) plane and are not
difficult to calculate with the finite-element method.
However, at large hyperradii they take on the character
of hydrogenic atomic states in the field of a distant
charged particle. As the hyperradius increases two pro-
cesses combine to reduce the area of significant ampli-
tude. First, the surface functions take on the character of
polarized atomic states localized in arrangement chan-
nels, with the lowest surface functions doing so before the
higher functions. Second, in hyperspherical coordinates
the area in the plane covered by each arrangement chan-
nel decreases as the hyperradius increases.

Combining these two effects we see from Fig. 1 that the
lowest surface function takes on the character of the
H(ls) state at moderate hyperradii and then localizes
even more as the hyperradius increases. Similarly, the
second surface functions takes on the character of the
Ps( ls) state. However, the higher surface functions take
on their atomic state character very slowly and have am-
plitude in large areas of the (8,y) plane until large hyper-
radii. By p=120.0 bohr the surface functions corre-
sponding to H(3) states still cover about 10% of the
plane. At the same hyperradius the lowest surface func-
tion has amplitude in less than 0.5% of the plane. There-
fore, the method for calculating the surface functions

A (p, 8)= [imp ( 1+sin8) ]

B(p, 8)=(21Mp sin 8)

C(p, 8)=[pp (1—sin8)]

Total angular momentum wave functions of good pari-
ty p are expanded in the form

qpJMpn —4 y~
—5/2qJpn(p)@Jp(8 +.~ )$ Jp (& p ~) (9)

r, A

where D &~M is a normalized, good parity, Wigner rota-
tion function of the Euler rotation angles. The surface
functions @,p~(8, y;p&) are solutions of
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(a), 4=4 g exp(P, s, ), (12)

FIG. 1. Lowest three surface functions on grids that lack the
finest spaced nodes of a production grid at p=11.0 bohr on the
left and p=120.0 bohr on the right. Each arrangement channel
is shown twice due to the symmetry behavior of g. 8 is zero at
the center and is m. /2 at the outer edge. y is zero at the right-
hand-side H arrangement channel, and is positive counterclock-
wise. The first and second surface functions show their local-
ized H(n =1) and Ps(l) characters in (b) and (d), respectively.
Surface function 3 has amplitude in both the H and Ps arrange-
ment channels in (e), and is a linear combination of the H(2s)
and H(2p) states in (f).

where i is the arrangement channel (H or Ps). In Eq. (12)
the scaling factors were chosen as P& =0.85 and Pz=0. 55,
intermediate values between those required to match the
n =1 and n =2 exponential factors of the respective
atoms. Partially removing the exponential behavior of
the lowest atomic states made it possible to calculate the
energies of the lowest surface functions with about 1%
accuracy.

Partial removal of the exponential tails by Eq. (12) in-

creases the amplitude of the higher 4 far from the singu-
larities causing them to be quite dependent on the accura-
cy of the tails. The total number of nodes in the gird was
limited by about 4000 due to memory limitations, and
most of the nodes were used to construct a fine grid near
the singularities in the potential. Therefore, it was
difFicult to get enough nodes into the tails of the 4 for
t +10, which limits the maximum scattering energy to
just above the H(3) threshold.

For this work a good expansion of the scattering wave
functions was provided by calculating the energies of the
lowest nine surface functions with the aforementioned
1% accuracy and carrying an additional 34 surface func-
tions for convergence. Asymptotically the lowest nine
surface functions correspond to the hydrogen atomic
states through n =3 and positronium atomic states
through n =2. The surface functions were computed at
many hyperradii and were used as a sector adiabatic basis
for the coupled-channel calculation. By sector adiabatic
basis we mean that each set of C&(p&) was used as the
scattering basis for a small range of hyperradii, called a
sector, centered on p&.

Orthonormality of the basis functions results in
coupled-channel scattering equations

82 + ~P' E yjpn(
tw p

P

must be able to simultaneously calculate both highly lo-
calized states and very delocalized states.

