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Point transformations applied to density-functional calculations
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The method of point transformations enables us to generate an unknown wave function %r( j r„))
from a given electron density p(r) based on a reference wave function +p(IIk )) initially chosen for
the system. The generated wave function 4~( jr' I) can be used to evaluate the energy E~ associated
with the given density p(r). This procedure constitutes a rigorous density-functional theory, if the

density p(r) and reference function

%0(Irk�))

are varied. Within the Hartree-Fock framework nu-

merical applications are presented for the ground-state helium atom and its analogs both in position
and momentum spaces. Simple position and momentum densities are reported that well reproduce
the Hartree-Fock limit energy. A few calculations beyond the Hartree-Fock approximation are also

given.

I. INTRODUCTION

Recently, Kryachko and co-workers proposed' an
application of the method of point transformations (see,
e.g., Ref. 5 for a review} to the electron density function
p(r) of an ¹lectron system. They first choose an ap-
propriate reference density po(r) whose parent wave func-
tion +o(Irk )) is known, and construct for a given p(r) a
unique single-electron transformation T such that
p(r}=Tpo(r). Then the direct product T of the single-
electron transformation T is applied to the reference
wave function iso( I rk I ) to obtain a wave function
0' ( Irk )) corresponding to the given density p(r). Once
the wave function iIt (Irk I) is generated, the construc-
tion of density matrices I '"'(r', rz r'„~r, rz r„) is
straightforward. Kryachko and co-workers' have used
this procedure mainly for the study of density-functional
formalism. An analogous theory has been developed in
momentum space, and the mapping relation between the
momentum density II(p) and the position density p(r) is
discussed as well as the momentum-space density func-
tional of the energy. However, these studies are rather
formal, and hence the practical utility and the numerical
reliability of the proposed procedure have remained un-
clear.

Very recently, Koga, Yamamoto, and Kryachko have
examined the density mapping between momentum and
position spaces for the ground state of the helium atom,
using the proposed method of point transformations.
From a given momentum density II(p), they have been
able to reproduce the position density p(r) and the posi-
tion moment (r") (

—2~n ~4) within 2% error. The in-
verse procedure has given the momentum density II(p)
and the momentum moment (p") within 1% error, and
the accuracy of the proposed method has been found to
be quite satisfactory.

In the present paper, we apply the method of point
transformations to the density-functional calculation of
the ground-state energy of the heliumlike atoms within

and beyond the Hartree-Fock framework. In Sec. II, the
theory of point transformations is outlined for the gen-
eration of a wave function from a given density. A spe-
cial aspect of the method for the heliumlike ground state
is discussed that the generated wave function is indepen-
dent of the reference quantities within the Hartree-Fock
theory. In Sec. III, the results of density-functional cal-
culations are presented for the ground-state heliumlike
atoms both in position and momentum spaces. The
energy-optimized densities and associated moments are
compared with those obtained from the ordinary
Hartree-Fock calculations. Simple position and tnomen-
tum densities which well reproduce the near Hartree-
Fock results are reported. Illustrative treatment beyond
the Hartree-Fock approximation is also presented.
Atomic units are used throughout this paper.

II. MAPPING FROM DENSITY TO WAVE
FUNCTION AND DENSITY MATRICES

=J (s/r)po(s), (la)

where J(s/r) is the Jacobian for the variable transforma-
tion a=s(r) and guarantees the relation

J(s/r)dr=ds . (1b)

If we use the spherical coordinates (r, 0) and (s, co) for the
vectors r and s, respectively, and if we consider the point
transformation along a definite angular direction, Eq. (la)
is rewritten as'

p(r, O) =J(s/r)po(s, Q), (2a)

For an N-electron system, we assume that a prototypi-
cal wave function +p(Irk I) and the associated density
po(r) are known as a reference. To generate a wave func-
tion 0'z(Irk )) corresponding to a given density p(r), we
first establish a single-electron transformation

p(r) = Tpo(r)
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where

J(s/r) =(s/r) (ds/dr),

s =s(r, Q} .

(2b} and hence

(2c) 'Pp(ri, r2}=[p(r1)p(r2)]' /2,

J(s/r) =p(r)/p0(s) =p(r)/2[$0(s)] (6b)

(6c)

For the given set of p0(r) and p(r), the radial point trans-
formation s =s(r, Q) is obtained as a solution of either
the differential equation

d [s(r, Q)] /dr =3r [p(r, Q)/p0(s(r, Q), Q)], (3a)

or the integral equation

f p(x, Q )x dx —f p'0(y, Q )y dy =0 . (3b)
0 0

When the system has spherical symmetry, the angular
dependence vanishes in Eqs. (2a) —(3b).

