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Bethe logarithms for hydrogen np to n =20, and approximations for two-electron atoms
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Bethe logarithms accurate to 14 or 15 places to the right of the decimal are tabulated for all states
of hydrogen up to n=20. Approximation methods for Rydberg states of two-electron atoms are
discussed.

I. INTRODUCTION

The Bethe logarithm (BL) represents the essentially
nonrelativistic part of the Lamb shift arising from
lowest-order quantum electrodynamic (QED) efFects in
hydrogen and other one-electron ions. ' The one-electron
BL also plays an important role in approximation
schemes for many-electron atoms. ' BL's have been cal-
culated by many authors in the years since Bethe's'
original work on the 2s-2p Lamb shift in hydrogen, the
most extensive tabulation being that of Klarsfeld and Ma-
quet for all states up to n=8. Subsequently, Haywood
and Morgan" obtained higher precision for the 1s and 2s
states by the application of finite basis-set methods. Bak-
er, Hill, and Morgan' have recently further improved
the 1s value to 17 places to the right of the decimal.

Recent high-precision measurements of transition fre-
quencies among the n=10 Rydberg states of helium'
raise once again the need for a more extensive tabulation
of BL's. For example, the one-electron Lamb shift con-
tributes about 13 kHz to the ls10g-lslOh manifold of
transitions, ' which is much larger than the +2-kHz ac-
curacy of the measurements. The purpose of this paper is
to tabulate BL's for all one-electron states up to n=20,
and to discuss screened hydrogenic values for the corre-
sponding Rydberg states of helium. The one-electron
values are believed to be accurate to 14 or 15 places to
the right of the decimal, which substantially exceeds any
previous tabulation.

The lowest-order QED shift for an electron with quan-
tum numbers n, I,j in a point Coulomb field of charge Ze
and infinite mass is" (in atomic units)

T

where co(n', n) =(E„E„—)/R „and the sum includes all
discrete states and an integration over the continuous
spectrum. The g (nl, n') are related to oscillator strengths
for transitions nl ~n'1+1 by

g(nl, n')=(3n /16)f (nl, n')co (n', n) . (3)

II. COMPUTATIONAL METHOD

Previous evaluations of lnko have used either an expli-
cit summation of the terms in Eq. (2), ' ' or implicit
summation methods based on the Coulomb Green func-
tion. ' In the present work, we have found that re-
sults approaching machine accuracy (about 16 figures in
double precision) can readily be obtained by direct sum-
mation, using Gordon's formula' for bound-state transi-
tion integrals, and an equivalent formula derived by Kar-
zas and Latter' for continuum transition integrals which
avoids complex variables. In view of the rather modest
accuracy achieved in the past by this method, it seems
worthwhile to describe the computational details used
here. We first write Eq. (2) in the form

1n[ko(nl)/R „]=B +C, (4)

where B is the bound-state contribution and C the contin-
uum contribution, and define the partial sum

N

~tv —X bn
n'=1

with b„=g(nl, n')in~co(n', n)~. The b„have the asymp-
totic expansion

AEt(nlj)=4Za (Z /em ) 5 t[oln( Za) + —,", ——,'] b„=P/n' +y/n' + (6)

—in[ k(onl)/Z R„]
3 &tg

8 (21 +1)
where ctj =5j,I+ t/2/(1+ 1) bj, l —1/2/1. The terms
and —

—,
' come from electron self-energy and vacuum po-

larization corrections, respectively, and the last term con-
taining cI. is the anomalous magnetic-moment correction.
Bethe's mean excitation energy ko(nl) is defined by

ln[ko(nl)/R„]= gg(nl, n')1
n~ co( n', n)~,

and

pA' N be 'YN/N (8)

obtained by solving two equations in two unknowns.
Then yz~y and P~~P as N~~. The complete sum
over bound states is then approximated by

Analytic expressions for P and y could be derived, but it
is computationally simpler to estimate them from the last
two terms included in (5) according to

N (N —1)
y N

= [(N 1)'bx t N'bN ]— -—
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TABLE I. Bethe logarithms for hydrogen. For two-electron atoms, see Eq. (20).