The finite-element method expands 4,~A in second-
order polynomials which are only defined on small re-
gions of the (O, g) space called elements. Each element is
a quadrilateral defined by nine grid points at which the
polynomials are evaluated. Elements vary in size from
large in areas of small amplitude to very small in areas of
large amplitude. Taken together the elements form a
highly nonuniform two-dimensional (2D) grid containing
approximately 4000 nodes on the region O~g~vr rad,
and 0 ~ 0 & m/2, with most of the nodes concentrated in
areas of large amplitude in the surface functions.

At large hyperradii the lowest surface functions have a
cusp at the nuclear singularity, see Fig. 1, which changes
so rapidly it is difficult to fit with polynomials, while at
the same hyperradius the higher functions have exponen-
tia1 tails which cover a large fraction of the space. To im-
prove the accuracy of the lowest surface functions a new
set of surface functions was defined by removing ex-
ponential factors from the original surface functions,

, g (4&,„B M~H;~4, (' D ~/M)g, ~"(p), (13)

where E is the total energy, V(p, 8,g) is the three-body
potential, and

15A'
8, = Tl, + T„+T, + q

+ V(p, 8y) . (14)
8pp

All the coupling has been retained in the scattering equa-
tions resulting in a set of 43 coupled-channel equations.
Equation (13) was propagated over the range 0.3~p
~ 120.0 bohr using the logarithmic derivative method.

In the method of Pack and Parker, ' once propaga-
tion is finished the APH R matrix is transformed to
Delves ' coordinates and the boundary conditions are ap-
plied. The only changes required in the scattering step
for Coulomb-type problems occur in the APH-to-Delves
transformation and in applying the boundary conditions.

The APH-to-Delves transformation and the applica-
tion of the boundary conditions require Delves atomic
wave functions and integrals over Delves coordinates.
Delves wave functions are calculated numerically because
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y, kt

(n + I +1)! X e k XI+ 1 —x/2L 2I+2(x)Aki(x)

where k =n —I —1 and the argument is x =y;s;. The
mass scaled coordinate is related to Delves coordi-
nates ' by s;=psineD and the mass-dependent factor
1s

the atoms are polarized by the field of the third particle.
Expansion of the Delves functions in hydrogenic states is
not appropriate because only 81.4% (Ref. 42) of the hy-
drogen atom polarization can be accounted for by
hydrogen-atom bound states. Instead, Sturmian func-
tions ' which form a discrete, orthonormal, and com-
plete basis are used. Sturmians are given by

1/2

0.0

—5.0
O

Q)

Q
C

Lal —10.0

(16)

We chose the scaling facotr g=1.0 to assure a good ex-
pansion of the H( ls) and Ps( ls) states, although it can be
assigned any real value.

We evaluated Delves coordinate integrals numerically
using a Gauss-Laguerre quadrature, with the same45

weights and zeros in both arrangement channels. The
weights and zeros of the quadrature were chosen as a
compromise between those required by each channel.

Surface functions and matrix elements are energy in-
dependent; thus scattering calculations can be performed
at many energies once the basis functions 4 are found at
all hyperradii. Calculations were performed at about 500—3scattering energies with a spacing of about 5.0X 10 a.u.
away from thresholds, about 3.5X10 a.u. near the
Ps(1), Ps(2), and H(3) thresholds, and about 1.5X10
a.u. near the H(2) threshold.

—15.0--
0.0 10.0

I I I

20.0

p (a.u. )

I

30.0 40.0

FIG. 2. Lowest 16 eigenvalues of the sector adiabatic basis vs
p. The lowest four curves go to the H(1), Ps(1), and H(2) atomic
energies asymptotically.

scattering for energies in the Ore gap are shown in Fig. 3
and compared to those of Ref. 20(a).

Figure 4 shows the e++H~p++Ps(1) partial cross
section for J =0 in the Ore gap as calculated by several
groups. Error analysis indicates that our results are
converged to within 2%%uo with respect to the number of
surface functions, but convergence with respect to the
sector sizes is about 4%. Humberston, ("considered the

III. RESULTS
0.30

A plot of the surface function eigenvalues C,z(p&)
versus hyperradius is given in Fig. 2 for p ~ 40.0 a.u. The
lowest few curves correspond to those of Refs. 14, 32, and
46. These adiabatic curves approach the energy levels of
isolated H and Ps atoms asymptotically.

