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An asymptotic expansion of the wave functions for the fragmentation channels of three-body sys-
tems is developed in hyperspherical coordinates. It is shown that, to any finite power in 1/R, where
mR =g, m, r,' is the trace of the inertia tensor, the expanded wave function is an analytic finite sum

of Sturmian functions. The expansion is carried out explicitly through order 1/R . These asymp-
totic states converge (as R ~ Oo) to polarized orbitals for two-electron systems, and also provide im-

proved dissociation channels for molecular ions, such as HD+. Asymptotic potential curves for He
and p -H systems are presented as illustrations.

I. INTRODUCTION

The hyperspherical adiabatic approximation' has been
quite successful in reproducing spectral characteristics of
He and its isoelectronic iona of Ps, and of the molecu-
lar ions H2+ and HD+.~5 The utility of the variable
R =(g;m;r; /m )' as a generic reaction coordinate for
three-body systems with disparate mass and charge
characteristics appears quite fortuitous, and despite the
existence of a formally complete coupled-channel expan-
sion, has not been further justified. Rather, the observed

similarity between atomic and molecular spectra and the
hyperspherical theory suggests that adiabaticity does not
hinge on the small mass (or velocity) ratios of molecular
constituents, but applies generally to any complex formed
by particles with long-range Coulomb interactions. In
essence, a much higher degree of elasticity is observed in
collisions of electrons, atoms, and molecules than can be
justified on the basis of small mass ratios alone.

Macek's original calculation of the doubly excited
states of helium illustrates the main conceptual advan-
tages of the hyperspherical adiabatic method. ' The use
of a reaction coordinate which is symmetric with respect
to interchange of the electron pair ensures correct repre-
sentation of the wave function in the reaction zone. This
symmetry of R under electron interchange is a special
case of the more general invariance of R with respect to
the "kinematic rotations" attendant to any rearrange-
ment process, regardless of the particle masses. In addi-
tion, R tends to an independent particle coordinate in the
limit of fragmentation, providing a connection with the
standard close-coupling expansion at large distances. In
summary, the hyperspherical adiabatic representation in-
corporates the exchanges of momentum and angular
momentum characteristic of the reaction zone, while con-
verging to the polarized orbitals of the fragmentation
zone. '

In accord with this emphasis on the correct representa-

tion of reaction and fragmentation channels, a number of
attempts have been made to obtain analytic solutions of
the hyperspherical equations in the limiting regions
R~0 and R~~, respectively. In the case of three-
body systems with two light-mass particles or three
equal-mass particles, a harmonic expansion about R =0
has been pushed to much larger radii, now even ap-
proaching the fragmentation zone. For systems with two
heavy particles, a single-center expansion has been used
to calculate accurate small-R potential curves" and to
demonstrate their near equivalence to Born-Oppenheimer
curves.

An asymptotic expansion in the fragmentation zone
has, on the other hand, been restricted to zeroth-order
perturbation theory. ' The exception to this statement is
Ref. 9, in which an expansion in powers of I/R was
used to demonstrate the convergence of the hyperspheri-
cal adiabatic representation of two-electron systems to
the polarized orbitals of the close-coupling method.

Our primary purpose here is to generalize the results of
Ref. 9 to three-body systems with arbitrary masses. This
should be of some use to theorists studying muonic (and
other) three-body systems employing the adiabatic hyper-
spherical approach. In Sec. IV C below we present some
sample results of our asymptotic forms for the (p+p, )e
system.

A secondary motivation for this study is the eventual
link of the l/R expansion with the hyperspherical har-
monic expansion about R =0. The successful joining of
these two expansions for two-electron systems would
eliminate the need for tabulating numerical channel func-
tions and would expedite the calculation of physical ob-
servables within the adiabatic approximation. The de-
gree to which this link has been achieved is also discussed
in Sec. IVC.

As a longer-range goal, it is possible to improve upon
the adiabatic solutions by solving the coupled radial
equations analytically in the fragmentation zone. This
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was accomplished to order 1/R 3 in Ref. 11. Extension of
that work using the results of this paper would cast the
entire fragmentation zone wave function into essentially
analytic form, substantially reducing the radius over
which numerical calculations need be performed. This
development hinges upon, but remains beyond the scope
of, this article.

Finally, we note that the present article contains some
small corrections to the results of Ref. 9. It is found
below that a fully consistent expansion must be per-
formed in powers of 1/R, as opposed to the 1/R expan-
sion used previously. This does not alter the results of
Ref. 9 for the ground-state channel, though it does affect
excited-state channels. In addition, two small terms of
order 1/R, omitted earlier, are included herein. In or-
der to include the above corrections, an alternative nota-
tion to that of Ref. 9 is used throughout this work.

m&m2
m)2=

m)+m2

(m, +m2)m3
(4)

where

1 1p2 p2 + Z]Z2

2m 12
~ 2m 12,3

3 f 12

+ Z]Z3 + Z2Z3

lr]2, 3+m]3r]2/m] I lr]$, 3 m 12r]2/m2 I

'

M=m&+m2+m3 ~

Upon separation of the center-of-mass motion,
Schrodinger s time-independent wave equation is

II. ASYMPTOTIC FORM OF SCHRODINGER'S
EQUATION

The hyperspherical coordinate form of Schrodinger's
nonrelativistic equation, and the large-R form of the
Hamiltonian operator, are presented below. Atomic units
(a.u. ) will be used throughout. Where applicable, the
mass of the electron (m, =1 a.u. ) will be specified explic-
itly to maintain symmetry in the equations.