1

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1n[kp(ttl)/R ]

I = 0
2.984 128 555 765 498
2.811 769 893 120 563
2.767 663 612 491 822
2.749 811 840 454 057
2.740 823 727 854 572
2.735 664 206 935 105
2.732 429 129 187 092
2.730 N7 260 690 589
2.728 751 166 038 614
2.727 646 938 659 466
2.726 817 782 527 157
2.726 179 $40 635 48
2.725 677 290 537 02
2.725 275 365 172 99
2.724 948 600 408 85
2.724 679 355 911 28
2.724 454 879 738 29
2.724 265 768 141 35
2.724 104 963 270 95
2.723 967 084 293 02

ln[kp(ttl)/R ]

l=1
—0.030 016 708 630 213
—0.038 190 229 385 312
—0.041 954 894 598 086
—0.044 0$4 695 591 878
—0.045 312 197 6SS 9?4
—0.046 155 177 262 915
—0.046 741 352 003 557
—0.047 165 699 952 735
—0.047 482 893 $56 678
—0.047 726 268 148 058
—0.047 917 111573 660
—0.048 069 543 645 71
—0.048 193 233 848 14
—0.048 294 986 397 14
—0.048 379 702 978 99
—0.048 450 987 781 85
—0.048 511 539 184 83
—0.048 563 410 017 21
—0.048 608 184 514 61

ln[kp(al)/R ]

l=2
—0.005 232 148 140 883
—0.006 740 938 876 9?5
—0.007 600 751 257 947
—0.008 147 203 962 354
—0.008 519 223 293 658
—0.008 785 042 984 125
—0.008 982 032 293 858
—0.009 132 272 249 044
—0.009 249 570 815 N4
—0.009 342 953 986 099
—0.009 418 537 646 70
—0.009 480 591 420 45
—0.009 532 172 414 71
—0.009 575 517 770 68
—0.009 612 295 9?7 53
—0.009 643 772 402 77
—0.009 670 921 054 36
—0.009 694 501 704 45

1n[kp(sl)/R )

1=3
—0.001 733 661 482 126
—0.002 202 168 $81 486
—0.002 502 1?9 760 279
—0.002 709 095?27 000
—0.002 859 114 559 296
—0.002 971 901 488 037
—0.003 059 094 278 891
—0.003 128 021 134 523
—0.003 183 519 098 74
—0.003228 901 669 23
—0.003 266 MS 236 62
—0.003 298 032 527 08
—0.003 324 727 300 68
—Q.003 347 536 419 73
—0.003 367 182 587 53
—0.003 384 227 121 23
—0.003 399 111 574 10

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

l=4
—0.000 772 098 901 537
—0.000 962 797 424 841
—0.001 094 472 739 370
—0.001 190 4$2 043 318
—0.001 263 094 507 064
—0.001 319 718 05? 354
—0.001 364 844 849 466
—O.GG1 401 468 731 72
—0.001 431 644 265 75
—0.001 456 827 618 98
—0.001 478 078 457 94
—0.001 496 185 126 95
—0.001 511 745 248 80
—0.001 525 219 287 83
—0.001 536 967 112 49
—0.001 547 273 535 58

I=5
—0.000 407 926 168 297
—0.000 499 701 854 766
—O.GOO 566 532 724 12
—0.000 617 234 171 18
—0.000 656 SS6 016 24
—0.000 688 630 813 03
—0.000 714 523 500 24
—0.000 735 967 796 62
—0.000 753 956 638 21
—0.000 769 212 618 49
—0.000 782 274 102 15
—0.000 793 550 212 75
—0.000 803 357 162 81
—0.000 811 942 961 68
—0.000 819 504 641 04

I = 6
—0.000 240 908 258 717
—0.000 290 426 172 391
—0.000 327 943 900 64
—0.000 357 298 649 48
—0.000 380 840 963 25
—0.000 400 093 505 39
—0.000 416 088 536 73
—0.000 429 552 243 14
—0.000 441 011 226 81
—0.000 450 85? 082 66
—0.000 459 387 218 08
—0.000 466 831 590 9?
—0.000 473 370 767 31
—0.000 479 148 442 37

l = 7
—0.000 153 864 500 961
—0.000 182 899 145 591
—0.000 205 584 988 395
—0.000 223 775 429 151
—0.000 238 662 892 56
—Q.QQO 251 Q49 857 96
—0.000 261 497 161 38
—0.000 270 409 332 42
—0.000 278 085 983 83
—0.000 284 754 032 72
—0.000 290 588 633 45
—0.000 295 727 206 73
—0.000 300 279 101 37

