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We have performed a 401-order perturbation calculation to resolve the controversy over the ra-
dius of convergence of the 1/Z expansion for the ground-state energy E(A) of heliumlike ions,
where A=1/Z and H(A)=—1Vi—1/r,—1Vi—1/r,+A/r,. Such high-order calculations fol-
lowed by Neville-Richardson extrapolation of the ratios of the coefficients are necessary to study the
asymptotic behavior of the perturbation series. We find (i) that A, the critical value of A for which
H (M) has a bound state with zero binding energy, is approximately 1.097 66, (ii) that A*, the radius
of convergence of the perturbation series, is equal to A., and (iii) that the nearest singularity of E (1)
in the complex plane, which determines A*, is on the positive real axis at A.. Thus our results
confirm Reinhardt’s analysis [Phys. Rev. A 15, 802 (1977)] of this problem using the theory of dila-
tation analyticity (complex scaling). We also find that the perturbation series for E (1) is convergent
at A=A.. The same statements hold for the perturbation series for the square of the norm of the
corresponding eigenfunction ||#(A)||2. We find numerically that E(A) has a complicated branch-
point singularity at A=A, of the same type as the function (1—A/A*)"%U(a,c;x /(I —A/A%)),
where U is the irregular solution of the confluent hypergeometric equation, and that ||y(A)|| has a
similar but even more complicated singularity at A*. We also discuss the 1/Z expansions for excit-
ed states of the helium isoelectronic sequence and for states of multielectron atomic ions. By-
products of our calculation include the most accurate estimates so far of the nonrelativistic ground-
state energies of the H™ ion and of the helium atom, as well as the most accurate upper bound ever
obtained to the second-order energy coefficient E,.
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I. INTRODUCTION

In 1930 Hylleraas' observed that the scaling transfor-
mation r—r/Z applied to the Hamiltonian of a two-
electron atomic ion of nuclear charge Z (in atomic units)

zZ Z 1
—ivi-iyl- = =4+ — 1
2122’1 r, rnp W

yielded the scaled Hamiltonian
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Hence Rayleigh-Schrodinger perturbation theory can be
applied to this Hamiltonian by letting the unperturbed
Hamiltonian be
_ 2 1 1

HO——%VI—%Vﬁ—Z——-Z , (3)
the perturbing operator W be 1/r;,, and the perturbation
parameter A be 1/Z. Then an eigenvalue E(A) and an
eigenvector ¥(A) of H(A)=H,+ AW can be expressed as
power series in A,

EM=3 EA", @
n=0

Y= S Ay, . (5)
n=0

Kato?? proved that these series have a nonzero radius of
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convergence. We shall always employ the convention
that

(¥l =8y, . (6)

Hylleraas developed a variation-perturbation procedure
to calculate numerically the coefficients E,. For the
ground state E (A), E; of course is just twice the ground-
state energy of the hydrogen atom, —1.0 a.u., and E, is
the first-order perturbation correction, 2=0.625 a.u,
which is evaluated in many quantum-mechanics text-
books. The higher E,’s cannot be evaluated in closed

form. Using eight basis functions, Hylleraas found

E,=—0.15744 ,
E;=+0.00876, )
E,=—0.00274,

in a.u.

Some 30 years later Knight and Scherr* ¢ used 100
basis functions of the type introduced by Kinoshita’ to
calculate E, through E,;. Their results in Ref. 6 for the
E,’s and the ratios r,=E, /E, _, are given in Table I.
(One may incidentally note from Knight and Scherr’s re-
sults that Hylleraas’s value for E, was accurate to 1 part
in 750 and his value for E; to 1 part in 150, but his value
for E, was wrong by a’factor of 3. This example is a
striking illustration of how rapidly the accuracy of nu-
merical estimates of higher E,’s can deteriorate if one is
not using enough basis functions which are concentrated
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TABLE I. Knight and Scherr’s E,’s and r,,’s.

n E, r,

2 —0.157 666 405

3 0.008 698 991

4 —0.000 888 587

5 —0.001036372

6 —0.000612917 0.5914

7 —0.000372 187 0.6072

8 —0.000242 872 0.6526

9 —0.000 165 651 0.6821
10 —0.000116 157 0.7012
11 —0.000083 281 0.7170
12 —0.000060 866 0.7309
13 —0.000045213 0.7428

in the right regions of configuration space to describe the
higher ¢,’s.)

In Ref. 5 Knight and Scherr had calculated the first 11
E,’s and had suggested that they ‘“had the appearance of
converging toward a ratio of the coefficients of about
+0.75,” which would imply that the radius of conver-
gence A*, which is determined by the singularity in E (1)
nearest to 0 in the complex A plane, would be ;L. ~1.33.
However, in Ref. 6 with two more E,’s they suggested
that the ratios “‘probably extrapolate to some value for
r . lying between +0.78 and +0.80,” which would imply
that A*=1/r_ would lie between 1.250 and 1.282.

Within the next three years the estimate for r_ had
been increased still further by Stillinger’s analysis® of the
first 21 E,’s which had been calculated by Midtdal® using
203 Hylleraas basis functions. Stillinger observed that
the ratios 7, seemed to be behaving as n — o like

r,,zrw-i-£ . (8)
n

Stillinger therefore did a least-squares fit of the r,’s for
14 <n <21 as a function of 1/n and obtained an estimate
of r,=0.8941 and A*=~1.1184. From the energy series
Stillinger estimated A., the maximum value of A for
which H(A) has a bound state, as 1.0975, implying that
Z.=1/A,, the minimum charge necessary to bind two
electrons, is about 0.911 16(10).

In 1969 Sanders and Scherr'® computed the E,’s up to
n =25 for the ground state of helium, using a basis of 100
Hylleraas functions with a single “open-shell” exponen-
tial.

In the same year Midtdal, Lyslo, and Aashamar!'' pub-
lished tables of the first 41 E,’s calculated using 204 Hyl-
leraas basis functions and of the first 81 E,’s using 140
such functions. They also used the corresponding 20th-
order wave functions to estimate that the radius of con-
vergence was between 1.20 and 1.23.12 However, as was
apparent at the time, their values for higher-order E,’s
obtained using 140 and 204 basis functions showed oscil-
latory behavior and were in serious disagreement with
each other. As we shall see, their results with 140 basis
functions for the E,’s for n 230 are completely unreli-
able. For example, their estimate for Ejy; is too small by
two orders of magnitude and has the wrong sign. These

papers illustrate how easy it is for an iterative computer
program to spew out long tables of unreliable numbers,
and how necessary it is for a scientist to determine how
well converged are his output data before drawing
dramatic conclusions from them. In particular, the sug-
gestion by Midtdal and his co-workers that the conven-
tional definition of a bound or “closed” state as one with
a square-integrable eigenfunction is in need of
modification will turn out to rest on a very shaky founda-
tion.

In 1970 Brindas and Goscinski'® applied Padé analysis
to Midtdal’s E,’s for n up to 20 (which are reliable) and
estimated Z.=1/A,=0.911246 and *=1/r,
=1/0.894=1.118, in agreement with Stillinger’s result.
However, they also observed on the basis of their Padé
analysis that one could not exclude the possibility that
E(A) has a branch point at A,, and a further Padé
analysis of the logarithmic derivatives of E(A) seemed to
indicate that the singularity was more complicated than a
simple branch point. Subsequently, Brandas and Goscin-
ski'* applied a Darboux function ansatz, which assumes
that E(A) has a simple branch point singularity, to the
E,’s of Midtdal et al. up to n =27 and found the same
value of Z, and A*=1/r = 1-=1.119. Very recently
Arteca, Ferniandez, and Castro!® have applied a rather
different analysis using the Darboux function ansatz to
the ground state of the helium isoelectronic sequence and
have obtained an estimate of Z* =0.9045+0.0035, which
in turn would imply that A*=1/Z*=1.1056%0.0040.

A major breakthrough in improving the understanding
of the singularities of E (L) was provided by Reinhardt’s
use of the theory of dilatation analyticity (complex scal-
ing) to show that “if the radius of convergence [of an ei-
genvalue E(1/Z) corresponding a normalizable eigen-
function] is determined by a singularity on the positive
real Z axis, it will occur for a value of Z such that
E(1/Z) becomes degenerate with a threshold.”!®
Reinhardt’s observation implies that Stillinger’s interpre-
tation of E(A) for A, <A <A* as a bound state imbedded
in a continuum?® could not be right. However, in his re-
ply to Reinhardt’s comment, Stillinger!” observed that
the nearest singularity A* which determines the radius of
convergence of E (A) need not in general be at a threshold
because it is possible that the corresponding eigenfunc-
tion ¥(A) loses its square integrability at a threshold
while E (1) remains analytic at the threshold. Stillinger
pointed out that this behavior, which may seem anoma-
lous, occurs in the case where H,=—1V? and W is the
three-dimensional negative square-well potential. The
energy E(A) of H(A)=H;+AW remains analytic at the
critical value of A below which H(A) ceases to have a
normalizable eigenfunction ¥(1), and E(A) possesses an
analytic continuation down to A=0, where it has a loga-
rithmic branch-point singularity. Examples of such be-
havior are actually quite common. For example, Klaus
and Simon'® have shown that in R® if H,=—1V? and
W=VI(r) is in Cg (the set of infinitely differentiable
functions different from O on a compact set), then the
ground-state eigenvalue E (L) of H (L)=H,+AW defines
an analytic function for 0 <A < » even though that ei-
genvalue is absorbed by the continuum at a strictly posi-
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tive value of A. Of course, neither the square-well poten-
tial nor a C§ potential is dilatation analytic. However,
the same phenomenon occurs in the case of the Hulthén
potential

e—r/a

=TT &)

which is dilatation analytic. The nth s-state eigenvalue
E,(A) of —1V2+AW is given by

_ (2Aa*—n?)?
8n2a?
provided that n><2Aa%.'® Clearly for each n the formula
for E,(A) defines an entire function of A (i.e., a function
analytic in the entire complex plane) even though the cor-

responding eigenfunction ceases to be normalizable at
A=n?/2a’. A less esoteric example is the Coulomb po-

E, (A= (10)

tential, for if W= —1/r, then as is well known the nth ei-
genvalue E, (A1) of —L1VZ+AWis
1 A2
——, 11
22 (11)

which clearly defines an entire function of A even though
the corresponding eigenfunctions are unnormalizable if
ReA =0. This last case might be regarded as yet another
freak of the two-body Coulomb problem, for if
W =—1/r% with 0<a <2, then a simple scaling argu-

ment shows that an eigenvalue E,(A) of
H(A)=—1V2+ AW behaves as
E, (M) =c, A2/ (12)

(where ¢, is an n-dependent constant), which generically
does have a singularity at A=0, the point where the
bound states are absorbed by the continuum. Nonethe-
less, even this family of Hamiltonians illustrates how the
disappearance of an eigenvalue need not be accompanied
by a singularity in that eigenvalue. Since by the theory of
complex scaling the bound eigenvalues of

20 e—ae
e 20(—1v2)—

(13)

ra

disappear when Im6= t1 /2, it follows that the bound ei-
genvalues of

e(Z*a)O

—4Vi- (14)

r(l

also disappear when Im6==x7/2, and hence that the
bound eigenvalues of
A
—_1g2_ N

H(A)=—1V a (15)
disappear when argA=+#(1—a/2). Thus, as illustrated
in Fig. 1, a bound eigenstate of H (A) will vanish whenev-
er argA=xm(1—a/2), but

E"(K)=cn)»2/(2—a’ (16)

has no singularity except at A=0.
However, as Simon has emphasized to us, these results
for two-body Schriodinger operators in which E(A)
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FIG. 1. A bound state eigenvalue E(A) of

H(A)=—1V2—L/r® disappears when argh=tm(1—a/2), but
E (A) is singular only at A=0.

remains analytic at a threshold do not resolve the para-
dox of having A, <A* in the case of the 1/Z expansion.
From the proof of Theorem 2.3 of Klaus and Simon’s ar-
ticle,'® it follows that if E(A) is analytic at A, and E (1)
approaches E (A.) linearly in A, —A (as is the case with
the 1/Z expansion), then for A slightly larger than A,
H (A) has a genuine bound state imbedded in the continu-
um, and the content of Reinhardt’s argument'® is that
this cannot happen because a bound state cannot
penetrate the continuum at A, and then disappear at
some larger A* which is not a threshold. [Note that our
A.-A corresponds to Klaus and Simon’s A-A,, and that
our threshold energy E(A.) corresponds to their
e (}\,0)=0.]