We next apply the direct product T of the single-
electron transformation T thus determined to the refer-
ence wave function %0( {ri, ) ):

where the factor of 2 arises from the normalization of the
electron densities to two electrons. Equation (6c) implies
the following important fact: The generated wave func-
tion 4 is completely free from the reference wave func-
tion in this particular case. This point will be fully uti-
lized in Sec. III.

If we are working in momentum space, we first assume
an appropriate reference momentum wave function
40({p„))and the associated momentum density II0(p).
Then the exactly analogous discussion given above in po-
sition space holds for a given momentum density II(p).

III. DENSITY-FUNCTIONAL CALCULATIONS
FOR THE GROUND STATE OF HELIUMLIKE ATOMS

(4a)

sk=s(rk) or sk=(sk, Qk), sk=s(rk, Q„) . (4b)

straightforwardly, all of which are consistent with the
given density p(r). For the calculation of nonrelativistic
energies, the three types of reduced density matrices are
sufficient. They are given by

I ~(r„r2)=J(s, /r, )J(s2/r2)I 0(s, ,s2),

y (r', ~r, }=[J(s',/r', )J(s, /r, )]' y0(s', ~s, ),
(&a)

(5b)

apart from p(r) which is assumed to be given. So long as
the energy is concerned, we therefore have no need to
know the reference wave function %0( {rk j ), but the refer-
ence two-matrix I 0(r', rz~r, r2) suffices for the generation
of the required quantities.

The above procedure reveals an interesting aspect for
the ground state of heliumlike atoms. Within the
Hartree-Fock approximation, (the spatial part of) a refer-
ence wave function for this state is expressible as

+0( 1 2) PO( 140( 2) (6a)

where we assume that $0(r) is a real function. For a
given density p(r), we then have

The generated wave function 1I1 ({r&])has the electron
density exactly the same as the given density p(r). Clear-
ly, the transformation T and therefore the generated
wave function 4 are functionals of the reference wave
function %'0.

Once the wave function 1p ({rk j) is generated, we can
construct various density matrices

I'"'(r' r' ~r r )p 1 n 1 n

and their momentum-space counterparts

A. Within Hartree-Fock approximation

1. Position space

We have first assumed a density function
p(r;a, b, c, . . . ) which has adjustable parameters
a, b, c, . . . . The corresponding Hartree-Fock wave func-
tion 1I1 (ri, r2', a, b, c, . . . ) has been generated according to
the procedure described in Sec. II. Then the associated
energy Ez(a, b, c, . . . ) has been evaluated numerically us-
ing the Romberg integration method, and the parame-
ters a, b, c, . . . have been optimized to minimize the ener-
gy E using the Powell method of conjugate directions. '

For the helium atom, we have examined several simple
density functions constructed from exponential functions.
The results are summarized in Table I. It is seen that the
five-parameter function

p(r)=exp( ar)+b exp( c—r)+d e—xp( er), r =—
~r~ (7)

well reproduces (E = —2.8616799) the near Hartree-
Fock limit energy" ' —2. 861 680 0. Equation (7)
represents a linear combination of three hydrogenic ls
densities and is considerably simpler than that derived'
from the near Hartree-Fock linear combination of atomic
orbitals wave function due to Clementi and Roetti. ' The
position moments (r")(—2 ~ n ~4) associated with this
density [Eq. (7)] are given in Table II in comparison with
the near Hartree-Fock limit results. ' The agreement is
excellent in spite of the simplicity of the present density.

We have also generated numerically the momentum
wave function 4 (p„p2) and the momentum density
II (p) corresponding to the given density p(r) [Eq. (7)]
through the Fourier transformation of 1P (r, , r2). Since
the generated position wave function %' is a function of
the moduli r, and r2 in the present case, the required
transformation reduces to the Hankel transformation
with the kernel j0(pr), i.e., the spherical Bessel function
of the first kind. Therefore, we have used the
logarithmic-scale-Fourier-Bessel-transform algorithm of
Talman' for this purpose. In order to see the quality of
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TABLE I. Several position densities examined for the helium atom within the Hartree-Fock approx-
imation. The density functions are not normalized.