A. Schrodinger's equation in hyperspherical coordinates

We consider a system of three particles (i =1,2, 3) with
arbitrary masses m; and charges Z; interacting via
Coulomb forces. Only systems possessing two-body
bound states, i.e., with

Z)Z2 &0,

will be considered. The nonrelativistic Hamiltonian for
this system is

H= g
i=1

1 ZZ
p2 + (2)

The center-of-mass kinetic energy is extracted from Eq.
(2) by transforming to relative coordinates, the choice of
which is usually based upon the fragmentation process of
interest. For fragmentation channels associated with the
two-body bound states resulting from Eq. (1), we choose
the Jacobi coordinates

and where E is the total energy in the center-of-mass
frame.

The hyperspherical radius R is defined in terms of the
trace of the inertia tensor, specifically,

mR =
—,'Tr(I),

where I represents the inertia tensor. In the center-of-
mass frame, with the relative coordinates defined in Eq.
(3), the explicit form of Eq. (7) is

2= 2 2mR =m &2r &2+ m &2 3~'j2 3

tana = m)2
' 1/2

12

12, 3

The coordinate transformation (r]3,r]3 3}
~(R,a, r]3, r]3 3), applied to Schrodinger's equation, Eq.
(5), yields

1 8 15 A
2m M' 4R' R'

C(a, r]3,r]3 3)2R'
(10)

The parameter m is included for dimensional clarity, but
its magnitude is arbitrary since it simply sets the scale of
R. As mentioned in the Introduction, the trace of the in-
ertia tensor is independent of the choice of Jacobi vec-
tors, which we made in Eq. (3). A second coordinate a,
which depends on this choice, is defined as a ratio of the
lengths of the Jacobi vectors, specifically,

12 2 1

m &r&+m2r2
2g3 3 +m) m2

1
r, = (m, r, +mzr2+m 3r3),

with associated reduced masses

(3)

where a reduced wave function

has been introduced to eliminate a first derivative term.
The operator A in Eq. (10}is the Casimir invariant of the
six-dimensional rotation group. It has the explicit
differential form
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1 8 . z z 8
(sin a)(cos a)

(sin2a)(cos~a) Ba Ba
2 2L]2 L12,3

. 2
+

sin a cos a

where L» and L,2 3 are the angular momentum operators
associated with r, 2 and r, 2 3, respectively.

The factor —C/2mR in Eq. (10) is equal to the three
potential-energy terms on the right-hand side of Eq. (6).
The explicit form of C(a, r, z, r, 2 3) is

2Z, Z, &m gm„
sina

2Z, Z3V m Qm, $3

l(cosa)rip 3+Q(m zm 3/m, M )(sina)rizl

2Z2Z3v m +m12, 3

l(cosa)r, 2 3
—Q(m, milm2M)(sina)r, 2l

(13)

The operators A and C in Eqs. (12}and (13) do not com-
mute, reflecting the nonseparability of Eq. (10).

Macek' defined a set of basis functions as solutions of
the equation obtained by disregarding the 3 /BR term in
Eq. (10),

f A +4 RC(Q)—]4„(R;Q)=2mR U„(R )4„(R;Q),
(14)

where Q= la, r,2, r, 2 ~l. A factor of 2m has been includ-
ed above (unlike standard references) so that U„(R ) is ex-
pressed in atomic units. The solutions of Eq. (10) can
then be expanded in the form

QE(R, Q)= g Fg(R )4„(R;Q),

series in 1/R. This is possible only for wave functions lo-
calized near a=0 ( or m/2) at large R. For such states,
(sina)~0 as R ~~, such that the product (R sina)
tends to a constant value, independent of R. This sug-
gests replacing a in the adiabatic equation by a new in-
dependent variable that is proportional to R sina. This
transformation is used below to construct the perturba-
tion series. (States with energies above the threshold for
three-body fragmentation oscillate throughout the range
of a as R ~ ~ and are beyond the scope of our analysis. )

As R~~, Eq. (14) should approach Schrodinger's
equation for a pair of particles with relative coordinate
r, 2, in the field of a third receding particle, at lr, p 3l ~ 00.
This becomes apparent upon performing a coordinate
transformation a ~x, where

resulting in the coupled system of equations

d2 1+2m [E—U„(R }]+ Fg(R )
dR 4R

m12

' 1/2

R sina, (19)

= —g W„"(R )Fg'(R ), (16)
and where R is treated as a fixed parameter, such that

where m12

' 1/2

R(cosa)da . (20)

W&, (R )= 4„, 4„+2 c} d
(17) This last equation renders the difFerential element dQ in

the form

and where the scalar products indicate five-dimensional
integration over the 0 variables, i.e.,

dQ=(sin a)(cos a)dadr, 2dr, z 3

(e„,ae„)=fdadr, 2dri23(sin a)(cos a)

X4„'(R;Q)A4„(R;Q) . (18)

'3/2 ' 1/2
m12 m12X

1 — x dxdr, &dr, z 3 . (21)
mR mR

Practical applications of Macek's method, ' thus far, have
been restricted to obtaining and analyzing the solutions
of Eq. (14), and then truncating the coupled system, Eq.
(16), to a few dominant channels. Solving Eq. (14) is most
difficult numerically for large values of R, where one may
use instead the analytic expansion presented below.