Although there are a wealth of results on threshold be-
havior in two-body Schrodinger operators, the only
rigorous results for three-body problems seem to be those
of Klaus and Simon,?° who, after separating out the three
degrees of freedom associated with center-of-mass
motion, considered the Hamiltonian

H(A)=—1V2+AV (%)

where — %Vz is the kinetic energy operator in R® and V is
a sum of pair potentials V;;(r; —r;) which are negative
and in C§(R®). Klaus and Simon proved that if the
ground-state energy E(A) becomes degenerate with a
unique two-body threshold at A=A, then E (L) is analyt-
ic at A,. However, no analogous rigorous results have
been published for three-body problems with pair poten-
tials which are not in Cg’.

Stillinger!” concluded his reply to Reinhardt’s com-
ment with a plea for further analysis of the enigmatic
problem of the radius of convergence of the 1/Z expan-
sion:

“It seems obvious that more information is needed for
full understanding of the analytic behavior of atomic per-
turbation problems. More than a decade has passed since
publication of Midtdal’s perturbation coefficients for the
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two-electron problem, upon which the conclusions of
Ref. [8] were based. It is timely and appropriate to turn
present computing power to redetermination of the two-
electron perturbation coefficients. This can surely be
done to higher order than before, with scrupulous atten-
tion to convergence of individual coefficients with respect
to basis-set size. The results could substantially sharpen
our knowledge of the singularities of E (A).”

In view of the continuing interest in the 1/Z expansion
(over 100 publications on it are cited in a recent article by
Silverman?!), which is one of the very few perturbation
expansions in atomic and molecular physics which is ac-
tually convergent and not merely asymptotic, the deter-
mination of the radius of convergence of the power series
for E(1/Z) is particularly worthwhile, since knowledge
of how the analytic structure of E(A) determines A* in
the case of the ground state of heliumlike ions should
provide insight which is generalizable to other atoms and
molecules.

II. SURVEY OF MATHEMATICALLY RIGOROUS
RESULTS ON THE GROUND STATE

Before describing our variational procedure, we shall
first survey what is rigorously known about the proper-
ties of the ground-state eigenvalue and eigenfunction of
the operator

=_—1y2_1 2_._1___.1_ i_l_
H(1/Z) sVi—3V3 PR +Z P (18)

Using techniques which he had developed for studying
the perturbations of unbounded linear operators, Kato?>
showed that the 1/Z expansion is convergent, and for the
ground state of heliumlike ions he derived a lower bound
to the radius of convergence of -~ =0.13. Subsequently
Ahlrichs? derived an improved lower bound to A* of
155 =0.505, which is sufficient to prove that the 1/Z ex-
pansion for the ground state converges in the physically
important case of Z =2 (helium).

Recently M. and T. Hoffmann-Ostenhof and B.
Simon?3 have proved that H (A,) has a square-integrable
eigenfunction corresponding to a threshold bound state
with ionization potential 0. (This result had earlier been
inferred in a nonrigorous way by Stillinger and Stil-
linger.s) In fact, as noted by the Hoffmann-Ostenhof’s
and Simon, the one-electron density p(r) associated with
this threshold bound state obeys (in atomic units)

—_ — 172
C_(8)(r +1)~ /418, 18k =11

— - 1/2
[8(x,—1)r)!/

>

SVP(r)SCL(8)(r+1)"B/4+8,
(19)

where 6 is an arbitrarily small positive constant and
C.(8) are constants depending on 8. These inequalities
show that the square-integrable eigenfunction of H(A_)
actually has a modified exponential decrease over not too
long a length scale [note that 8(A,—1)=0.78] even
though its binding energy is zero. As we shall see, this
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has important consequences for our ability to calculate
accurately high-order perturbation coefficients. Further-
more, the Hoffmann-Ostenhof’s and Simon noted that by
an earlier theorem of Simon,2*® the existence of a bound
state at the critical coupling constant A, implies that for
A <A, E(A) approaches E(A.)= —1 linearly in A—A_ as
A—A.—0". Explicitly, as A—A_,

EMM=EQA)+E'A)A=A)+0(A—A,),  (20)

where

1
r

<¢(}»C) ¢(7»c)>
12
WAy

as would be expected from the Hellmann-Feynman
theorem.

Finally, we may mention the general result that if the
family of operators H(AL)= A4 +AB is self-adjoint on the
domain of A, then a simple application of the Rayleigh-
Ritz variational principle shows that the lowest eigenval-
ue E (M) is a concave function of A. This is a generaliza-
tion of the well-known result that in perturbation theory
the second-order correction to the ground-state energy is
always negative.

E'(A,)=

21

III. NUMERICAL PROCEDURE

We have employed the standard Hylleraas-Knight-
Scherr (HKS) variational perturbation method described
in detail by these authors;"® hence we need not duplicate
their presentations. The only minor difference is that
since we use the convention (|, ) =35, ,, we replace
Knight and Scherr’s® operator G,=H,—E, with
Gy=H,—E;+CP,, where P is the projection onto ¥,
and C is an arbitrary nonzero real constant which we
take to be 1. Gy is a little easier to use numerically since
it has a genuine inverse, whereas G, has only a general-
ized inverse because Gy¥y=0. In the HKS perturbation
equations for n = 1, G, always multiplies a ¥, withn =1,
so G, may freely be replaced by G since
G6¢n =GO¢n +CPO¢n and P0¢n =0. 240

As basis functions for the HKS variational procedure
we initially tried using the modified Frankowski-Pekeris?®
(FP) basis set which we have recently used in a variation-
al calculation of the ground states of the helium isoelec-
tronic sequence.?® These basis functions are of the form
&(2ks,2kt,2ku), where

#(s,t,u)=s"t'u"(InsVe /% . (22)
Here s, t, and u are the Hylleraas coordinates

s=ritry, t=r,—r, u=ry,, (23)

n is allowed to be negative if n +1/+m =2j +2, and k is
a flexible scaling parameter. The key idea behind Fran-
kowski and Pekeris’s introduction and our subsequent
modification of this basis is that vastly accelerated con-
vergence of a variational calculation can be obtained by
using basis functions with the same analytic structure
(cusp behavior) as the exact function one is trying to ap-
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proximate.?’ Indeed, our initial results for the first few
E,’s using 256 such basis functions were more accurate
than even the extrapolated values for the E,’s which
Midtdal et al.!' had obtained using 204 Hylleraas func-
tions. However, it became obvious to us that our values
for the E,’s for n X 15 were not reliable enough to use for
extrapolation of the ratios r,=E, ,,/E, as n—>o. A
little reflection made the reason quite clear. Our esti-
mates of E,, and E,,,, depend on how well we have
determined ¢,. Since

Y= A", (24)
n=0

we see that for A slightly less than A, the higher order
¥,’s make a relatively large contribution to the exact
eigenfunction ¥(A). Since for A slightly less than A, the
eigenfunction (1) is concentrated heavily in that region
of configuration space where one electron is close to the
nucleus and the other is much further away (consider
H™, for which A=1), we would expect that the higher-
order ,’s are also concentrated heavily in this region of
configuration space. However, the FP basis functions,
with their common length scale factor in the exponential
exp(—ks), are not concentrated very much in this region
of configuration space except for those whose power of ¢
is very large. It was clear that it would be advantageous
to use basis functions which had a ““split” or “open-shell”
exponential, as well as the correct analytic structure at
s =0, and so we tried those developed by Frankowski®® of
the form ¢(2ks,2kt,2ku), where

(s, t,u)=s"t'u™(Ins)(ete e /2 . (25)

(The < sign depends on whether [ is even or odd to assure
the proper exchange symmetry.) With a moderately large
value of ¢ these basis functions introduced by Frankowski
could be expected to do a better job than the FP ones of
duplicating the higher-order ¢,’s; unfortunately, they did
a significantly less accurate job of duplicating the lower-
order ¥,’s, such as ¢, ¥,, etc., which are needed to ob-
tain E,, E;, etc., and which must be known accurately to
obtain by iteration the higher-order E,’s and ¢,’s. Again
our hopes had been disappointed, but the road to success
was now clearly visible.

We combined our modified FP basis and Frankowski’s
basis into one composite basis, which could be expected
to duplicate accurately both the low-order and the high-
order ¥,’s. (A similar composite basis has recently been
used by Kono and Hattori?® in their variational calcula-
tions on excited states of helium.) We excluded high
powers of ¢t from the FP basis to avoid excessive overlaps
with the members of the Frankowski basis. The numbers
of elements selected for each basis were progressively in-
creased to find a composite basis which did not suffer
from problems with numerical linear dependence. We
finally settled on using 244 FP basis functions and 232
Frankowski basis functions for a grand total of 476 basis
functions.
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IV. SUBTLETIES AT LARGE ORDER:
FINITE VERSUS INFINITE-DIMENSIONAL
EIGENVALUES AND PERTURBATION SERIES

In approximating the eigenvalue(s) E(A) of the un-
bounded linear operator

1
=—1y2_1y2_ - - 4+ = 2
H(A) Vi—3V2 . R, (26)

by the eigenvalue(s) Ey(A) of finite N X N matrix approxi-
mants Hy(A) to H(A), one needs to be aware of several
subtleties. For example, it is well known that whereas for
any given N Hy(A) has only discrete eigenvalues, H (\)
has a continuous spectrum. It is less well known (at least
among chemists and physicists) that a singularity of an
eigenvalue E(A) of the unbounded operator H(A) can
have a quite different nature from that of any singularity
of an eigenvalue Ey(A) of any finite matrix approximant
Hy(A), and hence that the large-order behavior of the
perturbation series for E(A) can be quite different from
the large-order behavior of the perturbation series for
Ey(A). To illustrate these points, we briefly review some
results which can be found in Kato’s book on perturba-
tion theory.>

Suppose that H(A)= A4 +AB is a self-adjoint operator
for all A in some interval which contains the point A=0.
Then it is quite possible that an eigenvalue E (L) of H (L)
has a singularity on the real axis [e.g., consider the eigen-
values in Eq. (12)]. However, the eigenvalues Ey(A) of
any finite matrix approximant Hy(A) to H(A) are holo-
morphic on the real axis; singularities of Ey(A) must
occur at points where ImA70. At these points Ey(A)
has at worst algebraic branch-point singularities, whereas
the exact E(A) can have a more complicated singularity.
The singularities of Ey(A) occur at complex values of A
where two or more eigenvalues of Hy(A) are degenerate.
If an eigenvalue is p-fold degenerate at a complex value of
A, then the order of the branch-point singularity of Ey(A)
does not exceed p —1. If Ay and By are Hermitian, then
the singular points of a given eigenvalue E,(A) come in
pairs which are complex conjugates of each other, as is il-
lustrated in Fig. 2. It is quite possible that as N — o the
imaginary parts of some of the singular points of Ey())
tend to O if E (A) has a singularity on the real axis.