No. of
parameters

Position density function
(optimum parameters)

exp( —ar)
(a =3.3750)
r'exp( —br)
(a = —0.0900, b =3.2232)
exp( —ar )

(a =3.6510, b =0.8966)
r'exp( —br ')
(a =0.0420, b =3.8005, c =0.8727)
exp( —ar)+ b exp( —cr)
(a =2.9424, b =1.3226, c =4.7464)
r'[exp( br—}+cexp( dr}]-
(a = —0.0039, b =2.9337, c = 1 ~ 3383, d =4.6970)
exp( —ar )+c exp( —dr )

(a =3.0073, b =0.9841, c = 1.2326, d =4.6606)
exp( —ar)+b exp( —cr)+d exp( —er)
(a =2.8024, b =1.4190, c =3.5822,
d =1.5099, e =5.2275)

Near Hartree-Fock limit

Energy

—2.847 656 2'

—2.854 217 5

—2.861 073 4b

—2.861 478 2b

—2.861 651 7

—2.861 656 6

—2.861 671 4

—2.861 679 9

—2.861 680 0'

'Essentially equivalent to the Kellner (Ref. 15) or single-zeta (Ref. 12) calculation.
Essentially equivalent to the generalized STO calculation (Ref. 16).

'References 11-14.

the generated momentum density II (p), we have calcu-
lated the momentum moments &p") (

—2 n~~4). In
Table II, the results are tabulated and compared with the
near Hartree-Fock limit values. The agreement is found
to be quite satisfactory, though there remains some devia-
tion in the fourth moment.

Since the position density in the form of Eq. (7} yields
satisfactory results for the helium atom, we have applied
the density of the same functional form to several two-
electron atomic ions. The results are summarized in
Table III, where we find that the near Hartree-Fock limit
energies" ' ' ' ' are reproduced almost completely in all
cases.

The present approach bears some resemblance to that
discussed by Hall and ten Hoor ' for two-electron
atoms. However, the essential diff'erences are that (i} they

have studied the point transformation at the level of wave
functions and (ii) they have examined transformations re-
sulting from simple analytical transformation functions
s =s(r) such as s(r)=[(1+4ar)' I]/(2—a), in which a
is a variational parameter.

2. Momentum space

An analogous study has been carried out in momentum
space. Assuming a motnentum density II(p;a, b, c, . . .),
we first construct the momentum wave function

(np„p '2a, bc, . . . ), from which we then generate the
position wave function Vn(r„r2;a, b, c, . . . ) and the posi-
tion density pn(r;a, b, c, . . .}. The parameters a, b, c, . . .
embedded in the momentum density II are so determined
as to minimize the energy Ez associated with the gen-

TABLE II. Comparison of the position and momentum moments for the helium atom obtained from
the five-parameter position density [Eq. (7)] with the near Hartree-Fock limit values.

Position moments
Present
[Eq. (7}]

Near
Hartree-Fock'

Near
Hartree-Fock

Momentum moments
Present
[Eq (7}]

&r ')

&r)
&r')
&r')
& r')

5.9959
1.6873
0.9273
1.1849
1.9407
3.8882

5.996
1.687 31
0.927 24
1.184 64
1.939 77
3.8838

(p ')
&p

&p&
&p'&

&p'&

&p')

2.0461
1.0705
1.3995
2.8616
8.9961

52.9

2.0447
1.0703
1.3995
2.8618
8.9960

52.841

'Reference 17.
Calculated from the Clementi-Roetti wave function (Ref. 12). See also Ref. 19.
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TABLE III. Position-space density-functional calculations within the Hartree-Fock approximation
for the ground state of several heliumlike atoms. The functional form of the position density is given by
Eq. (7).

Atom
Position density functional [Eq. (7)]

Optimum parameters Energy

Near
Hartree-Fock
limit energy

H

He

Li+

Be'+

B3+

'Reference 14.
Reference 13.

'Reference 21.

a =0.8106, b =8.2572, c =1.3857,
d =13.704, e =2.4380

a =2.8024, b =1.4190, c =3.5822,
d =1.5099, e =5.2275

a =4.7577, b =0.9456, c =5.4893,
d =0.9931, e =7.8069

a =6.7564, b =0.6527, c =7.5102,
d =0.6669, e =10.448

a =8.7828, b =0.3945, c =9.6049,
d =0.4661, e =13.079

—0.487 926 2

—2.861 679 9

—7.236 414 8

—13.611 299

—21.986 233

—0.487 929 7'

—2.861 6800'

—7.236 415 2'

—13.611 299'

—21.986 23'

crated wave functions 4z and Oz.
As trial momentum densities, we have examined the

hydrogenic ls density (p +g ) and its several
modi6cations. The results of the energy minimization are
given in Table IV for the helium atom. The five-
parameter momentum density

II(p)=(p +a) +b(p +c) +d(p +e), p =~p~,

(8)

has given the best result Ez = —2. 861 679 6 in the
present study. Similar to the position density (7), the

momentum density (8) is also a linear combination of
three hydrogenic 1s densities in momentum space.