B. 1/8 perturbation series

3/4
mR4 (R;Q}= 1—
m 12

—1/4
m, 2x P„(R;Q)

mR X

(22)

The prefactor in Eq. (21) may be absorbed into the chan-
nel functions, setting

We now proceed to cast the adiabatic (fixed R) equa-
tion, Eq. (14), into a form amenable to a perturbation

The combined transformations, Eqs. (19) and (22), ap-
plied to Eq. (14), yield
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Q2

2m )2 ()~

Liz Z, Zz+ + V'(R, x, 8)
X

2 g Q m, 2x +4mR L123+ x +2x + ' +— P„=U„(R)P„. (23)2mR»» 4(mR —m, 2x )

We emphasize that this equation is an exact form of the adiabatic equation, Eq. (14). Its solutions are to be normalized
in accordance with the scalar product

f dx fdr, 2f dr, 23$„'(R;Q)p,(R;Q)=5„„. (24)

Note that the variable x, like the angle a, spans a finite range. From Eq. (19),
1/2

R .max
m)2

(25)

As discussed below (see Sec. III A), the integral over x in Eq. (24) may be extended to x,„~~ if the channel func-

tions P„are localized at small values of x. This approximation excludes three-body fragmentation states and restricts
the range of R over which our solutions to Eq. (23) are valid. The elimination of R from the limits of integration in Eq.
(24) permits us to regard x (instead of a) as the independent variable, and to solve Eq. (23) by perturbation series in
1/R.

The Hamiltonian operator for the isolated pair of particles I 1,2) is apparent in Eq. (23), and the Coulomb interac-
tions of this pair with particle 3 are given by

V(R 8)
1 3 123Z Z m

l(mR —m12x )' r12 3+[m2V m, 2 3/(m1+m2)]xr121

+ Z2Z3+m

l(mR —m, 2x )' r12 3 [m, +m, 2 3/(m, +m2)]xr, 2l

(26)

For fixed x values, each term of Eq. (26) is clearly propor-
tional to 1/R as R ~~. The remaining contribution to
Eq. (23) contains terms of order (1/R ) or higher.

It is now straightforward to expand each term in Eq.
(23) in a power series in 1/R. For the potential V' one
obtains, to order 1/R,

Equation (27) results from the multipole expansion of Eq.
(26) and is accordingly valid only over the restricted
range

&mR
X CXp=

/m, 2(1+m 3m /Mm )

Z xP,P1(cos8) m 12 ZxV'= + +
~rnR mR 2 (v mR}

x P2P2(cos8) m, 2x'P, P, (cos8)+ +
(~mR ) m'R4

x P3P3 ( cos8 )+
z 4 +

m R
(27)

+max

g1+m3m & /Mm &

with

m =max(m„m2), m =min(m„m2) .

(30)

(31)

where
cos6 =I ]2 r]2 3

and

Z —Qm, 2 3Z3(Z, +Z2),

(28) This places a more stringent restriction on the localiza-
tion of the channel functions 4„, as discussed in Sec.
III A, below.

Writing Eq. (23) in the form

3

'2
m3 Z3(m, Z2 —m 2Z, )

M m
&
+m2

m3
p, = Z3(m1Z2 —m2Z1),

'3/2 2 2
m3 Z3(m1Z2+m2Z, )

gm, +m,

H(R )(j)„(R;Q)= U„(R )Q„(R;Q),

and expanding the operator H(R ) in power series

H(R)= g . H
J=o (&mR)J

we find for j ~ 4

(32)

(33)
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(p L)i Z)Z2Ho=- +
2m &2 BX2 x2

H) =Z,

H2= X +2X + +L]2 3Bx 2

+xP,P, (cos8),

m)2
H3 = Zx +x P2Pi (cos8 ),
H4= —,m&2X +—,m&2X L&23

] 2 ] 2 2

(34)

(40)

and its degenerate eigenfunctions

N —1 L+I
(ri2 ri2 i}

I =0 A, = IL —ll

(41)

are arbitrary superpositions of reduced Coulomb wave
functions

This equation is separable in the variables x and r,2. Its
eigenvalues [recalling Eq. (1}]are

2m)~(Z, Z2)
P N 2N2

+m, 2x P,P, (cos8)+x PiP~(cos8) . R~ ((yx ) =q~( ( yx )
I + ie —yx l2L '+ ', (yx ), (42)

The channel functions and eigenvalues are also expanded
in power series

(35)

where

2m, 2 ~Z, Z2 ~

(43)