The radius of convergence of the power series for
Ey(A) is determined by the distance to the nearest singu-
larities in the complex plane. Since these singularities
occur pairwise at values of A and A* where eigenvalues
Ey(ML) and Ep(A*) are degenerate, and since generically
twofold degeneracies are more frequent than multiple de-
generacies, generically we would expect that the singular-
ities of E(A) which determine the radius of convergence
of the power series for Ey(A) are a complex conjugate
pair A,tiA; associated with twofold degeneracies. Such
degeneracies can give rise to only a square-root branch
point. Thus typically the behavior of the nearest singu-
larities of Ey(A) will be that of

VA, +ik;—A)NA, —id,—A) . 7
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FIG. 2. Typical singular points in the complex A plane of an
eigenvalue Ey(A) of a finite N XN matrix Hy(A)= Ay +ABy,
where Ay and By are Hermitian. Ay and +60 are the moduli and
the arguments of the pair of singular points closest to 0.

These remarks can be illustrated by considering the
prototypical problem of the perturbation theory of 2X2
Hermitian matrices. Without loss of generality, consider
H,(A)=A4,+AB,, where

a 0
A2_ 0 (25%) ’
B [b“ o (28)
27 by by |

where all diagonal matrix elements are real, b,, =53, 70,
and a;;7a,. Then the two eigenvalues E,.(A) of
H,(A)= A,+AB, are given by
Ei(k)z%(a” +A.b11 +022+A.b22
t{lay —an+Mby—by))
+4A%b13b511'2) . (29)

These eigenvalues have square-root branch points at
those values of A for which the discriminant vanishes;
i.e., for which

A=(a —ay) (30)
TR (b —byy ) H4lby,|?
J
P, _,(cos8)—P,(cos@)=2""*(mn sin0) " /2 |cos |(n —
The formula
cosa—cosB=—2sina_;Bsina;‘B (38)

for the difference of the cosines of two angles shows that
asn-— oo,
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The radius of convergence A, of the power series for
E(A) is thus given by

_ Ian_an'
[(by,—by)2+4|b,|?1"2

0 (31)

Thus Eq. (29) can be rewritten as

Ei(k)=—;- ay +ap+Ab; +by)
21172
tla;; —ayl I—ZLcos0+ A ,
Ao 0
(32)
where
b,—b
cosf= — Lz sgn(a,, —a,,) (33)

[(byy —by)*+4[by,*]'

is the cosine of the argument of the singular points of
E_(A). Thus the radical in Eq. (32) can be expanded in a
series of Legendre polynomials of cos8:

A 21172
_) + —_—
1 2}\ocos9 Ao
— A
=1 }\Ocose
© [ |"P,_,(cos@)—P,(cosB)
—_ s 4
T2 1% 2n —1 (34

which is straightforward to derive from the generating
function and the recurrence relations for Legendre poly-
nomials. Hence for n =2 the nth-order coefficient in the
perturbation series for E . (A) is proportional to

_p Pn—(cos8)—P,(cosb)
0 2n —1

The formula of Laplace for the asymptotic behavior of
Legendre polynomials as n — o

EA

(35)

m

P,(cos8)= 2'"X(7n sin@)~/%cos n

(n+1)6—

+0(n"3?), (36)

which is valid for n>>1/0 (cf. Szegd,**® Theorem
8.21.2), shows that as n — oo,

36— | —cos |(n +1o—T | | +0(n 7> (37
f
P, _,(cos8)—P,(cosO)
=23"%(7rn sinf) " /%sin (n—%)@—% sin@
+0(n73%) . (39)
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Thus as n — oo, the nth-order coefficient of the perturba-
tion series of E..(A) behaves as

(n—1—=

sin
172 4

~2—sin9 +0(n"3%"?)

A"
0 mn

"=y
(40)

Since sin670, it is evident that as n — o the perturba-
tion coefficients oscillate with period 27 /6. This will be
true for any eigenvalue whose nearest singularities are
square-root-type branch points of the type in Eq. (32).
Since generically the nearest singularities of finite-matrix
eigenvalues will be of precisely this form, we may expect
that generically the nth-order perturbation coefficients
for an eigenvalue Ey(A) of a finite-dimensional matrix
Ay +ABy will asymptotically oscillate periodically as
n— . However, the nth-order perturbation coefficients
of an eigenvalue E(A) of an infinite-dimensional self-
adjoint operator H(A)= A +AB in general need not os-
cillate as n— 0. Thus when one is trying to approxi-
mate the perturbation coefficients for an infinite-
dimensional operator H (A)= A + AB by solving for those
of a finite-dimensional matrix Hy(A)= Ay +ABy, period-
ic oscillatory behavior of the finite-dimensional perturba-
tion coefficients at large order must be viewed with suspi-
cion (until proven otherwise) as possibly a finite-basis
effect of no physical significance, which is present for all
finite N but disappears at a fixed order » in the limit as
N — .3%®) Before credence can be put in periodic oscil-
latory behavior at large order, it must first be determined
how stable are the coefficients E, to changes in the basis,
such as increasing the number of basis functions or shift-
ing nonlinear variational parameters.

To avoid misunderstanding, we hasten to add that os-
cillatory behavior in the first few E,’s is hardly suspi-
cious, and even very common. For example, if
H(M)=Hy+AW is the Hamiltonian of an atomic ion,
where W is the sum of the interelectronic Coulomb po-
tentials, then E, is negative for any bound state,
E,=(W) is positive, and E, is negative at least for the
ground state of a given symmetry.

We also emphasize that asymptotic oscillatory behav-
ior with indefinitely increasing ‘‘period” of a function’s
Taylor series coefficients is not inconsistent with the
nearest singularity of that function being on the positive
real axis. Consider, for example, the function

(1—A/A*) PBexp[—E/(1—A/A*)], (41)

where £ is a positive real number. This function has an
essential singularity at A=A*, and if B is not an integer, it
also has a branch point at A=A*. This function can be
expanded as a power series in A /A*:

(1—=A/A*) Bexp[ —£/(1—A/A*)]= 3 C,(A/A*)",
n=0
(42)

where asymptotically

C

= 121/ 2 —E/2y B/2=3/4

X |cos 2(§n)'/2+%—1’—’i

2

+O(n_1/2)] (43)

as Perron’! showed in 1921. Hence as n— o, the
coefficients C, oscillate, but with a steadily increasing
“period” proportional to 2m(n /£)!/2. Thus we see that a
function whose nearest singularity is on the positive real
axis can still have oscillatory Taylor-series coefficients.

V. NUMERICAL RESULTS FOR THE GROUND STATE

All of our calculations were performed in quadruple
precision (~30 decimal digits) on the University of
Delaware’s IBM 3081D computer.

The first order of business is to pin down the critical
value A, the maximum value of A for which H(A) has a
bound state. Using our 476 basis functions in a variation-
al calculation with k =0.60672 and ¢ =0.448 we still
have a bound state, with binding energy 2.0X 1077 a.u.,
at A=1.097 66. This is a lower bound (within a round-off
error which experience strongly suggests is negligible) to
A.. Obtaining a useful rigorous upper bound to A, is un-
feasible; however, comparison of the close agreement of
(i) Stillinger’s estimate A.=1.0975, (ii) our results with
approximately 250 FP-type basis functions which still
gave binding at A=1.0976, and (iii) our result
A, >1.097 66, leads us to believe that the exact A, does
not exceed our lower bound by more than a few units in
the last digit. From our results in Table II and Fig. 3 one
may see that E (1) approaches E (A.)= —1 like

E(A)=E(A,)+0.235(A—1,) , (44)

in agreement with the observation of the Hoffmann-
Ostenhof’s and Simon?® that E(A)—E(L,) is linear in
(A—A,). As mentioned previously, by Simon’s?*® proof
of the Hellmann-Feynman theorem at thresholds, the
coefficient of the linear term equals

<¢(AC) ¢(k6)>
IR

1
rn

(45)

The reciprocal of 1.097 66 is 0.911 03, which provides an
upper bound to and an accurate estimate of the minimum
nuclear charge Z,=1/A, necessary to bind two electrons.

Having obtained an accurate knowledge of A, (prob-

TABLE II. E(A)’s for A slightly less than A, =1.097 66.

A E(A)
1.0960 —0.500409 3
1.0970 —0.5001623
1.0974 —0.5000640
1.0975 —0.500039 4
1.0976 —0.5000149
1.097 66 —0.5000002
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linearly in A—A..

ably to within a few parts in 10°), we may now proceed
with the much more difficult task of estimating A*. Since
we could not be sure how representative are the first 21
E,’s, we decided to calculate the ¥,’s for n up to 200 and
hence the E,’s for n up to 401. Our results with k =0.80
and ¢ =0.425 are presented in the second column of
Table III. The ratios r,=E, ,,/E, for n up to 400 are
graphed versus 1/n in Fig. 4. The results of other runs
with k =0.85 and ¢ =0.420, kK =0.80 and ¢ =0.425, and
k =0.85 and ¢ =0.425 suggest that even our higher-
order E,’s are accurate to a few parts in 10° and our
high-order r,’s to a few parts in 10°%. The lower-order
E,’s are of course much more accurate. In view of the
recent resurgence of interest in calculating E,,* we may
mention our estimate of

—0.157 666 429 469 14

obtained with kK =1 and ¢ =0.40. Since ¥, is included
exactly in the basis with k =1, the HKS variational prin-
ciple implies that this estimate is an upper bound (within
a negligible round-off error) to the exact E,.

The sum of the E,’s for n running from 0 to 401 is

—0.527751016 544 266

which at the time we did our calculations was the most
accurate estimate of the energy of the ground state of
H™; by comparison, Frankowski and Pekeris’s variation-
al upper bound®® was

—0.52775101635 .

Our perturbational result is only slightly above Drake’s
recent value

—0.527 751016 544 306(85)

obtained by extrapolation of results with up to 616
Hylleraas-type functions with multiple exponential scale
parameters.”> A variational calculation with our 476
basis functions, but using the nonlinear variational pa-
rameters k =0.73,¢ =0.40, yields an upper bound of

—0.527751016544 375 ,

which is the most accurate estimate to date of the non-
relativistic energy of H™.

For Z =2 the corresponding weighted sum of
coefficients with k =0.80 and ¢ =0.425 yields an esti-
mate of

n

FIG. 4. The r,’s for 11<n <400 vs n !, obtained with
¢=0.425 and k=0.80.

—2.903724 3770341167

for the ground-state energy of helium, which may be
compared with the variational upper bound of

—2.903 72437703407

obtained recently with 230 FP basis functions by Freund,
Huxtable, and Morgan.26 (In that article, we conserva-
tively reported one fewer digit, and we rounded our result
upward to ensure that we still had an upper bound.) It
may also be compared with the estimate

—2.903 724377034 105(28)

which Drake obtained by systematic extrapolation of re-
sults with up to 616 basis functions.’> A variational cal-
culation using our 476 basis functions, but with k =0.96
and ¢ =0.40, yields an upper bound of

—2.903724 3770341184 .

At first it might seem puzzling that the optimal non-
linear parameters for calculating the large-order series
coefficients do not optimize the energy for various values
of Z. However, it can be readily understood in the light
of the fact that changing Z =1/A changes the weighting
of the energy coefficients E, in the power series (4) for
E(X). As A decreases, the higher-order coefficients E,
are weighted less and less, and so they count less heavily
in the optimization of the total energy. Hence in optim-
izing E(A) for a given A <A_, it pays to use nonlinear
variational parameters which do a better job of optimiz-
ing the lower-order than the higher-order coefficients.