9
10
11
12
13
14
15
16
17
18
19
20

—0.000 104 148 092 50
—0.000 122 284 630 82
—0.000 136 808 195 63
—0.000 148 688 925 63
—0.000 158 576 610 33
—0.000 166 922 825 60
—0.000 174 051 514 01
—0.000 180 201 449 52
—0.000 185 552 757 78
—0.000 190 244 049 52
—0.000 194 383 831 67
—0.000 198 058 316 53

l= 9
—0.000 073 724 978 585
—0.000 085 632 465 91
—0.000 095 361 612 93
—0.000 103 453 844 66
—0.000 110 284 190 41
—0.000 116 120 527 04
—0.000 121 159 422 12
—0.000 125 548 542 94
—0.000 129 401 107 8?
—0.000 132 805 476 83
—0.000 135 831 685 02

l= 10
—0.000 054 079 265 232
—0.000 062 217 985 59
—0.000 068 980 232 23
—0.000 074 684 418 41
—0.000 079 557 464 81
—0.000 083 765 339 93
—0.000 087 432 273 14
—0.000 090 653 173 76
—0.000 093 501 870 64
—0.000 096 036 714 01

I = 11
—0.000 040 833 679 38
—0.000 046 584 135 94
—0.000 051 430 308 99
—0.000 055 567 811 06
—0.000 059 139 490 75
—0.000 062 252 004 58
—0.000 064 986 598 35
—0.000 067 406 282 41
—0.000 069 560 713 71
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TABLE I. (Continued)

13
14
15
16
17
18
19
20

ln[kp(al )/~
i=12

—0.000 031 581 518 92
—0.000 035 759 246 53
—0.000 039 323 101 08
—0.000 042 397 776 52
—0 000 Q45 076 278 68
—0.000 047 429 319 85
—0.000 049 511 611?8
—0.000 051 366 162 73

ln[kp(sl)/R ]

l= 13
—0.000 024 924 973 82
—0.000 028 032 896 20
—0.000 030 712 253 25
—0.000 033 045 090 67
—0.000 035 093 747 13
—0.000 036 906 385 55
—0.000 038 520 794 22

ln[kp(nl)/R ]

I= 14
—0.000 020 014 384 873
—0.000 022 374 144 60
—0.000 024 427 375 56
—0.000 026 229 566 48
—0.000 027 823 571 79
—0.000 029 242 977 94

ln[kp(nl)/R ]

i=15
—0.000 016 313 053 76
—0.000 018 136 888 68
—0.000 Q19 736 795 95
—0.000 021 151 218 00
—0.000 022 410 278 06

17
18
19
20

i=16
—0.000 Q13 470 635 45
—Q.000 014 902 445?3
—0.000 016 16?595 63
—0.000 017 293 290 47

1 = 17
—0.000 011 251 829 40
—0.000 Q12 391 530 91
—0.000 013 405 126 23

I = 18
—0.000 009 494 620 18
—0.000 010 413 063 29

I = 19
—0.000 008 084 977 84

~N+~NCN(3)+ YNPN(5) (9)

u(v)=(v E) ln(v —E —)n n

Since u (v) has the asymptotic expansion

where g~(k)=g(k) —
QJ =,j " is the N-times-subtracted

Riemann g function. Loss of precision in making the
subtractions can be avoided by starting from

g6(3 ) =0.011 765 236 492 927 61873,

g6( 5 )=0.(X)0 137 365 482 876 099 17,

so that g~(k) =$6(k) —
QJ 7j ". Complete stability to

16 figures in 8 is easily obtained for all states studied with
N no more than 10000 for the highest states, and much
less for the lower states.