The position moments (r") and the momentum mo-
ments (p") ( —2~ n ~4) accompanied with the momen-
tum density (8) are compared in Table V with the corre-
sponding near Hartree-Fock limit values. The overall
agreement is good, though the deviation becomes larger
as ~n~ increases.

The applications of the tnomentum density (8) to the
other heliumlike atoms are presented in Table VI. The
agreement with the known Hartree-Fock limit ener-
gy" ' ' ' ' is excellent as has been the case of the posi-

TABLE IV. Several momentum densities examined for the helium atom within the Hartree-Fock ap-
proxirnation. The density functions are not normalized.

No. of
parameters

Momentum density function
(optimum parameters)

(p2+ a) 4

(a =2.8477)
(p2+a) b

(a =2.3161, b =3.7154)
(p'+b) '
(a =1.8840, b =2.2810}
(p'+b) '
(a =1.7145, b =2.3146, c =4.5571}
( '+ ) '+ ( '+ )

'
(a =2.2233, b =2.5554, c =6.4696)
p'[(p'+b) +c(p'+d) ]
(a = —0.0157, b =2.2602, c =2.5243, d =6.6779)
(p'+b) +c{p'+d)
(a = 1.9866, b =2.1894, c =2.3026, d =6.0157)
(p +a) +b{p +c) +d(p +e)
(a =1.9764, b =2.1667, c =3.3754,
d =3.8428, e =8.0809)

Near Hartree-Fock limit

Energy

—2.847 656 2'

—2.858 512 7

—2.860 144 5

—2.861 1699

—2.861 648 3

—2.861 6500

—2.861 665 3

—2.861 679 6

—2.861 6800

'Essentially equivalent to the Kellner (Ref. 15) or single-zeta (Ref. 12) calculation.
References 11-14.
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TABLE V. Comparison of the position and momentum moments for the helium atom obtained from
the five-parameter momentum density [Eq. (8)] with the near Hartree-Fock limit values.

Position moments
Present Near
[Eq. (8)] Hartree-Fock'

Near
Hartree-Fock[Eq. (8)]

Momentum moments
Present

(r ')
&r)
(r'&

&r'&

5.9964
1.6873
0.9273
1.1848
1.9407
3.8884

5.996
1.687 31
0.927 24
1.184 64
1.939 77
3.8838

&p '&

&p

&p&

(p'&
&p'&

&p'&

2.0464
1.0705
1.3995
2.8617
8.9973

52.93

2.0447
1.0703
1.3995
2.8618
8.9960

52.841

'Reference 17.
Calculated from the Clementi-Roetti wave function (Ref. 12). See also Ref. 19.

tion density (7) (Table III).
Within the Hartree-Fock framework, the simple densi-

ty functions, Eq. (7) in position space and Eq. (8) in
momentum space, are concluded to be quite good ap-
proxirnations to the Hartree-Fock densities. When the
two densities are compared, the position density (7) seems
to be slightly superior to the momentum density (8).

B. Beyond Hartree-Fock approximation

The present study beyond the Hartree-Fock approxi-
mation is limited to position space for computational
reason.

When we go beyond the Hartree-Fock framework, the
energy E is a functional of both the given density p(r) and
the reference wave function iso(r„rz),

E =E [p~'Ilol ~

i.e., the energy depends explicitly on the reference wave
function %'0 in contrast to the within Hartree-Fock treat-
ment. In Eq. (9), iIIO can be replaced with its second-

+exp( pri a—r2)]—,
S =8(aP)' '/(a+P)',

(loa)

(lob)

where a and p are variational parameters. In the case of
helium, for example, the optimum values are found to be
a =2. 183 171 and p= l. 188 531. The associated energy is
E = —2.875 661 3, which clearly shows that the reference

order reduced density matrix I'z(rirz~rirz) as has been
mentioned. Then the calculus of the variations should
follow formally. To simplify the matter, however, we fix
the functional forms of p(r) and %o(ri, rz), and adjust the

parameters involved.
For the density function p(r), we adopt the function

given by Eq. (7), which has been shown in Sec. III A to
have a sufficient fiexibility through the five parameters.
As a reference system, we have chosen the Eckart wave
function given by

%o(r, , rz) =ir '(aP) (2+2S )'i

X [exp( ar i
—pr—2 )

TABLE VI. Momentum-space density-functional calculations within the Hartree-Fock approxima-
tion for the ground state of several heliumlike atoms. The functional form of the momentum density is
given by Eq. (8).