To hasten the convergence of the ratio’s r, to their lim-
iting value r . =1/A*, we tried Neville-Richardson extra-
polation. Stillinger® had already observed that for
10 =n =20 the ratios r, seemed to be behaving like

C,
rn2C0+T . (46)

If one has a sequence of numbers r, such that
%

C,
r,,=C0+———+-—2—+--- , 47)
n n
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then one can readily see that the weighted differences

s,=(n+1)r,,,—nr,

Cz C2
=("+1)C0+C1+Tl_+ e _"CO—CI_T_ oo
o CZ
B O_W—— +l)+”. (48)

converge to the same limit C; as the r,’s but faster by a

s,=(n+1)Cy+(n +1)]/2C’”+C‘+W

BAKER, FREUND, HILL, AND MORGAN 41

power of 1/n. However, as illustrated in Figs. 5 and 6,
we found that the s,’s were not converging like
1/[n(n +1)], but rather like 1/V'n. We can now retrace
our steps to see what has happened. If the r,’s are behav-
ing like

=Co+n'[(1+1/n)2=1]Cy , +n V(A +1/n)"2=1]C3 5+ - - -

_ 1 Cip
—C0+_f n1/2

+0(n~3?) .

Thus even in this case Neville-Richardson extrapolation
has helped accelerate the convergence by eliminating the
1/n term completely and reducing by 1 the coefficient of
the n '/ term. Graphs of the s,’s calculated with
k =0.80 and ¢ =0.425 and with k =0.85 and ¢ =0.420
as a function of n~!/2 for 50<n <399 are presented in
Figs. 5 and 6. The linear dependence of the s,’s on n ~!/2
is evident. We regard the slight c- and k-dependent oscil-
lation of the s,’s as an incipient indication of the periodic
oscillation which must asymptotically occur in the
coefficients E, of the perturbation series for any finite
Hermitian matrix problem as n — .

It is clear from the graphs that the intercept as n —
is entirely consistent (within finite-basis set errors) with
Z,=1/X,=0.91103. A least-squares fit of the s,’s to the
formula
€32 | ©2

+—= (51)
n3”? 2

12
n1”2

+

5,~0.91103+
n

yielded unreliable values of c;,, and c, but a value of
¢y, =—0.062, (52)

which is probably accurate to one unit in the last digit.

0.912
0.9103 —=

0.910

0.908

0.906 - \\

0.904 .

T T T T T
0.00 002 0.04 006 008 010 012 014 0.16
-2
n

FIG. 5. The s,’s for 50 <n =399 obtained with k=0.80 and
c=0425vsn" 2,

Cin  C  GCp
r,=Cy+ — R (49)
L VZ) n3”?
then the s,’s are behaving as
C
'—“nCO_nl/ZCl/Z_Cl_ ?;z—"'
(50)

[

We can also examine the limit of the 7,’s as n — « by
removing the n~!/? term by forming the weighted
differences

t,=2[(n+L)r, 4 1y—nr,]. (53)

If one assumes that the r,’s have an asymptotic expan-
sion given by Eq. (49), then it is a little tedious but quite
straightforward to verify that the ¢,’s obey

C
t,,=CO—-—’Tl-+O(n—3/Z). (54)

Graphs of the ¢,’s calculated with kK =0.80 and ¢ =0.425
and with k =0.85 and ¢ =0.420 are presented in Figs. 7
and 8. The linear dependence of the ¢,’s on 1/n is evi-
dent, and again it is clear that the intercept is consistent
with 0.91103=Z_,=1/A,. Least-squares fitting indicates
that the value of C, in Eq. (54) is about —1.76. Hence
we see that the ratios obey

Cl/2
n1/2

C
r,=Cqy+ +—n—‘+0(n—3/2) : (55)

where

0.912
0.91103 —o

0.910 -
Sn
0.908

0.906 -

0.904

0.902 T T T T T T T
000 0.02 004 006 008 010 0.12 0.14 0.16

o
n™"

FIG. 6. The s,’s for 50 <n <399 obtained with k=0.85 and
c=0.420vsn 172,
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0.95

0.94 ///
th ///

0.93

///
e
0.92- -
-
0.91103 557 ‘ : :
0.000 0.005 0.010 0.015 0.020

n

FIG. 7. The t,’s for 50<n <399 obtained with k=0.80 and
¢=0425vsn~ !,

Co=1/A,=Z,~0.91103, (56a)
CI/Z =2C1/2 = —0. 124 ’ (56b)
C,~—1.76 . (56¢)

Whetker C, ), is exactly —+ we are unable to say. Thus
we conclude that the radius of convergence of the 1/Z
expansion for the ground state of the helium isoelectronic
sequence is indeed determined by a singularity in E () at
a distance A, from the origin, as Reinhardt'® had sur-
mised.

The 2% discrepancy between A* and A, which first
Stillinger® and later Brindas and Goscinski'>!* and quite
recently Anno and 'I’eruya34 and Arteca, Fernandez, and
Castro'® had found was due not to errors in the calcula-
tion of the E,’s by Midtdal,’ but to the anomalous fact
that at n =21 one is still very far from the region where
the asymptotic behavior of the r,’s is manifest. Since
C,/C, =14, it is only for n >(C, /C, ,,)*=200 that the
leading n ~!/? term in the asymptotic expansion for 7,
exceeds the higher-order n ~! term, and the region where
the n ~!/? term dominates the n ~! term is much further
out indeed. For example, the n ~!/? term exceeds the
n~! term by a factor of 10 only for
n>(10C, /C, ,,)*=20000. Hence the range 10<n <20
is very, very far from the asymptotic region, and it is this
circumstance which is responsible for the discrepancy be-

0.91103 ECER
0.000

0.005 0.010 0.015 0.020
n'

FIG. 8. The t,’s for 50 <n <399 obtained with k=0.85 and
¢=0420vsn "1,
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tween A, and A* found by Stillinger,® by Brindas and
Goscinski,'*'* by Anno and Teruya,** and by Arteca,
Fernandez, and Castro.!® This point is illustrated in Fig.
4, a graph of the r,’s for 11<n <400 versus 1/n. For
n <20 the r,’s are approximately linear in n !, but
straight-line extrapolation yields a misleading value of
the intercept.

To provide further evidence that A, and A* are identi-
cal, we investigated the power series for ||¢(1)]|:?
2

[MP= || 3 A",
n=0
=3 3 MY, lY,)
n=0n"=0
=SS Wl ) (57
n=0 m=0
Our 200th-order wave function
200
2 A, (58)
n=0

will provide the coefficients of the powers of A in Eq. (57)
up to n =201. The ratios R, of the norm coefficients
were found to have the same qualitative behavior as the
ratios of the energy coefficients. The same kind of
Neville-Richardson extrapolation yielded weighted
differences S,,, which in Figs. 9 and 10 are graphed versus
n 172 for the two pairs of values k =0.80, c =0.425 and
k =0.85,c =0.420. Although it is more difficult to esti-
mate the intercept because of the curvature of the graphs,
clearly an intercept of Z,=1/A.=0.91103 would be
consistent with the graphs. Least-squares fitting of the
S,’s suggests that

¢
S,=co+—1m+o(n"172), (59)
n
where
co=1/A,=0.91103, (60a)
Ci1p= —0.062 N (60b)
0.915
0.91103 ——=
0.910 -
Sn
0.905
0.900 - h e
-
0.895 T T
000 005 Ol]O’ 015 0.20

n

FIG. 9. The S,’s for 25 <n <199 obtained with k=0.80 and
c=0425vsn "',
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0.915 0.935
//'
0.91103 ——= 0.930 7
0.910 P
T -
Sn - " 0 9254 P
0.905 \\\ -
™~ 0.920 e
- - -
0.900 -| . /
“ 0.915
\\\ 0.91103
0 895 . T 0.910 ‘ ‘ ; .
000 0.05 0.10 0.15 0.20 0.00 0.02 0.04 0.06 0.08 0.10

FIG. 10. The S,’s for 25 <n <199 obtained with k=0.85 and
c=0.420vs n 172,

which are identical with the values for the weighted
differences of the energy coefficients. However, our
analysis of weighted differences

T”=2[(n +%)Rn+1~nR"] ) (61)

in which the n~'? term is eliminated, revealed a
surprise. Whereas the corresponding quantities ¢, for the
energy series converge like 1/n as n— o, the T,’s for
l¥(A)]|* converge like n ~3/4, as can be seen in Figs. 11
and 12. Least-squares fitting suggests that

c
T,~co+—+o(n ™34, (62)
n
where
co=1/A,~0.91103 , (63a)
C3,4=0.25 . (63b)

Combining the results for the T,’s and the S,’s suggests
that the ratios R, of perturbation coefficients for ||¢(1)||
obey

C1/2 + C3/4
nl/2 n3/4

R,=Cy+ +0

n

L ] , (64)
n

where

0-935

0 930 - e

0.925

0.920

0.915 -

0.9M03 —————+
0.910 T T T
0.00 0.02 0.04 0.06 0.08 0.10

-3,4
n

FIG. 11. The T,’s for 25 <n <199 obtained with k=0.80 and
c=0.425 vs n 7374,

FIG. 12. The T,’s for 25 <n <199 obtained with k=0.85
and ¢=0.420 vs n ~3/4,

Co=c,=0.91103 , (652)
Ci2=2,,=-0.124, (65b)
C3/4=—2C3/4:_0.50 . (650)

Whether C, /, and C,, are exactly —+ and —1, respec-
tively, is an interesting question which the uncertainty in
our estimates does not allow us to answer.

Thus far we have established that both E(A) and
l$(1)||* have singularities in the complex plane at a dis-
tance A, from the origin. Since all but the first few
coefficients of the series for the exact E(A) and ||¢(1)||?
have the same sign, we may conclude from a theorem of
Vivanti®® (see Dienes, Ref. 36, for a more accessible proof
in the English language) that the perturbation series for
the exact E (L) and ||¢(A)||> have singularities directly on
the positive real axis at A=A.

Having determined that the singularities in E (A) and
ll$(1)||* are both located on the positive real axis at A,,
we may next investigate their nature. As Stillinger® ob-
served, a simple branch point singularity of the type
(A*—A)" will produce ratios of coefficients which behave
like

C’1
rn=C0+T+"' , (66)

where Cy=1/A* and C,/Cy=—(1+m). Since we have
found that in fact
o C
2 S
n

En+1 _
nl”2

IS =r,=Cy+

n

(67)
n
with a nonzero C, ,,, we conclude that the singularities in
E (L) and ||(A)|| at A, are more complicated than a sim-
ple branch point. To proceed further, we take the loga-
rithm of Eq. (67) to obtain

C
In(—E, |)—In(—E,)=In [Cy+
n

(68)

Equation (68) is a first-order finite difference equation for
In(—E, ) which can be solved by analogy with the corre-
sponding differential equation. The result yields the fol-
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lowing large-n asymptotic expansion for E, :

E, ~— const X CfnPexp(—an'’?)
X(1+y,,n 24y n~ 14+, (69)
where
Co=1/A*=0.91103 , (70a)
—2C,,,/Cy=0.272, (70b)
and
B=—LC,,,/Co)*+(C/Cy)~—1.94 . (70c)

Term by term differentiation of (4) yields for the kth
derivative of E (1) the expansion

d"E(\) _ & (ntk)!

dAk "‘Z‘o n!

E, (A" 71

The asymptotic expansion (69) with a >0 implies that for
each positive integer k the series in (71) converges uni-
formly and absolutely for all A for which |A| <A*. This
in turn implies that E (A) and its derivatives have asymp-
totic expansions in powers of (A—A*) which are valid as
A—A* from within the interior of the circle of conver-
gence |A|<A*. To show this, we first record the ap-
propriate version of Poincaré’s definition of an asymptot-
ic expansion, and then state the result as a theorem.
Definition. d’E())/d )\ has an asymptotic expansion

d'E(M)/dM~ S al(A—A*)" (72)

m=0

as A—A* in |A| <A* means that for each positive integer
M

dlf(k) g aD(A— A%+

+(A=A*MD(A) (73)

where the remainder obeys

lim_ eg(r)=0,
A—A*

with the understanding that the limit is to be taken with
A approaching A* from the interior of the disk defined by
[A] <A*.