A similar strategy was applied to the continuum part

C= f u(v)dv, (10)
0

with

g f(nl, n')=I, (16)

gg(nl, n')=5, 0 . (17)

The largest deviations for 12 & n & 20 were 4 X 10 ' for
Eq. (16) and 2X10 ' for Eq. (17). For n &11, the larg-
est deviations were 8X10 "and 1X10 ", respectively.
The check sums for each state were used to assess the ac-
curacy of the corresponding BL.

with E (i) =2' ' R „ for i ~ 1 and E(0)=10 ' R „.The
last term in (15) is the small contribution to the integral
from the interval 0& v E(0). The pz and y& are calcu-
lated as in Eqs. (7) and (8) from u (E) evaluated at E(N)
and E (N —1), and N increased until C becomes stable to
machine precision. This requires N=50 for l=0 and
N =20 for 1%0. The entire calculation takes less than a
minute per state on an IBM PC/AT.

The above method was used to calculate simultaneous-

ly the check sums

u (v) -1nv(P/v +Y/v ), (12) III. RESULTS

C is approximated by

C =CN+ pNIE(N)( 2
)+ Y NIE(N)(2),

where

(13)

Iz(k) =f v lnvdv= +lnE 1

(k —1)E"-' (k —1)'E"-'
(14)

and C& is evaluated by numerical Romberg integration in
a number of subintervals according to

C~= g f u(v)dv+E(0)u [E(0)],
E(i —1)

The final results for the Bethe logarithms are listed in
Table I. All are believed to be accurate to within +1 in
the final figure quoted. For the lower states, the results
agree exactly with the 11 figure (for n &4) and 8 figure
(for n & 8) tabulations of Klarsfeld and Maquet to the
number of figures they quote. The values for the 1s and
2s states verify the 14 figure results of Haywood and Mor-
gan" to within the +2X10 ' uncertainty of their finite
basis-set calculation. The one previous calculation which
exceeds the accuracy of the present work by two figures is
the 1s result of Baker, Hill, and Morgan. ' They obtain
(after adding ln2 to convert from a.u. to rydbergs)

ln[ko( ls)/R „]=2.984 128 555 765 497 61,
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ko(ls, nL)
=ln

R„ +O(Z )
Z

in agreement with our value.
The two-electron BL is defined by an expression exact-

ly analogous to Eq. (2) except that the one-electron tran-
sition integrals and frequencies are replaced by the corre-
sponding two-electron quantities. ' Although direct cal-
culations of the two-electron BL are diScult and have
only been carried out for the ground state, ' they can be
estimated from the data in Table I as follows. Inserting
Z ' expansions for the two-electron wave functions and
energies into Eq. (2) yields, for singly excited states,

ko( ls, nL ' +'L)
ln

Z R„
ko(nL)

R„ (20)

excitation energy for the 1s electron as if the outer elec-
tron were not present, and the nL electron for an effective
nuclear charge Z,fr=Z —1. The first corresponds to vir-
tual excitations of the form 1s,nL~n'p, nL and the
second to virtual excitations of the form
1s,nL~1s, n "L+1, summed over n' with Z,z=Z and
n" with Z,z=Z —1. Since the one-electron oscillator
strengths are independent of Z while the transition ener-
gies scale as Z or (Z —1), respectively, for the two
cases, the result is [using Eq. (17)]

ko( ls, nL)
ln

ZR

kp( ls) 1 Z —1= ln + ln
00 n

=ln
ko( ls, nL)(Z cr)—

Z R„
+O(Z for L & 0. Comparing with Eq. (18) yields

o ( nL) = (2/n )ln[ko( nL ) ] . (21)
where

ko( ls, nL)
ln

in[ko( ls)lR „]+n 1n[ko(nL)lR „]
1+n 35L o

is the leading term, and o can be expressed in terms of
perturbation sums over intermediate states. ' Values of
o have only been calculated for states up to n =2 with the
results

tT(1 'S)=0.006 15, o (2 'S) = —0.02040,

cr(2 S)= —0.013 88, o ( 2 'P) = —0.006 00,
o(2 P)= —0.00475 .

For the high nL states, a useful approximation to the
two-electron BL can be obtained by calculating the mean

For the ls2p state, this gives o(2P) = —0.0075, which is
in reasonable accord with the exact values above for the
1s2p 'P and P states. For the high nL states, one would
expect o (nL) ~o(nL). '

Since 1nko(ls, nL) can easily be calculated from Eq.
(20) and the results in Table I, this quantity is not sepa-
rately tabulated. Values for n=10 are given in Ref. 12.
The results for the ls10f-ls10g and is10g-ls10h transi-
tion frequencies of helium are in close agreement with ex-
periment. '
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