Atom
Momentum density functional [Eq. (8)]

Optimum parameters Energy

Near
Hartree-Fock
limit energy

H

He

Li+

Be'+

B3+

'Reference 14.
Reference 13.

'Reference 21.

a =0.1749, b =17.934, c =0.5576,
d =63.510, e =1.8075

a =1.9764, b =2.1667, c =3.3754,
d =3.8428, e =8.0809

a =5.5707, b =1.6548, c =7.6861,
d =2.3190, e =17.951

a =11.063, b =1.6113, c =14.003,
d =1.7010, e =31.979

a =18.118, b =2.4857, c =21.870,
d =1.8250, e =49.882

—0.487 927 7

—2.861 679 6

—7.236 414 5

—13.611 298

—21.986 233

—0.487 929 7'

—2.861 6800"

—7.236 415 2'

—13.611 299'

—21.986 23'



41 POINT TRANSFORMATIONS APPLIED TO DENSITY-. . . 1279

TABLE VII. Density-functional calculations beyond the Hartree-Fock approximation for the
ground state of several heliumlike atoms. The Eckart wave function and density [Eqs. (10) and (11)]are
used as reference system.

Atom

H

He

Li+

Be +

B3+

Position density functional [Eq. {7)]

Optimum parameters

a = 1.0425, b = 10.331, c =2.0879, d =0.0913,
e =0.4951, a=1.0371, P=0.2836

a =2.7120, b = 1.5012, c =3.5358, d =2.1147,
e =4.9848, a=2. 1926, P=1.1900

a =4.6691, b = 1.1892, c =5.3512, d = 1.4029,
e =7.5699, a=3.3015, P=2.0789

a =7.4391, b = 1.4854, c =6.7092, d = 1.1684,
e =10.225, a=4.3960, P=2.9848

a =8.7622, b =0.3273, c =9.7153, d =0.4800,
e =12.915, a=5.4789, P=3.9012

Energy

—0.513455 5

(0.000 152 6)'
—2.876 808 4

(0.001 147 1)
—7.250 1004

(0.001 352 5)
—13.624 400

(0.001 435 )
—21.999018

(0.001 479)

Eckart

energy

—0.513 302 9

—2.875 661 3

—7.248 747 9

—13.622 965

—21.997 539

'Value in parentheses means the energy lowering from the ordinary Eckart calculation.

wave function is beyond the Hartree-Fock approxima-
tion. The Eckart wave function (10a) has the electron
density

po(r) =n '( I+S ) '[a exp( —2ar)+P exp( 2Pr)—
+2S(aP) exp[ —(a+P)r]] .

density-functional calculation is lower than the variation-
al energy associated with the reference function (10).
However, this is not surprising, since what we have done
above can be considered as the variational calculation
with a trial function

+(rl r2} 4(rl )eb(r2)+Nb(rl }1 (r2) (13)

E[p;Vo]=E(a,b, c,d, e;a,P), (12)

and therefore the variational problem reduces to the op-
timization of these parameters. We have carried out this
simplified density-functional calculation using the
methods described before.

Our final results are summarized in Table VII. In the
case of the helium atom, we have obtained the energy—2.876 808 4 which is below the Eckart energy by
0.001 147 1. A similar lowering of the energy is also ob-
served in the table for the other two-electron atoms. It
may be interesting to see that the energy from the present

Since we have fixed the functional forms of p(r) and
Vo(r, , r2} to those of Eqs. (7} and (10}, respectively, the
functional E [p;%o] now results in a function of seven ad-

justable parameters,

restricting its density to the form of Eq. (7). The two
basis functions tI'I, and fb involved in the trial function
(13) are generated by the proposed point transformation
from the sitnple exponential functions exp( ar) a—nd
exp( —pr), respectively, in a nonanalytical manner [com-
pare Eqs. (10}and (13)]. Judging from the high fiexibility
of the density function (7) experienced in the within
Hartree-Fock treatment (Sec. III A 1), we anticipate that
the present energies tabulated in Table VII are close to
the variational limits for the trial wave function (13).
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