Theorem. If the asymptotic behavior of the coefficients
is given by (69) with >0, then d/E(A)/d)A has an
asymptotic power series of the form (71) as A—A* in
Al <A*.

Proof of Theorem. Taylor’s theorem with remainder
yields an expansion of the form (73) with
s L é_f_’"ﬂk_)]

A=A*

m (74)
m

dlj+m

and

(A—A%)
(M+1)

d/tMHIg ()
d) M+l

()=

) (75)

where A=0A+(1—60)A* for some 8 in 0<0=<1. Conver-
gence of the series in (71) for A=A* implies that the
derivatives in (71) all exist. For all A in |A| <A*, (71) and
(75) imply the bound

[A—A*] i (n+j+M+1)
(M+1) <, n!

le(n)] <

|En+j+M+1|

X(A*)", (76)

where the series in (76) converges as a consequence of
(69). The bound (76) implies that £%(1)—0 as A—A* in
|A| <A*, thus completing the proof.

To elucidate further the nature of the singularity, we
next examine a known, well-studied function whose ex-
pansion coefficients have the behavior (69) for large n.
Consider the function U defined by the integral represen-
tation

Ula,c;x)= O”e—x't““‘(lﬂ)f—“—'dt ,

1
I'(a)
Rea>0, Rex>0. (77)

U(a,c;x) is the second solution of the confluent hyper-
geometric equation. (Ref. 37, p. 277; Ref. 38, Eq. (2), p.
255). The restrictions Rea >0, Rex >0 in (77) can be re-
moved by using other representations for U. We will
show that the function

—a

S(a,c,x,A*;A)= ll—% Ula,c;x /(1—A/A%)),
(78)
with
A*=1/C,, (79a)
x =(a/2)*, (79b)
a=Jc+p+3, (79¢)
c =1x[1+a*(B+3)+ La*+2ay, ,]1'?, (79d)

has a power series in powers of A whose coefficients have
a large-n asymptotic expansion which agrees with (69)
through the ¥, ,n ~!/? term. Additional terms in the ex-
pansion (69) can be fitted by appropriate choice of the
coefficients b, in the function

K
Tg(a,c,x,A*; )= b;S(a,c +k,x,A*;1) . (80)
k=0

The derivation of these results begins with the asymp-
totic formula



1262

BAKER, FREUND, HILL, AND MORGAN 41

Ta+n)Ula +n,c;x)=TTl/Zx(l—Zc)/4n126—-3)/4exp[_z(nx)l/Z_i_%x]

X {1+ (nx) V[ He —1)e =)+ (te —a)x —Lx*]+0(n D}, 81)

2

which is valid as n — c when x is real, positive, and bounded away from zero and infinity. Define the coefficient a, by

_T(a+n) |[c7a—1 Y R
a, ra) n Ula +n,c;x)(—A*%) (82)
Equation (81) and the asymptotic formula
p L(n—p) 1 _
- |= = 1+ !
(=", N(—p)Cin+1) r‘(_p)npﬂ[ Oo(n~ )], (83)
which follows from the Stirling approximation to the I" function, can be inserted in (82) to show that
- Tfl/zx“ﬂ”/“exp(X/Z) *\—n 1/23,,(4a —2c —3)/4
a,= Ma)la—c+1) (A*) "exp[ —2(nx)""*]n
X {1+ (nx) "V [ He =) =)+ (e —a)x — Lx?]+0(n N} . (84)

Formulas (79a)-(79d) are obtained by comparing (84)
with (69). Equations (77), (78), and (82) can be used along
with Eq. 6.14.6 in Ref. 38 to show that
S(a,c,x,A*;A)=3 a,A". (85)
n=0
The fact that additional terms in the expansion (69) can
be fitted by using the function Tk defined in (80) follows
from the fact that the factor n‘4 27374 in (84) de-
creases by n ~!/2 when c is increased by 1.

The next question obviously is uniqueness: what other
functions have power series whose expansion coefficients
have the asymptotic behavior (69) for large n? We do not
know how to give a definitive answer to this question.
However, a better understanding of how the asymptotic
behavior (84) arises can be gained by examining the

derivation of the asymptotic formula (81). It follows
from (77) that
Ta+mUla +n,c;x)= [ “g(Dexplh(1)]dr , (86)
where

g()=t (14! (87)
and

h(t)=—xt+n[lnt —In(1+1)] . (88)

For n large, the major contribution to the integral in (86)
comes from the neighborhood of a saddle point at
172

) (89)

which is the positive root of h'(t,)=0. The integral (86)
can then be approximated by the saddle-point formula

1/2
2w

J g explh (n)]dt ~ ey | 8lUoexplh o]

(90)

which is accurate enough to reproduce the first term of

the expansion (81); additional terms can be obtained by
expanding about the neighborhood of ¢, to obtain a more
accurate approximation.’®> Most of the contribution to
the integral occurs for |t —t,| S x ~3/*n1/%; modifications
to g (¢) which do not change g (¢) much in this range, and
which leave g (t)exp[h (¢)] small outside this range, will
not change the asymptotic behavior.

The parameter values which give the best fit to the ex-
pansion coefficients E, have been determined by least-
squares fitting. Make the definition

Ca,
E

2

" max

o=

=M

-1}, oD

n

where a, is given by (82). Using the E,’s for k =0.80,
¢ =0.425 and minimizing o with respect to C, a, ¢, and x
for n;, =99 and n,, =399 yields

C=—0.05902120752,
a=—1.179890,
c~>=—0.120103,
x=0.018446 ,

(92)

at the minimum, with a residual o ~0.3343X107°.
These values of the parameters were then used in Eq.
(82) to generate estimates of the E,’s. In Table III we
have listed the E,’s as computed numerically using the
HKS procedure, the values of the E,’s as predicted by
Eq. (82) using the parameters in (92), their differences,
and the relative error. One can see that for n =94 we
have agreement to better than 1 part in 10%, for n >28 to
better than 1 part in 10% for n > 18 to better than 1 part
in 10%, and for n =6 to better than 1 part in 10. This is
spectacular agreement for a four-parameter fit, especially
since E,’s with n =98 were excluded from our optimiza-
tion of the four parameters. Since the slight oscillatory
behavior of the E,’s for large n in an unphysical basis-
dependent effect, it is likely that for very large n our esti-
mates using Eq. (82), in which the wiggles have been



averaged out, are actually more accurate approximations
to the exact E,’s than are our values of the E,’s calculat-
ed using a finite basis.

The structure of the singularity at A, in ||(1)||? is even
more complicated. If the ratios R, of the coefficients in
the expansion (57) behave as

CI/Z C3/4
nl/2 n3/4

R,=Co+—2=+

c
+—n‘—+0(n‘5/4), (93)

then the nth coefficient behaves as
const X exp [fdn In(R,, )]
= const X Clexp(—an!2—yn1/4)nP
X[1+0(n" V"], (94)
where
Cy=1/A*=0.91103,
a=—2C,,/Cy=0.272 ,

(95)
7:_4C3/4/C022195 N
2
G 1[G
¢, 2| ¢

The same argument which proved that the series (72)
for E(A) and all its derivatives are asymptotic as A—A*
for all |A| <A* also shows that the corresponding series
for ||¢(A)||> and all its derivatives are asymptotic.

The singularity at A* in |[$(A)||? is not quite of the
form

(1—=A/A*)"%U(a,c;x /(1—A/A*%)) (96)

which was obtained for E(A). However, a slight
modification suffices. Consider the function defined by
the integral representation

J

c/2—3/4

I'la+n)V(a +n,c;x,y)=1r”2x“1/2 z

X

exp[—2(nx)'/2-—y
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Via,c;x,y)= fowe"‘"y"/zt““(l+t)f”“"dt .

1
I'(a)
(97)

A saddle-point analysis similar to that used for
I'(a +n)U(a +n,c;x) can be applied to

(a+n)V(a +n,c;x,y)=fowg(t)exp[h(t)]dt , (98)
where

go)=t""1(1+pe7! (99)
and

h(t)=—xt +n[Int —In(1+2)]—yt1/2 . (100)

The saddle-point t;, which is a root of the equation
h'(ty)=0, is given by

172 1 1/4 1 2 1
— |n y |n y
= |= ——Z | = +— || —=
fo X 4 x | x 16 | x 2
+0(n~1%) . (101)
Hence
c/2—1
gltg)= | = [1+0(n~%], (102)
1/4
h(ty)=—2nx)"2—y |2
X
Py
y —1/4
+x|— | £ = |+ )
* 76 1% +2 O(n ) (103)
and
h"(ty)=—2n""2x3240(n"3*) . (104)

Thus by Eq. (90),

1/4
+x

2
n y 1 —1/4
. . > [1+0(n 1,

(105)

which corresponds to Eq. (81), to which Eq. (105) reduces when y =0.
By using the integral representation (97) for ¥, interchanging summation and integration, and rescaling ¢ by a factor

1—A/A*, it can be shown that

(1=A/A*)"W(a,c;x /(1=A/A%),y /(1—A/A*)2)=

n=0

I'(a +n)
I'(a)

c—a—1
n

}\"

V(a +n,c;x,y) N (106)

which yields a function with the same kind of singularity at A=A* as is present in ||¢(1)||?>. Unfortunately, the com-
plexity of the function V has so far deterred us from fitting the coefficients of the series for ||#(1)||* to the coefficients of

the series (106).

The singularities at A=A* which are possessed by the functions (1—A/A*)"%U and (1—A/A*)™?V will now be dis-

cussed in more detail. The formula

F(l—-c)” Fila,c;z)+

L(c—1)
I'la—c+

I'(a)

Ula,c;z)=

z!'7¢\Fl(a—c+1,2—c;2)

(107)

[Ref. 37, p. 264; Ref. 38, Eq. (7), p. 257] can be used to show that
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A , _ T(l—c) Al .
{I_F Ula,c;x /(1—A/L*))= Ta—c+D |\ 3¢ Fila,e;x /(1—A/A*))
P D= A T e 1—aA) (108)
F(a) A_. 141 ’ ’ ’
[
where F| is the confluent hypergeometric function It follows from (107) and (109) that
(Kummer’s function). F;(a,c;z) is an entire function of —a
z with an essential singularity at z = . Thus the func- ‘1——% V(a,c;x /(1—A/A*),y /(1—A/0*)/?)
tion A
—a —a—1/2
1—A/A*)"°U ; - *
( /A*) (a,c;x/(1—A/A*)) _ 1__7»._ o, (A)+ l——k—‘— 0,(A)
which we have used for E (1) is a sum of two terms, each A A
of which is a function with a branch point at A=A* mul- Al -1
tiplied by a function with an essential singularity at +|1=— ] w3(A), (110
A=A*. The analysis of A
(1=A/A*)"%W(a,c;x /(1=A/A%),y /(1—=A/A*)1/2) where
at A=A* is similar but somewhat more complicated. It o(h)= i y* I'(1—c—n) A "
can be shown from the integral representations (77) and ! no 2n)! T'la —c +1) A*

(97) of U and V that V(a,c;z,,z,) is an entire function of
z, with the series representation

2n
——Z—U(a +n,c+n;z;)

0

Via,c;z1,z,)= 3

X Fila +n,c+n;x/(1—A/A*)), (111a)

am+1 [(3—c—n)

<, (2n)! - 1— M
"o D F(a—c+1)l A
- 2 +1 n
-3 i S
< 2n+ 1) X Fi(a+i+nc+i+n;x/(1-A/A%)),
XU(a+L+nc+i+n;z)) . (111b)
(109) and
J
© 2n
_ y" Ile+n—1) (.-, *
= — — ix/(1—=A/A
®3(A) n§0 2 Tatm * Fila—c+1,2—c+n;x /( /A*))
pitl Fc—1+n)
- x!27¢ M Fa—c+3,2—c—n;x/(1—=A/A%)) | . (111c)

2n+1)! I'(a +1+n)

Each of the three functions w,, w,, and w; can be seen to
have an essential singularity at A=A*. Thus the function
(1—A/A*)™°V which we have used for ||g(1)||* is a sum
of three terms, each of which is a function with a branch
point at A=A* multiplied by a function with an essential
singularity at A=A*.