00

U —y U(j)
j=o ( mR)&

(36)

The function Y in Eq. (41) is a coupled product of spheri-
cal harmonics

Substituting Eqs. (33), (35), and (36) into Eq. (32) and
comparing coefficients of equal powers of 1/R, we obtain
the indicial equation

Yh, (r)2 r)2, 3) g (™i~m2 ILM &

m], m&

X Y(~ (r,i)Yi (r, i 3) . (44)

H y(0) —U(0) y(0) (37)

III. SOLUTIONS OF THE ASYMPTOTIC EQUATIONS

In this section, we solve Eqs. (37) and (38) in closed
form to obtain the potentials U(~), j~4, and the wave
functions p(j), j~2. That it is possible to obtain closed-
form solutions stems from the fact that the response func-
tions $(J' in Eq. (38) and the source terms p„" (s (j}
share a common exponential dependence on x. Once this
exponential is removed, Eq. (38) is reduced to a finite-
order polynomial equation in x, which may be solved by
expansion in Laguerre polynomials.

A. Indicial equation

Using the operator H() from Eq. (34), the indicial equa-
tion, Eq. (37), is written

] Q2

2m g2 ()x

L Z1Z2 y(0) U(0) y(0) (39)
2 P P P

and the coupled set of inhomogeneous equations

j—1

U(0) )y( j) y ( U(j —s) H )y(s)
p j ~ ps=0

j= 1,2, 3, . . . , 00 . (38)

Note that Eqs. (34), (37), and (38) are independent of both
R and m. Furthermore, the potential curves and channel
functions, Eqs. (35) and (36), along with the prefactor in
Eq. (22), depend only on the product &mR. We now
proceed to solve this perturbation series to obtain the ei-
genvalues U„(R ) to order 1/R .

It is an eigenfunction of L and L„where L=L,2+L,2 3

is the total orbital angular momentum about the center of
mass. It is a1so a simultaneous eigenfunction of L,2 and

Liz 3 with eigenvalues 1(1+1)and A(A, + I }, respectively.
We have introduced the notation p= [v, s }, where v is
the set of quantum numbers

v=IN, L,M, m}, (45)

m, 2 iZ, Z~ i(N I —1)!—
N (N+I)!

(47}

In determining this factor, we have extended the range of
integration in Eq. (24) to infinity. This is permissible due
to the exponential attenuation of the solutions, Eq. (41),
for x values greater than xo defined in Eq. (30). It does,
however, place the following restriction on the range of
validity of the asymptotic expansion:

and s labels states of degenerate v.
The coefficients A in Eq. (41} are undetermined to

zeroth order in 1/R. An eigenvalue equation which
determines these coeScients is given in Sec. III C, below.
Since P„'' must be an eigenfunction of parity (ir), the
sums over 1 and A, in Eq. (41) are restricted to even or odd
combinations of 1+1,. This is indicated by the prime
over the second sum.

The normalization constant ri)v( of the reduced
Coulomb wave function in Eq. (42) is determined as indi-
cated by Eq. (24}

f dx iR„,(yx )i'=1 (46)
0

or
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( )2N r~o

2N(N+ I )!(N—I —1)!
(48)

(Recall that x0 depends only on R and on the masses, so
that the left-hand side of this expression is a function of
R.) The quantity on the left is a measure of the probabili-
ty that Ir, 2I exceeds x0. In practice, this restriction is of
little consequence since one simply solves the exact adia-
batic equation out to R values where a smooth match
with this asymptotic expansion is obtained. Having stat-
ed this restriction, we will henceforth evaluate all scalar
products over the extended range 0&x & Do. The func-
tions RNI then form a complete and orthonormal set, and
we may proceed with the evaluation of higher-order
terms.

Finally, we emphasize that the hyperspherical theory
yields the correct fragmentation thresholds, given by Eq.
(40). This is not true, for example, of the Born-
Oppenheimer approximation, in which the potential
curves approach energy levels with an incorrect reduced
mass.

B. First-order solutions

Using the results of Sec. III A, the first-order equation,
Eq. (38) with j=1, is

U(0) )y(1) —
( U(1) Z )y(0) (49)

The left-hand side of this equation vanishes upon taking a
scalar product with (t)(„",due to Eq. (39), and we find

U"'=Z™
v, s (50}

+0(l/R ), (51)

and ~in R = /m, 2 3r, 2 3 in this limit. Note that the N
manifold states remain degenerate in this order of pertur-
bation theory.

where Z is defined in Eq. (29). This is the expected result
since the long-range potential now has the form

U„(R)=— +m, 2(Z, Z2) V m12 3(Z, +Z2)
2N &mR

With the result, Eq. (50), Eq. (49) reduces to homo-
geneous form, and its solutions may be expressed as
linear combinations of the degenerate zeroth-order solu-
tions

y(1) y a v, sy(0) (52)

where, like the A coefficients above, the a *' coefficients
are undetermined to this order. These coefficients will be
determined by the third-order equation in Sec. IIID,
below.