As can be seen from Fig. 3, the present elastic phase
shifts differ from the previous results at the lowest ener-
gies, but agree reasonably well as higher energies. Con-
vergence at the elastic threshold would be improved by
decreasing the sector sizes or by using more surface func-
tions in the scattering basis. Our main interest is in rear-
rangement and inelastic processes, and the elastic phase
shifts are already well known, ' so the additional ex-
pense did not seem justified. Further, as the scattering
energy increases, convergence improves and our phase
shifts rapidly approach the results of previous calcula-
tions.

The first energetically allowed nonelastic process is the
rearrangement collision e++H(1)=p++Ps(1). Between
k =0.7069 and 0.8658ao ', the Ore gap, only elastic
scattering and ground-state Ps formation are possible.
Table I compares our elastic and Ps-formation eigen-
phase shifts and cross sections to those of Humber-
ston. " Eigenphase shifts corresponding to elastic

0.20—
U
L

Vl

0.10
Vl

I
0.00

O

N
U -0.1 0

LIJ

—0.20--
0.00 0.20 0.40 0.60

k (units of a, )

I

0.80 1.00

FIG. 3. Eigenphase shifts corresponding to elastic scattering
through the Ore gap. Present results are the unmarked solid
curve, Abdel-Raouf [Ref. 13(a)] is marked by ~, and Humber-
ston [Ref. 20(a)] by 2. The Ps(1) formation threshold is at
k =0.7069ao ', just before the slight structure in the present
phase shifts.
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k (ao ') 5H (rad) 5P, (rad) oH (~ao) op, {mao')

TABLE I. Eigenphase shifts and cross sections out of
e++H(1s) into elastic and ground-state positronium-formation
channels in the Ore gap.

0 007 I I I i I I I I I I I I I I I t I I

~~o o 006—
0

I I I i t 1 I I I I I

0.71'
0.71
0.75'
0.75b

0.80'
0.80b

0.85'
0.85

—0.065
—0.058
—0.084
—0.076
—0.110
—0.102
—0.135
—0.125

0.362
0.350

—0.487
—0.491
—0.984
—0.988
—1.308
—1.310

0.033
0.026
0.050
0.043
0.076
0.065
0.100
0.086

0.0034
0.0041
0.0038
0.0044
0.0043
0.0049
0.0049
0.0058

C0
~~
0
Q
th

0.003

0.002—

o 0005
M

~~
& 0004—

'Present results.
Reference 20(a).

0
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O 0.001
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U

~ 0.005
0
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C

~ 0.003
O
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~+0.002

O

~ 0.001

N
CL

0 000
0.45 0.50 0.55 0.60 0.65

k (units of a. )
0.70 0.75

FIG. 4. Partial cross section for J=0 Ps(n =1) formation
for energies in the Ore gap. A, present results; B, Humberston
[Ref. 20(a)]; C, Stein and Sternlieht (Ref. 8); D, Chan and Fraser
(Ref. 10); E, Wakid (ref. 9); F, Dirks and Hahn (Ref. 17) ( X 10);
G, Wakid and LaBahn (Ref. 19) ( X10); H, Khan and Ghosh
(Ref. 21) ( X 10 '); I, first Born from Khan and Ghosh (Ref. 21)
( X 10 ). The Ps(1) threshold is at k =0.4997ao and the H(2)
threshold js at k =0.7496ao

most accurate to date with a possible 10% error, ' ' is
20% higher than the present results but has about the
same qualitative shape. From Fig. 4 it is clear that all
other calculations of Ps formation in the Ore gap differ
from the present results and Humberston, and each oth-
er, either qualitatively or quantitatively.