It is enlightening to compare our expression (108) for
the form of the singularity in E (1) at A=A* with the

const X(1—A/A*)"¢

form deduced by Stillinger,8 where —a ~1.2057. We saw
in Eq. (92) that the parameter

x =(C,,,/Cy)*=0.018 45

is extremely small. If it were exactly zero, then the
coefficient C, ,, of the n ~!/? term in the asymptotic ex-
pansion of the ratio r, of energy coefficients would also
vanish, and Stillinger’s analysis of the ratios would have

led him to what would have been the true behavior of
E(ML) at A=A*. Now if in Eq. (108) we set x =0, the
\F’s are just 1 and the second term vanishes, and we
would find that the singular part of E(A) would behave
as

const X (1—A/A*)" ¢,

where from Eq. (92) —a ~1.1799, which is quite close to
Stillinger’s estimate 1.2057. Thus to some extent one
could say that Stillinger found a rather good approxima-
tion to the form of the branch-point singularity at A=A%*,
but missed the underlying essential singularity, which
rears its head only when A is extraordinarily close to A*.
We may now discuss the results for A, and A* which
Brandas and Goscinski obtained using Padé approxi-
mants'® and a Darboux function ansatz.!* In the Padé
method, one approximates a function f(A) with a se-
quence of rational functions (i.e., ratios of polynomials),
which are single-valued functions, and whose worst
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singularities are multiple poles. In the Darboux function
method, one assumes that the function f(A) has a simple
branch-point  singularity at A* e, f(A)
=(A—A*)%g(A)+h(A), where g(A) and A(A) are not
singular at A=A*. However, as we have determined, at
A=A*=A, both E(A) and |¥(A)||* have singularities
which are sums of products of branch point singularities
(in the sense that following a contour which encloses A*
through an angle 27 yields different values of the func-
tions) and essential singularities (in the sense that within
any arbitrarily small neighborhood of A*, the functions
assume an infinitely wide range of values). Thus E(A)
and ||$(1)||> have quite different singularities from that of
any Padé approximant or Darboux function. Hence in
retrospect it is perhaps not surprising that the use of
these techniques does not lead to improved estimates of
A. and A*. In fact, Brindas and Goscinski’s use of Padé
approximants yielded estimates of A, and A* which were
actually slightly worse than Stillinger’s estimates using
just the pedestrian ratio test:

Brandas and

Goscinski Stillinger This work
1.0974 < 10975 < 1.09766 for A,
0.893 < 0.894 < 091103 for 1/A*.

(112)

We are able to offer a qualitative analysis of the initially
surprising phenomenon of Padé analysis yielding slightly
worse results than those obtained from a simple power
series. The critical point A, is determined by the equa-
tion E(A.)=—1. Now on the one hand, a Padé approxi-
mant [L /M]z(A) to E(A) wants to equal —3 at A, in or-
der to yield a good estimate of A.. On the other hand,
[L/M]g(A) wants to have a cluster of poles near A, in
order to approximate the branch-point singularity in
E(A) at A,. Since a rational function cannot be both
finite and infinite at the same point, a compromise is
made: the Padé approximants do a relatively poor job of
approximating both the zero of E(A)—(—1) at A, and
the singularity of E(A) at A,. Thus the approximate X,
determined from the Padé approximant by the equation

[L/M]z(R)=—1 (113)

and the approximate A* determined from the Padé ap-
proximant by the equation

[L/M]g(X*)=1tw (114)

will both be rather inaccurate.

Indeed, as Baker and Graves-Morris observed in their
review of the Padé approximation,”’ a case where the
Padé method is inappropriate is a function
“f(z)=3,c;z' [that] has a branch point at z=1 and
yet f(1) is well-defined. One expects the poles of the Padé
approximants to accumulate at z =1 and convergence to
be slow;” correspondence with our case is achieved by
setting z =A/A*. One may also compare the logarith-
mically slow convergence of Padé approximants to the

function —x /In(1—x) at the branch point x =1, which
was discussed a quarter-century ago by Baker.*!

The Darboux function ansatz suffers from similar
problems of slow convergence of the estimates of A, and
A* because the exact E (1) is not of the Darboux class.

Thus we have another illustration of the general
phenomenon that the convergence of a sequence of ap-
proximants to a given function can be rather slow if the
approximants have an analytic structure different from
that of the exact function being approximated.*” This
convergence can be particularly slow in the vicinity of a
singular point of the exact function. In general, one
would expect to find very slow convergence of the singu-
lar points of the approximants to the singular points of
the exact function if the singularities of the approximants
are quite different from the singularities of the exact func-
tion. Hence although Padé approximants have proven
very useful in a wide variety of situations, they are not a
universal panacea (nor would an expert on the Padé ap-
proximation claim that they are®’), and there are times
when refinements of the ratio test (such as the employ-
ment of Neville-Richardson extrapolation) yield more ac-
curate and reliable results.

V1. EXCITED STATES OF THE HELIUM
ISOELECTRONIC SEQUENCE

Having presented our results for the ground state of
the helium isoelectronic sequence, we may now consider
other states of this two-electron system and other ions
with more than two electrons. We may start with a sur-
vey of rigorous results and then proceed to more general
speculations.

To begin, Kato’s estimates (Ref. 3, pp. 404-406) of the
radii of convergence of the perturbation series for isolat-
ed states of finite multiplicity of H (A)=H,+ AW, where
H, is self-adjoint and W is Hermitian and relatively
bounded by H,,, will show that the 1/Z expression has a
nonzero radius of convergence for any energy level which
arises from a discrete eigenvalue of H,, where

N

Hy= 3

i=1

—ivi-— (115)

i

restricted to an appropriate symmetry subspace, and

1
w=3 -
ij Tij

(116)
i5j
restricted to the same subspace.

Next, it is implicit in Kato’s™ proof that the helium
atom with infinite nuclear mass has infinitely many bound
states, and in Hunziker’s generalization* that a neutral
atom has an infinite number of Rydberg states, that the
N-electron Hamiltonian H(A)=H,+ AW has a full Ryd-
berg series for A=1/Z <1/(N —1). The physical reason
behind this is that the ‘“‘outermost” electron sees a
screened charge of Z —(N — 1), and as long as this quan-
tity is positive, the ion will have a full Rydberg series.

During the last 15 years there have been a number of
rigorous results on the numbers of bound states of nega-
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tive ions. In 1969 Uchiyama*’ showed that the two-
electron Hamiltonian
1 1, 1, A

(117)
2 ry 2 r,

has a finite number of discrete eigenvalues if A > 1. In the
early 1970s Zhislin and co-workers*® and Yafaev*® gen-
eralized Uchiyama’s result to show that the multielectron
Hamiltonian

S |-Le-Llyas L (118)
i=1 2 ij Tij
i>j
has a finite number of discrete eigenvalues if

AZ1/(N —1); thus the results of Ref. 46 applied for
N=2 to the borderline case A=1 show that the hydride
ion H™ has finitely many discrete bound states. More re-
cently Hill*’ proved that the hydride ion H™ has only one
discrete energy level, and Hoffman-Ostenhof and
Hoffman-Ostenhof*® showed that H™ has no threshold

bound state (with energy —1 a.u.) in the 3S symmetry
subspace. Hill’s theorem implies that whereas
Ayl Ll L, A (119)
2 ry 2 r, rp

has infinitely many discrete bound states for any A <1, it
has only one at A=1, so the infinitely many discrete ex-
cited Rydberg states for A <1 merge into the continuum
as A—1. Thus H(A) has only one discrete bound state
for 1<A<A,. (H™ also has a bound state of unnatural
parity with E =—0.12535 a.u. [the (2p)*>P* state] em-
bedded in a continuum of different symmetry, which will
be discussed later.)

One might wonder whether any discrete bound states
of H(A) merge into the continuum at E =— a.u. for
any A strictly less than 1. If one does, then it must cross
infinitely many energy levels of the same symmetry. At
the present time this cannot be ruled out, since there are
exceptions to the “no crossing” rule (for recent rigorous
studies of the genericity of curve crossings, see Friedland
and Simon*® and Waterhouse®); however, it does seem
most unlikely that infinitely many ‘““forbidden” crossings
would occur. Hence it seems most probable that all the
discrete excited states of H(A) are absorbed by the con-
tinuum at E = —1 a.u. precisely at A=1. (This analysis
also provides an answer to the question “‘can a bound
Rydberg level be pushed into its own continuum?” posed
recently by Smid and Hansen:>' only if that level crosses
infinitely many levels of the same symmetry, which seems
most improbable.)

Let us now address the question of the radii of conver-
gence of the perturbation series for the E(A)’s of the
discrete excited states. We know from Kato’s work that
an isolated eigenvalue E (1) of finite multiplicity is holo-
morphic for A real. We also strongly suspect that any
discrete excited eigenvalue is absorbed by the continuum
at A=1, and from our results for the ground state we
should presume that E (A) will have a singularity there.
Hence we should infer that the radius of convergence A*
of the perturbation series for a discrete excited eigenvalue
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E (A) should not exceed 1. If there are no nearer singu-
larities in the complex plane, the radius of convergence
A* will be exactly 1 for all discrete excited eigenvalues of
H(M).

The numerical evidence presently available is
insufficient to confirm or to disprove this conjecture. In
the late 1960s Midtdal and co-workers'!">? published
tables of the E,’s for n up to 41 for the 2'S, 23S, 2'P,
and the 2 3P states of the helium isoelectronic sequence,
and Sanders and Scherr'® for n up to 17, 19, and 21 for
the 23S, 2'P, and the 2 3P states, respectively. The re-
sults of these two groups agree fairly well up to n ~15 for
the 23S state, n =12 for the 2 *P state, and n ~11 for the
2 1P state; however, there are serious discrepancies for
higher n, for which neither group’s results are reliable.
Both Sanders and Scherr'® and Midtdal and co-
workers'!"3? used relatively small numbers of basis func-
tions (100 and 162, respectively), and Midtdal et al.’s cal-
culation suffered from their use of basis functions of the
form

s"thyme =572 (120)
with the same constant multiplying both r; and r, in the
exponential. Such basis functions of course are inefficient
at modeling the in-out correlation which is even more im-
portant in these singly excited states than it is in the
ground state. In fact, since at the threshold at A=1,
where we know by the work of Hoffman-Ostenhof and
Hoffmann-Ostenhof*® that there is no bound state in the
3S subspace and suspect there is no excited bound state in
any other subspace, as A— 1~ the corresponding excited
state wave functions ¥(A) must become more and more
distended, for the length scale on which the “outermost”
electron moves should go like 1/(1—A), the reciprocal of
the screened charge. The higher-order corrections ¥, to
the wave function ¥(A) for such an excited state will ac-
cordingly be more and more distended, and they cannot
be accurately computed with a basis containing only a
single ‘“‘closed-shell” exponential. In fact, with reference
to their calculations for these states Midtdal, Aashamar,
and Lyslo acknowledged “we will not quite exclude from
consideration the possibility that our specific basic set of
wave functions is not flexible enough” (Ref. 12, p. 18),
and a few years later these authors found that the intro-
duction of a “split-shell” exponential greatly improved
the rate of convergence of variational calculations on
these states.”> In 1974 Aashamar, Midtdal, and Lyslo
published perturbation calculations through 21st order
on the 23S state using up to 235 basis functions with a
“split-shell” exponential®* and on the 3 3S state using up
to 204 such basis functions.*® These results seem to indi-
cate that for these states all the exact E,’s except for E,
are negative, and hence that the E(A)’s for these states
will have a singularity on the positive real axis. Hence
the results published by Aashamar, Midtdal, and Lyslo in
1974 show that their earlier oscillatory results for the
high-order perturbation coefficients for the 23S and 3°S
states are artifacts due to the inadequacy of their basis
with only a single “closed-shell” exponential. Hence we
regard as unreliable the estimates of Midtdal and his co-
workers!? of the radii of convergence of the perturbation
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series for singly excited states of helium obtained using a
basis with only a single “closed-shell” exponential. For
the 1S state, their estimate of A*=1.22 is wrong by
about 12% and their E,’s for n R 30 obtained using 140
basis functions with a single ‘“closed-shell” exponential
are devoid of physical significance, so it would not be
surprising if their estimates of the A*’s for the much more
distended 23S, 2 'S, 2 °P, and 2 'P states