C. Second-order solutions

Selecting j=2 in Eq. (38), and using the results
presented above, the second-order equation is

(H U(0))y(2) ( U(2) H )y(0) (53)

X RN, I(1 x ) Yi.i~(r12'r12, 3} (54)

If we take the scalar product of Eq. (54) with RN ( Y(. 2

then the left-hand side vanishes yielding

N —1 L+I
(Nl'A, 'L IH2INI) L ) A(")„'=U' 'A("3. , (55}

I =O X=JL —I(

which is a finite-dimensional eigenvalue equation deter-
mining the second-order potential U','/mR and the A

coefficients introduced in Sec. III A.
The matrix elements of the operator H2, within a de-

generate N manifold, are obtained using the recurrence
relations of the Laguerre polynomials. We find

Recall now that the P'„,' driving term contained a set of
undetermined coefficients due to the degeneracy of the N
manifold at R = 0() . The first step in solving Eq. (53) is to
determine these coefficients. Substituting Eq. (41) into
Eq. (53), we find

(H U(0) )y(2)

N —1 L+I
A "'(U' ' H2 )—

I =0 X=fL —If

(Nl'il'L IH2INIA, L ) = A,(I(,+1)+
2 2 2

3 ] [5, —(N I ) (I 1 X'IP (cos(9)II,~&'
y

+5(, (+,(N ( I + 1) )' ( I + 1,—A, 'IP) (cos8) II, A, ) ], (56)

where the angular factors are related to standard 3n —j symbols

(I' ~('IPk(cose)II i& = fdr, 2dr, 23)'&.2 '(r, 2,r, 23)Pk(cosa)Y(2 (r,2,r,23}

L A, I I' k I A,
' k A,

=(—1}" + &(21+1)(21'+1}(2k+1 )(2A,'+ 1} k I' )(' 0 0 0 0 0 0 (57)
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This angular factor, for k =1, vanishes unless l(, '=A, k l.
For the special nondegenerate case N=1, Eq. (55}

yields

(2) L(L+1) 1
N=1 2 4

and the adiabatic potential, through order 1/R 2, is

' 1/2
(n —l —1)!

nl

and are orthogonal with respect to the scalar product

oo dp
& nlln'1 &@=J S„'l(p)S„l(p)=5„„.

0 p
(64)

UN=1(R )

(59)

m, 2(z, z2) V m, 2 3Z3(Z, +Z2)+
2 3/m R

L(L+1}
2mR 2

V'm»IZ, Z2I
RN!(r» )=

N
SNI(r»» (65)

Note that when n =N, the Sturmian functions are pro-
portional to RNl (yx ) of Eq. (42),

y(2)h y b v, sy(0) (60)

As shown in Ref. 1, the last term in Eq. (59} and the
1/4R term in Eq. (16) are canceled by the 1/R term in
W„"(R ) (see Sec. III F, below).

Since Eq. (55) completes the determination of P'„,' and
U'„,', we can now return to Eq. (53) and obtain the
second-order wave functions P'„ I. Clearly, these can be
determined only to within an arbitrary homogeneous
contribution, which we write as

1 8
2m 12 Bx

L12 Z, Z2 m, 2(Z1Z2 }+ +
X 2N

(2)

U', ,' ——x +2x +—+L12 3Bx 2

and are accordingly also solutions of the homogeneous
equation, Eq. (39}.Thus the restriction to nAN in Eq.
(61).

The explicit form of Eq. (53) is

The b coefficients will be determined by the fourth-order
equation in Sec. III E, below,

The particular solutions of Eq. (53) might be obtained
by expansion into zeroth-order functions $10' with alter-
native N values. This would clearly require the superpo-
sition of an infinite number of states, since, as was noted
earlier, P',2,' contains only that e 1"~2 factor which
occurs in P'„,'. This suggests an alternative expansion
into Sturmian functions

—P,xP, (cos8)

Setting

p=fx

y'
2m 12

and then left-multiplying Eq. (66) by p yields

+ +& —N y'„21
L12

~2 4 vs

(66)

(67)

y(2) —y(2)h+ y(2)p

n —1 L+I
y(2)p y y y Tn, I,AS ( y» )

n I =O X= it. —I j

nPN

(61)
p U121 ——p3 +2p2 +e +pL21 8 8

2 Q
2 Bp 2P

p2P, (cos8) P'„,' . (68)

Xr, ). (r„,r,

where y is independent of n and is again given by Eq. (43)
(y =2m, 2lZ, Z2l/N). We will show below that all but a
few of the T coefficients in Eq. (61) vanish identically.

The Sturmian functions are defined by —
p + ++ S„,(p) =nS„l(p) .

82 l(1+1}
Qp

2 (69)

The operators in Eq. (68) are now Hermitian with respect
to the Sturmian scalar product, Eq. (64}. Note, in partic-
ular, that the Sturmian functions are solutions of the
differential equation

with

( ) C 1+1 —P/2L 2l+ 1
( ) (62) Upon substituting Eqs. (41) and (61) into Eq. (68), using

Eqs. (65) and (69), and taking a Sturmian scalar product
with S„IYI&' *,we obtain

' 1/2 3/2N r (n N)T""h= A —' nl U(2) l(l+1)
v, s I,A, v, s

m12

x(1+1) 1,s + Np' p'
n&)4 d 2 8

Pi N —1 6+1'
A,". ;, &nllp'lNl &, &l, alP, (cos8)ll, }1, &'.