The Ps(ls) partial cross section is shown in Fig. 5 for
energies from the formation threshold to just below the
H(4) threshold using a fine energy grid. There is consid-
erable structure in this cross section related to new chan-
nels opening and resonances associated with those chan-
nels. At the Ps(1) threshold the cross section rises very
steeply, which is in agreement with Humberston. For
p &6.0 a.u. the H and Ps energies are above the barrier
between the H and Ps arrangement channels, therefore

0.000
0.40

I i i i i I i i i i I i i & t I i i i i I

0.50 0.60 0.70 0.80 0.90 1.00
k (units of a, )

FIG. 5. Partial cross section for e++H(1)~p++Ps(1) from
the Ps-formation threshold to just below the H(4) inelastic
threshold. The clipped structure has a maximum magnitude of
0.0712wao and a minimum of 5.467 X 10 mao.

Ps(1) forms as soon as it is energetically allowed. Slight
oscillations due to incomplete convergence broaden the
Ps(1) partial cross section at the formation threshold in
Fig. 5.

Excitation of H into n =2 is possible starting at
k =0.7496ao, and the first two structures from the left
in Fig. 5 are associated with the opening of the H(2}
channel. Figure 6 shows the Ps(1) partial cross section
from the H(2) threshold to our highest scattering energy
k =0.93ao . Also shown are the cross sections for exci-
tation of hydrogen from the ground state to H(2s) and
H(2p). From Fig. 6 we see that the second structure
from the left is due to the H(2) channel opening and that
the first structure is a resonance below the H(2) thresh-
old. To identify the structures above k =0.75ao the
H(3) and Ps(2) states must be examined.

Figure 7 shows the partial cross sections out of
e++H(ls) into Ps(2s), Ps(2p), H(3s), H(3p), and H(3d).
Threshold of the Ps(2) channel is at k =0.8745ao
and the threshold of the H(3) channel is at
k =0.8884a o . There is a resonance in the H(3} channel
which causes the strong dip in the Ps(2) partial cross sec-
tions at about k =0.884ao . These three features ac-
count for the three small peaks in Fig. 6 between
k =0.8745ao and k =0.8884ao . Remaining in Fig.
6 between k =0.84ao and k =0.8745ao are three
structures which result from sharp resonances in the
Ps(2) channel.

The inelastic partial cross sections appear to be con-
verged to within 4% with respect to the number and
spacing of surface functions, except near thresholds
where the error may be 8%. The cross section into the
Ps(1} state appears to be converged to better than 4%
with respect to the final scattering distance, but the ex-
cited states are not as well converged. Asymptotically
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I
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0.004
N

L

0.003
C0

~~

Q 0.002

C
1.00

C
0
O
Q~ 0.50

/
p +Ps(2p)

e'+H(3p) e'+H(3d)-

0
O 0.001

Q PQP I 1 I

0.70 0.75 0.80 P.85 0.90
k (units of a, )

0.95

0
O

P QQ I I I I I I l I

0.87 0.88 0.89 0.90 0.91

k (units of a, )
0.92 0.93

FIG. 6. J=0 partial cross sections out of H(ls) from the
H(2) threshold to the H(4) threshold. The upper solid curve is
into Ps(ls) and the lower curves are into H(2s), lower solid
curve, and H{2p), dashed curve.

FIG. 7. J=0 partial cross sections out of H(1s) from the
Ps(2) threshold to the H(4) threshold. The upper two curves are
into Ps(2s), solid, and Ps(2p), dashed, whereas the lower three
curves are into H(3s), lower solid; H(3p), lower dashed; and
H(3d), short dashed.

the hydrogenic excited states are degenerate. However,
at moderate distances the electric field from the charged
particles causes these states to split. This prevents accu-
rate application of the usual sine- and cosine-type bound-
ary conditions until large scattering distances have
been reached. Scattering propagation was stopped at
p=120.0 a.u. and the usual boundary conditions were ap-
plied. Convergence tests indicate that this causes an ap-
proximately 15% error in the excited-state partial cross
sections. For a thorough discussion of the error analysis
see Ref. 37.