State A* (Midtdal, Aashamar, and Lyslo, Ref. 12)
238 0.93
218 0.84
23p 0.76
21p 0.78

are in error by 7-24 %. On the other hand, the calcula-
tions of Sanders and Scherr are in agreement with those
of Midtdal et al. in predicting that for the 2 'P state the
E,’s for 3<n =11 oscillate in sign with a period An of
about 5, so if this trend persists in the exact coefficients it
would imply that for the 2 !P state the radius of conver-
gence of the power series for E(A) is determined by a
singularity in the complex plane closer than 1 to the ori-
gin. However, the E,’s for n =12 for the 2 !P state as
calculated by Sanders and Scherr and by Midtdal et al.
show serious disagreements with each other, which em-
phasizes the need for more accurate high-order calcula-
tions if any definitive conclusions are to be drawn.
Furthermore, Sanders and Scherr’s results for the E,’s
for the 2 °P state are suggestive of a periodic oscillation
with period An ~7, but their results and those of Midtdal
et al. disagree seriously for n = 13, so the presently avail-
able numerical data do not allow us to proceed beyond
speculation for the 2 P state.

At this point we issue a reminder that although we ex-
pect an eigenvalue E (A) of an atom to have a singularity
at a threshold A, there is no a priori reason why E (1)
could not also have a complex conjugate pair of singulari-
ties closer than A, in which case the perturbation series
coefficients will oscillate with asymptotically constant
period. Furthermore, we direct attention to a point
which we made at the end of Sec. IV: a function whose
nearest singularity is on the positive real axis can still
have oscillatory Taylor series coefficients if the “period”
of oscillation increases without limit.

We are planning to carry out high-order perturbation
calculations on the excited states of the helium atom to
test whether for them A*=A,. We may observe that a
rather more complicated basis will be needed to achieve
high-order results for excited states as accurate as those
for the ground state since as A— 1 the excited-state eigen-
functions ¥(A) will become progressively more and more
distended. In the language of Hilbert space, for the excit-
ed states

. (A)
lim —2A) (121)
a1 [P
does not exist, whereas for the ground state
YA (122)

lim
iz 1B

does exist and is equal to ¥(A.)/||(A,)||. For the excited
states the projection of the normalized (i) onto any
finite basis tends to O as A—1~, whereas for the ground
state the normalized (1) tends to the normalized ¥(A,),
which can be approximated with arbitrary accuracy as
the basis approaches completeness. Hence the accurate
calculation of high-order ¥,’s and E,’s for excited states
will require the inclusion of basis functions which are
concentrated on progressively larger and larger length
scales. We plan to try using basis functions of the Fran-
kowski type ¢(2ks,2kt,2ku), where

sinh(ct)

—ongl, m j
$ls,t,u)=s"t'u"(Ins)X 3 o)

Xe 572 (123)

with several different values of the parameter ¢ to
represent the progressively more distended ,,’s.

In the meantime, we have performed a 50th-order per-
turbation calculation on the 23S state using a rather
inadequate basis of 202 functions of the form (22) and 253
functions of the form (25). The nonlinear parameters k
and ¢ were 0.60 and 0.4375, respectively. Our energy
coefficients E, begin to oscillate in sign for n=47, and
their ratios ceased to be monotone at n=27. Varying k
and c showed that the onset of such behavior is a basis-
dependent effect. Hence we have presented a table of the
E,’s (Table IV) and a graph of their ratios r, (Fig. 13)
only for n =26; in the graph the incipient oscillatory be-
havior of the ratios is clearly visible. Nonetheless, our re-

TABLE IV. The E,’s associated with E (1) for the 23S state
obtained with k=0.60 and ¢=0.4375.

N E(N)

—0.625 000 0000
0.187928 669 4
—0.474093 041 7[—01]
—0.487 228 008 9] —02]
—0.345 780460 7[ —02]
—0.202 984925 3[ —02]
—0.128 713 5373[ —02]
—0.871415267 6] —03]
—0.618 225020 9[ — 03]
—0.4544333110[ —03]
—0.343492 455 9] — 03]
—0.265559 255 4] — 03]

—
O VoIV P WN=O

—
—

12 —0.209 163203 9] —03]
13 —0.167 330 342 7] — 03]
14 —0.1356520312[ —03]
15 —0.111256 107 4] — 03]
16 —0.922 115593 3[ —04]
17 —0.771 599 290 9[ —04]
18 —0.650 943 608 6[ —04]
19 —0.552 523917 9] —04]
20 —0.470 836932 4] —04]
21 —0.402 388 493 8] —04]
22 —0.345 324 375 7] —04]
23 —0.298 674 402 6] —04]
24 —0.261 457949 8] —04]
25 —0.232058 661 7] —04]
26 —0.208 143 962 6] —04]
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FIG. 13. The r,’s associated with E (1) for the 23S state for
4 <n <26 obtained with k=0.60 and c=0.4375 vs n ~'/2,

sults for the 23S state are considerably more stable than
those of Sanders and Scherr'® and of Midtdal et al.!!%%33
We also calculated the perturbation coefficients for
l#(1)]|%, and a graph of the ratios of these coefficients for
n =50 is presented in Fig. 14. One can see that the ratios
seem to be smoothly converging downward to a limit of
about 0.99, which would imply that A*~1/0.99~1.01
would exceed A,=1. In view of our results for the 1'S
state, it is hard to believe that the perturbation series for
the 23S state would not become singular at A, =1, and
given the inadequacy of the basis and the relatively low
order, 1.01 is not inconsistent with 1. Hence the radius
of convergence of the 1/Z expansion for the 22S state of
helium probably is determined by a singularity on the
real axis at A=1/Z=1. In any event it seems that the es-
timate for this state of A*=~0.93 by Midtdal er al.'? is
wrong by about 7%.

The H™ ion also has a genuinely bound (square-
integrable) doubly excited state, the (2p)* P state, of un-
natural parity imbedded in the natural parity continuum;
thus this state is discrete within its symmetry subspace.
Using a basis of 50 P-type Hylleraas functions with a
“split-shell” exponential, Drake®® computed an upper
bound of —0.125350 a.u. to the energy of this state,
which is very close to the upper bound of —0.125 351 006
a.u. computed earlier by Midtdal using a basis of 203 P-
type Hylleraas functions with a ‘“closed-shell” exponen-
tial, and Midtdal’s extrapolated estimate —0.125354 85
a.u.’ [Herrick and Stillinger®’ pointed out that the ener-
gy of this (2p)? 3P¢ state is equal to the ground-state ener-
gy of an H™ ion in five dimensions.] Recently Grosse
and Pittner®® proved rigorously that there is no other
discrete bound state within the unnatural parity sub-
space. This doubly excited state is qualitatively similar to
the ground state in that it should have a bound state of
zero binding energy at its critical coupling constant
A.=1/Z_.>1. Hence the variational perturbation calcu-
lations by Midtdal et al.*!! on the (2p)? 3P€ state using a
Hylleraas basis with a single “closed-shell” exponential
should be comparably accurate to their calculations on
the (1s)*!S ground state using an analogous basis.
Midtdal et al.!! have calculated the energy perturbation
coefficients E, for this state using up to 204 Hylleraas
basis functions.  Stillinger® analyzed Midtdal’s’

FIG. 14. The R,’s associated with ||(A)||* for the 23S state
for 5<n <50 vs n~'/2, obtained with k=0.60 and c=0.4375.

coefficients E, for n up to 21 obtained using 203 basis
functions for this state in the same manner as for the
(1s)* 'S ground state and found A*=~1.0128, but he gave
no estimate for A.. By applying a Darboux function an-
satz to the E,’s of Midtdal et al.!' for n up to 27,
Brindas and Goscinski'* found A,=1/Z,=1/0.9952
~1.0048 and A*=1/0.990=1.010. For the (1s)*'S state
Brandas and Goscinski’s estimate of A, is too low by only
0.0002, so it would be reasonable to hope that their esti-
mate of A, for the (2p)? 3P¢ state is comparably accurate.
We would not hesitate to attribute the very small
discrepancy of about 0.005 between Brandas and
Goscinski’s estimates of A, and A* to some combination
of small errors in the E,’s calculated by Midtdal et al.!!
and to n=27 simply not being far enough into the asymp-
totic region. We plan in the future to calculate the E,’s
for this state to high order.

VII. “RADIAL” HELIUMLIKE IONS

A simplified model of the helium atom, which has been
studied by several authors,® is obtained by replacing the
interelectronic Coulomb potential
!

1 1 & |r<
—=—73 |— | P/(cosh), (124)
Ty rs /=0 >
where
r . =min(r,,r,),
(125)

r, =max(r,r;),

with its spherical average 1/r.. For an S state, the
Schrodinger equation in (7,7, ) coordinates assumes a
remarkably simple form reminiscent of the Schrodinger
equation for a pair of uncoupled hydrogenic atoms with
nuclear charges Z and Z —1:

1| @ 2 3 V4
e e L PR
2 |3rl r. or. r.
1| @ 2 9 Z—1
- + |- =Ey . (126)
2 (ary r, Or, r. ]1& ¥
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This equation, however, is not separable in (r _,7 . ) coor-
dinates because of the nonseparable boundary condition
atr_=r.:

oY _ 3y

127
oar. Oor, (127

atr_=r, .
It may be noted that because of the discontinuity at
r,=r, in the first derivative of 1/r, with respect to r, or
r,, one would expect that third derivatives of ¥ with
respect to r, or r, would not be continuous at r; =r,.

For any Z for which the radial Hamiltonian has a
bound state, the radial eigenfunction can be used in a
Rayleigh-Ritz variational calculation on the full Hamil-
tonian, and the result of computing that expectation
value of the full Hamiltonian is just the radial eigenvalue.
Thus the radial energy provides an upper bound to the
full energy:

E(\)= (128)

Erad()") .