I =Or=(I. —I )

(70)

Equation (70) is the principal result of second-order perturbation theory. Since nXN, Eq. (70) uniquely determines
the T coefficients in the expansion of the second-order wave function, Eq. (61}. The matrix elements on the right-hand
side of Eq. (70) may be evaluated using the recursion relations of the Laguerre polynomials. We find
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T" '"=0, ln —Nl ) 3 (71)

and the six non-vanishing coefficients
' 1/2

TN+3, 1,A, 1 2

24

m12
3/2 ~I,X VN, I VN+1, 1 VN+2, t (72}

TN+2, l, A,

V7 S

TN+1, I, A,

V, s

+
m(21N+l, l „,(Nkl)

3/2 4y
' 1/2

2 m12

y

)l,(A, + 1)
V, S

I (I + 1) N(¹1)
8 8

I N, I ( ~N, IG2., l+) + ~N, I A. ,!—l (73)

2 1+ [(2N +I+2) WN I 6 I"„'I+( + ( 2N + I6 1 ) $VN+ I G), I (1—
y

(74)

where the V and W factors are simply

VN I=v'(N+I)(N+l21),

WN I
=v'( N T I )(N + I + 1 ),

and

Gz'lz( = Al").') 2 ) & I, A, lPi(cos8)iI+1, A,
—1) )~

(75)
U(3) —

&
y(0) lH ly(0) )

with H3 given in Eq. (34). When sWt, Eq. (77) yields

(79)

Equation (78) is the principal result of third-order per-
turbation theory. When s =t, it yields directly the third-
order potential

+ Al"' ~ & I,alPi(cose) II+1 A, +1)' . (76)

Note that the V and W factors cause the T„"",

coefficients to vanish unless n « I+1.
This completes the solution of the second-order equa-

tion. To summarize, the degeneracy of the zeroth-order
solutions is split in second order by solving the finite-
dimensional eigenvalue equation, Eq. (55}. This deter-
mines the A coefficients for the zeroth-order wave func-
tions, as well as the second-order potentials. The
second-order wave functions are then given, to within an
arbitrary homogeneous contribution, by the Sturmian ex-
pansion, Eq. (61), with coefficients given explicitly in Eqs.
(71)—(76). We now proceed to third order.

U(2) U(2)
vs vt

(80)

a, "+a '
1

&y„, ly„, , ) =s„,+ ' ' +o
mR R

(81)

Orthonormality through first order then requires

Note that the component a,"' cannot be determined by
the third-order equation since its contribution to the
channel function, Eq. (35), is equivalent to an R-
dependent renormalization of the zeroth-order wave
function. Instead, we note that the overlap integrals of
the channel functions are now

D. Third-order solutions
I

aV, S aV, S
s' s (82}

U(3)g
&

y(0) lH ly(0) )+,s( U(2) U(2) )
4

(78)

In this section, we determine the third-order potential
U(,) /(&m R )3. The first-order homogeneous contribu-
tion to the channel functions, Eq. (52), which was left un-
determined in Sec. III B, is then given in explicit form.

Setting j=3 in Eq. (38}and using the above results

(H U(0) )y(3) —
( U(3) H )y(0)

+ ga"'(U'„,' H2)(t)(„' . (7—7)

Taking a scalar product with P(„ I', the left-hand side van-

ishes and

which is clearly satisfied by the coefficients in Eq. (80),
and which yields, for s =s',

av'=0 . (83)

From the orthogonality of the Coulomb radial functions,
one can now show that

&(()„., ly„, & =s„.,s„.+o (84)

The matrix elements in Eqs. (79) and (80) can be evalu-
ated using the recurrence relations of the Laguerre poly-
nomials. We find

mi2Z(5N +1) 3m, 2Z N —i I +I
g I(I+1}r' I =0 X= )1.—I [

2 2
N —1

+
2 g I [5N +1—3l(I+1)]MI i

' +5(~N (,I~N+), IM! I+2—+~N+(, I ~N —l, lMI I —2}I
Y l=0

(85)
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where the %factors were defined in Eq. (75), and where

L + l L+ I'

Ml"I" = y' al",2 y' al", g & I,~II'2(cos~) II', ~' &'
~ =IL-l

l

(86)

We will not attempt, in this work, to obtain the third-order wave functions since the utility of our asymptotic expan-
sion is anyway limited to large R by the constraint given in Eq. (48).