Table II shows the estimated positions of the five reso-
nances identified from our scattering calculation and
compares them to previous predictions of these posi-
tions. ' ' Resonance positions are estimated from the
scattering calculation by averaging the positions of the
two points with the largest and smallest cross section in
each resonance. The lowest resonance found below the
Ps(n =2} threshold is at E = —0.07495 a.u. , which
agrees with that of Ho and Greene. Doolen reported
a resonance at E = —0. 111 a.u. for which we found no
evidence, although the avoided crossing of the H(n =2)
states at E = —0.09 a.u. causes a "resonance" if the cal-
culation has insufficient accuracy. Our scattering ener-
gies are spaced finely enough near thresholds that any
structure wider than 3.5X 10 a.u. will be evident: thus
any resonances missed by this calculation must be quite
narrow.

Bound states of diabatic energy curves, formed by al-
lowing curve crossings to occur in Fig. 2, correspond to
metastable states in the scattering calculation. Metasta-
ble states were calculated by a method similar to that of
Ref. 14 and were used to help identify the above reso-
nances. Two additional metastable states were found at
—0.03892 and —0.033 77 a.u. They belong to the H(4},

Ps(3) set of diabatic curves but cannot be positively
identified due to the multiple curve crossings and long-
range nature of those states. These two metastable states
correspond to the two resonances of Ref. 33 at—0.038 53 and —0.03393 a.u. , identified therein as the
lowest Ps(3) and H(4) resonances, respectively.

Partial cross sections out of the initial state p++ Ps( ls)
for J =0 are shown in Figs. 8 and 9. Included are the
H(2), H(3), and Ps(2) final states for energies below the
H(4) threshold. Zero energy for these cross sections was
taken as the Ps(1) threshold, not the H(1) threshold used
previously. These cross sections may also be in error by
approximately 15% due to the long-range potentials of
the excited states.

TABLE II. Resonance positions for the lowest five states of
e++H from the scattering calculation. Zero energy is at the
ionization threshold.

State
Previous

(a.u. )

Present
(a.u. )

H{ ls)
Ps( ls)
H(2s)
Ps(2s)
Ps(2s ~

Ps(2s)
H(3)
H{3)

'Reference 14.
Reference 32.

none
none

—0.128 51'
—0.075 14
—0.065 83
—0.063 39
—0.058 03
—0.056 03

none
none

—0.128 53
—0.074 95
—0.065 63
—0.063 03
—0.057 46

IV. CONCLUSIONS

We have presented coupled-channel results for the
J =0 partial wave for positron —hydrogen-atom scatter-
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FIG. 8. J=0 Partial cross sections out of Ps(ls) from the
H{2) threshold to the H(4) threshold. The curves are into H{2s),
solid curve and H{2p), dashed.

ing at energies between the elastic threshold and the H(4)
excited state. The e++H(l)~p++Ps(1) partial cross
section is in reasonable agreement with that of Humber-
ston in the Ore gap and has been extended to excited-
state scattering energies. Partial cross sections out of
e++H(1) into the H(2) and H(3) excited states are
shown, as is the Ps(2) formation cross section. Elastic
scattering is the dominant process followed by Ps(1) for-
mation. The H(2) partial cross section is approximately
an order of magnitude smaller than the Ps(1) partial cross
section. Similarly, each partial cross section, inelastic or
rearrangement, is approximately an order of magnitude
smaller than the previous energetically allowed one. Also
shown are partial cross sections of p

+ +Ps(1) into the
H(2), H(3), and Ps(2) final states.

Five resonances due to metastable states are evident in
the above partial cross sections. These resonances are
within 1% of the previously predicted resonance posi-
tions. ' '

The discrete variable representation and/or an ex-

FIG. 9. J =0 partial cross sections out of Ps(ls) from the
Ps(2) threshold to the H{4) threshold. The upper two curves are
into Ps(2s), upper solid, and Ps(2p), upper dashed, whereas the
lower three curves are into H(3s), lower solid; H(3p), lower
dashed; and H(3d), short dashed.

pansion in analytic basis functions are currently being ex-
amined as replacements for the finite-element method in
calculating the adiabatic basis functions. These methods
speed up the calculation of the adiabatic basis functions
as well as increasing their accuracy. Extension of this
work to higher partial waves is contemplated with the
successful conclusion of that work and with the com-
pletion of a long-range propagator.
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