Since the threshold is at —J for both systems, the critical
value of A, for a state of a radial heliumlike ion cannot
exceed the critical value A, for the corresponding state of
the real ion:

}‘c,rad = }"c . (129)

Furthermore, since the ground state of radial H™ is
bound,*® we know that A, 4 must exceed 1. In fact,
combining the definition of A, g [E (A, 29)= — 1] and
the numerical results

E,q(1)=—0.5144940(32) ,

E 4($)=—0.7197570(5)=—2.8790280(18) /4 ,

of Ref. 59(b) with the concavity of E ,4(A)

(1~L)E d(}", d)+(}", d__l)Erad(l)
T - <E.(1)  (130)
crad 7
implies that
o5 2PV 7Ew(D) 77 0212510 ) oosq
orad = J()—E (L) 0.205263 T
(131)
Hence for the ground state
1.0353 S A 0q A, ~1.09766. . . . (132)

We have not performed our own variational or large-
order perturbation theory calculations on radial helium,
since we would first want to modify our basis by remov-
ing all nonzero powers of r, (which is trivial) and includ-
ing functions with discontinuous third and higher deriva-
tives at r, =r, (which is straightforward but not trivial).
However, we can refer to a rather recent large-order per-
turbation theory study of radial helium by Silverman,
Sudhindra, and Olbrich,® who used a basis consisting of
symmetrized sums of products of Laguerre orthonormal
functions of r, and r,:

1269

m mz[L(Z) ,(,,22)(r2)+L,(,,22)(r1 )L,("zl)(rz)]

—(ry+r) 2

Xe (133)

By systematically increasing the maximum index m from
0 to 12, they generated bases of dimension M =(";?)
ranging from 1 to 91. Silverman has kindly provided
tables of the high-order perturbation coefficients up to
n=281 for each value of m. The angle 6% subtended by
the nearest pair of complex conjugate square-root

branch-point singularities A} =|A% |e +i6, can be es-
timated by the techniques descrlbed in the appendix. For
m =< 6, there are sufficiently many oscillations up to order
n=281 to allow a reliable estimate of the “period” of oscil-
lation, from which we have estimated 6%, using Eq. (A1).
For 7=m <12, we have instead used Eq. (A7) to estimate
0y, from the first sign change in E, for large n. In Table
V we have listed our estimate of the angle 87, for each m.
(In each case the value of 6}, is probably accurate within
several percent.) Clearly there is no reason to think that
as m — o, the angle 6}, would not tend to 0. Hence we
would conclude that for the operator problem in the
infinite dimensional Hilbert space, the perturbation series
for the ground state of the radial heliumlike ion has its
nearest singularity on the positive real axis. The estimate
A%4=1.05 of Silverman, Sudhindra, and Olbrich® agrees
remarkably well with our own estimate of A, 4 in Eq.
(131). Hence it is likely that for the operator problem in
the infinite-dimensional Hilbert space, A5, =A, 4, just as
for the full helium atom system.

We may note, however, that the method of Silverman,
Sudhindra, and Olbrich® for estimating the location of
the nearest complex-conjugate pair of singularities in-
volves triangulation with very approximate estimates, ob-
tained via a technique due to Silverman,?' of the radii of
convergence of the shifted and unshifted expansions, and
hence is susceptible to relatively large errors. This is, we
believe, the cause of the strikingly large discrepancy be-
tween Silverman, Sudhindra, and Olbrich’s estimate
0* ~39° for their largest basis and our estimate 6* ~3.6°.
Apparently the quality of Silverman’s technique?! for es-

TABLE V. Apparent convergence of 0% to 0 as m — o for
the ground state of radial helium in a Laguerre basis.

m 6y, (rad) 6, (deg)
2 27 /6% 60
3 27 /10% 36
4 2w /152 24
5 27 /222 16
6 21 /30* 12
7 0.166° 9.5
8 0.132° 7.6
9 0.106° 6.1
10 0.089° 5.1
11 0.074° 4.2
12 0.063° 3.6

?From Eq. (A1).
®From Eq. (A7).
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timating A},4 deteriorates as the origin of the shifted per-
turbation series moves away from 0, and the zero-order
wave function becomes more and more distended. This
trend correlates with the decreasing quality of
Silverman’s estimates of A}, for singly excited states of
helium,?' for which the zero-order wave functions are

quite distended because of “in-out” correlation.

VIII. MULTIELECTRON ATOMS

Having considered excited states of the helium isoelect-
ronic sequence and the “radial” helium problem, we may
now turn our attention to the 1/Z expansions for the
states of N-electron atoms. We have already mentioned
the mathematically rigorous results of Kato*’ and Hun-
ziker* which imply that an atom or ion has infinitely
many discrete Rydberg states if Z >N —1, and the re-
sults of Zhislin and co-workers*® and Yafaev*® which
show that a negative ion has only finitely many discrete
states if Z <N —1. Furthermore, experiment has yet to
find a stable doubly negative atomic ion (in vacuo, not in
solution), so it seems very likely, at least for those known
atoms in the Periodic Table, that no discrete states exist
if Z <N —2. Hence we may infer from this combination
of mathematical theorems and experimental results that
generically for a discrete atomic state the minimum
charge Z, necessary to bind N electrons obeys

N—-2<Z =N-—-1. (134)
Since A, =1/Z_, A, generically will obey
1 1
<A <
N—I'AC—N—-z . (135)

If the radius of convergence A* of the perturbation series
for E()) is determined by a singularity at A, then A*
generically will obey

Y g
N-—1 N -2
Since if A=1/Z =1/(N —1) the negative ion has only
finitely many discrete states, for most states
A=1/(N —1), and for these one would expect that
A*<A . =1/(N—1).

Currently there is not much reliable numerical evi-
dence for testing these inequalities. Numerical perturba-
tion calculations have been performed on various states
of the lithium® and the beryllium®® isoelectronic se-
quences, but none has been carried out to sufficiently high
order, and with sufficient emphasis on obtaining well-
converged higher-order coeﬂicients,(’3 to obtain a
definitive estimate of A* for these systems. However, we
should mention Herrick and Stillinger’s estimates for A,
and A* for the ground state of the neon isoelectric se-
quence (N=10), which were obtained using a superposi-
tion of the ground state and singly excited Hartree-Fock
determinantal wave functions.® They found

A, =~0.114
A*~0.117 or 0.118 .

Both numbers lie between $=0.111... and }=0.125,

and the 3% discrepancy between Herrick and Stillinger’s

(136)

(137)
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estimates for A, and A* may well be attributable to the
very approximate nature of their variational ansatz. [Our
analysis of the two-electron case supports Reinhardt’s'®
observation that Herrick and Stillinger’s attempted calcu-
lation of the position and the width of the O®~ resonance,
which was based on the assumptions that A*>A_. and
that E(A) has a simple branch point singularity at A*,
rests on an unfirm foundation.]

IX. COMPUTATIONAL DETAILS

All calculations reported in this article were performed
in quadruple precision ( ~ 30 decimal digits) on the Uni-
versity of Delaware’s IBM 3081D computer. The use of
quadruple precision is necessary to control round-off er-
rors in matrix manipulation due to our use of a
nonorthogonal basis. The storage requirements of our
program are formidable, primarily because of the need to
perform algebraic operations on N X N matrices, where N
is slightly less than 500, all of whose entries occupy 4
words. We reduce our storage requirement by about a
factor of 2 by using symmetric storage mode for our ma-
trices.

One of our runs would typically use about three hours
of CPU time, most of which is spent in multiplying ma-
trices and evaluating expectation values. Such opera-
tions, of course, would proceed much more quickly on a
vector computer, such as a CRAY or a CYBER 205.
Unfortunately, there presently is no easy way to use vec-
tor arithmetic in vector double precision, which corre-
sponds to quadruple precision on the IBM 3081. We
strongly encourage supercomputer manufacturers to de-
velop an easily accessible way of performing vector
operations with about 30 decimal digits.

X. CONCLUSIONS

By performing a 401-order variational perturbational
calculation of the coefficients of the 1/Z expansion for
the ground state of the helium isoelectronic sequence, we
have found the following:

(i) As Reinhardt had surmised, ! the radius of conver-
gence A* of the perturbation series for the eigenvalue
E(A) and the eigenfunction ¢¥(A) is equal to A,=1/Z_,
where Z_ is the minimum nuclear charge necessary to
bind two electrons.

(ii) E(A) and ||#(A)||> have singularities on the positive
real axis at A, which are more complicated than a simple
branch-point singularity; in particular, E (1) has a singu-
larity of the form

(1—=A/A,) " %Ul(a,c;x /(1—A/A.)),

where U is the second (irregular) solution of the confluent
hypergeometric equation.®® ||#(1)||*> has a similar but
even more complicated singularity.

We also found that the perturbation series for the 23S
and the (2p)?3P¢ states of helium seem to have radii of
convergence A*’s equal to the A ’s for those states. We
have also seen that there is a need for more accurate cal-
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culations to much higher order if we are to locate
definitively the nearest singularities in the E (A)’s for oth-
er excited states of the helium isoelectronic sequence and
for states of multielectron atoms.

Our work has revealed several phenomena which are
worthy of investigation by mathematical physicists.
There is need for a rigorous theory of coupling constant
thresholds in multielectron systems, and for an explana-
tion of why the asymptotic form of the perturbation
coefficients manifests itself only in extraordinarily high
order. Furthermore, there is a need for a rigorous gen-
eralization of our results in Sec. IV on the singularities of
the eigenvalues of 2X2 Hermitian matrices to multidi-
mensional Hermitian matrices.
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APPENDIX: LOCATING THE NEAREST
COMPLEX-CONJUGATE PAIR OF SQUARE-ROOT
BRANCH-POINT SINGULARITIES

Suppose one is studying the perturbation series for an
eigenvalue E(A) of a self-adjoint operator H(A)
= A +AB, where the nearest singularities of E(A) are a
complex-conjugate pair of square-root branch-point
singularities at Age ='%. Then as n — o, the perturbation
coefficients E, will have the behavior described in Sec.
IV, with periodic oscillatory behavior of period 27 /6. If
one wishes to locate the complex-conjugate pair of singu-
larities by determining A, and 6, one could do so from the

high-order perturbation coefficients by fitting them to the
expression in Eq. (35), or to its asymptotic approximant
in Eq. (40). Indeed, Eq. (40) provides a ready estimate of
6 from simply knowing the sign behavior of the high-
order perturbation coefficients: one counts the ‘“dis-
tance” An between successive ‘“‘periods” of oscillation,
and then obtains the quick estimate
2
6 An

This technique, however, is valid only if 6n >>1, i.e., if
n is sufficiently large that there have been several oscilla-
tions. If 0 is so small that at a given order n there have
been few or no complete periodic oscillations, then Eq.
(36), the formula of Laplace, and the subsequent deriva-
tions based on it, in particular Eq. (40) are not valid. In
this case, one must instead retreat to Eq. (35),

__P,_,(cos@)—P,(cos6)

E, ~xA;" o —1 (A2)
and use the approximation, which is valid for all » for
01,

P,(cos@)=Jy((n +1)0), (A3)
where J, is a Bessel function. Thus we see that for
61,

(A1)

Jol(n —3)0)—Jo((n +1)6)
2n —1
Since 6 is small, we can approximate the finite difference

of the Bessel functions of slightly different arguments by
the derivative of the Bessel function times 26:

E,~tA" (A4)

Jolln —3)0)—Jo((n +1)0)=—20J4((n —1)6) . (AS)
Since —Jg=J,, we obtain
J((n—3)8)
E,~tAy"0——7 . (A6)

(ST

To use knowledge of the first sign change of E, (for large
n) to determine 6, observe that the first node of J,(z)
occurs at z=j; ;=3.83171... . Thus if the first sign
change of E, (for large n) occurs at 7, then 6 can be
determined from

(A—1)0~j; ,=3.83171... . (A7)

It is interesting to compare this formula with what would
result from the naive and (and improper) use of Eq. (40),

(n—1)6—=

sin
172 4

- 2 .
E,~+A;"| |—sinf
n 0 [ﬂn sin

1
n—s

+0(n"3%?) (A8)

outside its region of validity. Since the sine function van-
ishes at multiples of 7, one might conclude that 6 is
determined from the first positive zero of the sine accord-
ing to
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o
i
This would be quite wrong. However, if one used the
second positive zero of the sine, one would find that

(A—5)0= (A9)

o=

(m—3)8 4 +7 n . cey
which is remarkably close to j, ; =3.83171... . The net

effect is that if 8 << 1, then the first sign change of E, (for

(A10)

large n) occurs at

Jin _Jin (A11)
T

T T
—=1.21967—,
0 0

whereas in general the Nth sign change of E, asymptoti-
cally occurs at

m

n=(N+1%) P

(A12)
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