E. Fourth-order solutions

Setting j=4 in Eq. (38), and proceeding as in the previous section, we obtain the following expression for the fourth-
order potential:

iZ, Z i
n —

1 I+I
U' '=&y' 'iH4ittt &+ g(t2" s) (U' ' —U"' ) — ' y(n —N) y y' (Tn '~)

CT n l=o X=lL —ll

The coefficients of the homogeneous contribution to the second-order wave functions, Eq. (60), are then

bv s
&

$(0) p(2)P&+ &(I)(0) iH i(I)(0) &+(2 v s( U(3) U(3) )+ g (2 vs(2v t( U(2) U(2) )
1

Vs t VsS U'(2) U'(2) Vs t 4 V S t V t VsS o' o v t vo
VS V t o'

iziz2 i
n —1 L+I

y (n N) g g Tn, l, 2Tn, l, k.

n l=o x=lL —ll

The evaluation of Eqs. (87) and (88) requires the matrix elements

(87)

(88)

and

1
N —1 L+l

&
~(0) i~(2)p& — ~ ~ g, t( V+ TN+1, 1,2. + y

—TN 1,1,2.)—
21' m]2 [Z]Z2 I l =o a= lL —il

(89)

& tt„"t ia4ig'„", &
= ", g Al",'AI"„'[5N +1—3I(I+1)][1+4k(A+1)]

V l, A,

+ ", y y AI",'AI". „'. p(&l, xlI') II', ~'&'+ &I, ~II' II3', )'&(' &N, Ilp41N, I'&s,
Nl )2

(90)

where

& N, I
i p iN, I —3 &s

= 70N( N I )— —

x [N' —(I —1)']'"
x [N' —(I —2)']'",

& N, I ip i N, I —1 &s = —10N(N —I )'
(91)

These results complete the determination of the potential
through fourth order in 1/R, and of the channel func-
tions through second order.

F. Derivative couplings

x(7N 31 +5) . —

Note that Eq. (88) cannot be used to determine the
coefficient b, ' since this contribution to the second-order
wave function is equivalent to an R-dependent renormal-
ization of the unperturbed function. Instead, the require-
ment of orthonormality

The coupling matrix elements W"„,(R ) in Eq. (17) can
be obtained using the results in Secs. II A —III E, above.
The general expressions are quite complicated in appear-
ance, and only the most important elements, those diago-
nal in p, are presented here.

Due to the orthogonality of the asymptotic wave func-
tions, Eq. (92), the first derivative term vanishes identical-
ly

&e„,ia, , &=fi, , +O(1/R )

gives

(92)

=0+0(1/R ) . (94)

bv, s
&

y(0) iy(2)p& t y (a v, s )2 (93) The second derivative term contributes factors of second
and higher orders and has the explicit form
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82
V~S & 2 V~S

BR

2N +1 ~ l(1+1)
I

„,I2
2bs

+,g 1(1+1) A,"2' g a~'+ —b~' &1"2+
3/mR3, 2 mR ' 23/mR

g V, ST+, l, XD
+

4 gg ' ' +O(1/R},
n I,2, 4V'm12 IZ1Z2 I

nAN

(95)

where the last term contains coefficients defined by

D *' = [N +—l(1+1)%9N]iv),
D * ' =2(N+ 1)VN1Vlvy

N%3, N

(96)

A. Ground-state channel

v=rN=1, L,M, n=( —1) ], s=l . (97)

Consider the ground-state channel, for which the quan-
tum numbers of Eq. (45) are

While the algebraic forms obtained throughout Sec. III
appear formidable, they are amenable to rapid computa-
tion, and a Fortran program has been written for this
purpose. In Sec. IV, some examples are presented to il-
lustrate the use of these results, and to unravel the physi-
cal content of the algebraic forms.

IV. EXAMPLES AND DISCUSSION

In this section, the results of Sec. III are analyzed in
detail for a few special cases. The algebraic formulas
simplify considerably for the channel representing the
particle pair (1,2) in its ground state N= 1 and perturbed
by the distant third particle. The results for this case are
presented in Sec. IV A, below. Section IV 8 demonstrates
that the asymptotic forms correctly contain a contribu-
tion due to the dipole polarizability of the hydrogen-like
particle pair (1,2) in an arbitrary excited state N. Finally,
Sec. IV C illustrates the numerical application of our re-
sults to a few systems of interest.

/11, '2. =51,o53.,L5., 1 . (98)

The zeroth-order channel function is simply

1
=R 1 p(yx ) Yp'L ( r12 r12 3) (99)

and the first-order channel function is zero since, from
Eq. (83),

a"' =0 .1

The G coefficients of Eq. (76) follow from Eq. (98)

(100)

v, l
G~', I+1=o

(101)
5l, 1

G2'1 1= ' (&L 5&L 1
&L+15—&L+1),3(21+1)

and the nonvanishing T coefficients of Eqs. (72}—(74) are

The eigenvalue problem, Eq. (55), is thus one dimension-
al, and

T4,0,L
v, 1

T3,0,L
v, 1

12

(2 3)l/2 ' "&1
[

~3m12

(2 3)l/2 '
y

m, 2p, /L +1
(2L+1)y ]'

8m12pl &L

[(2L + 1 )y5] 1/2 (102)

2m12p, L, , 8m, 2pl L + 1

[(2L+1) ']' "' [2L+1) ']' '
The homogeneous contribution to the second-order wave function vanishes, since from Eq. (93)

v1=0
1

and the second-order wave function is then obtained from Eq. (61)

(103)

m xe
[I.3(yx ) —2L &(yx )]Yo'L~(r12 r12,3}

2 2y

L, (yx )—8L o(yx )
+2plx [ 1,L 1(r12 r12, 3} L + 1 Yl,L+1(r1—2 r12,3}]&3(2L + 1)

(104)
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U, (R )=—

12m
&&

mR y

The diagonal coupling matrix, Eq. (95), is
'I

The potential is now readily obtained from Eqs. (59},(79), and (87), and can be written in the form

2(Z, Zz ) +m ]z,3Z3(Z] +Zz ) 6m, z 1+ 1+
2 &mR mR ~y~ 4mR ~

+ L(L+1)
2 R 4m 2R4y2 y2

(105)

W"'I (R )=— 3 1+
4m (~

4R 2 y2mR 2
(106)

Combining these two forms, the effective potential which enters the coupled radial equations, Eq. (16), is

U,(](R ) = U„,(R )— 1

2m
W"„'I (R )+

4R
L

m]z(Z]Zz) Qm]z 3 z(Z]+Zz)+ 1+
mR

r

L(L+1) 12m]z 3m]z

2mR2
'

mR2y2
+

4y2m2R4

6m )q

mR ~y~

48
+0(1/R ),y' .

(107)

where for N=1, y=2m]z~Z]Zz~.
Each term in Eq. (107}may be interpreted by compar-

ison with the close-coupling form of the asymptotic po-
tential. Denoting zeroth-order expectation values by, for

example,

( 2 ) (y(0) ~&2 ~p(OI )
12
y'

it follows that

(108)

I [ I
/

I

-4 .6.0 I I ~ I I I I I I

-46.2— 2S'

I I I I I ~ I I I

-1.0 I I I I I I I I I

~ -46.4—
CL

-46.6—

I I I I I ~ ~ I ~

I
I I ~ I I

-46.2—

I I I I I I I I I I

6 8 10 12 l4
R(a.u. )

FIG. 1. Comparison of our analytical potential curves to nu-
merical solutions of the adiabatic equation for 2S' and 2P' dou-
bly excited channels of He. Solid lines, our results. Dashed and
dotted lines are the numerical results for singlet and triplet
states, respectively. We have chosen m =1.

—-464—
~ -466-

-46.8—

4'70 I ]

0 10 20
R (a.u.j

30

FIG. 2. Long-range potential curves for the 2S' and 2P'
channels of the (p+p )e system.
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1 1

+m12 3"12 3 0 m R
1+ +O(1/R ),

6m )2

mR y

-20.0

-20.2—

1 l ~

P

(
12m )21+ +O(1/R ),

+O(1/R ) .1 1

m f2 3P]p 3 0 m R

(109)

~-20.4—
CL

-20.6—

— 1.0 I a a ~ a 1 a a a ~

10 20
The effective potential can now be written in the form

m 12 (Z1Z2 ) Z3 (Z 1 +Z2 )
U,s(R)=- +

2

R (a.u. )

FIG. 3. Same as Fig. 2 for N= 3, I.=1, and odd parity.

(110)

the N=1 channel that is unique to the hyperspherical
theory. Its contribution can be traced to he m, 2x /8
term in H4 of Eq. (34).

where the dipole polarizability of the N = 1 state is

9(miZ2 —m2Z1)

2m 12(m 1 +m 2 )'Iziz21'

and is precisely the form given in standard references. '

The final term in Eq. (110) opposes the attractive dipole
polarizability, and is the only term in the expansion of

I

B. Excited-state dipole polarizability

The presence of a dipole-po1arization term in U,z also
holds for higher N manifolds. To see this, note that this
factor originates from the P, contribution to the T term
in the fourth-order energy, Eq. (87). This contribution
can be extracted directly using Eq. (70), and results in the
general form

N (m, Z2 —m2Zi)

8m 12(ml ™2)IZ1Z2~ XNl, k

I y a;, „', &n, Ilp2IN, I'), &I, XIP, II', X')'I2

(112)

(N+1 I Ip2lN I+1)s =2[2N+(I+2)] WN, ,

(N+ 2, I
~ p ~ N, I = 1 )s = WN*1 VN+ 1 l

&N+2, Ilp'IN, I+»s= ~N, I ~N+1,!

(113)

C. Numerical results

Note that the form of this expression is typical of a
second-order energy correction. The matrix elements
needed for its evaluation are

(N+1, I ~p ~N, I —1)s=2[2N+(I —1)]~N 1,

Figures 2 and 3 show the potential curves of 2S', 2P',
and 3P' channels for the (pI2)e system. The bound p-I2
system, in its low-lying excited states, has a small dipole
moment. Consequently, the curves are fiat over a large
range of v'm R and diverge rapidly at small distances.
This system, in which the two heavy particles are oppo-
sitely charged, is one of the least studied three-body prob-
lems. Its high-N channels are of particular interest, for
they constitute the final states of muon-capture processes
in atomic hydrogen. The ca1culation of small-R potential
curves for this system is presently under investigation.

Figure 1 compares our results for N=2 channels of
atomic He with those obtained by numerically diagonal-
izing the adiabatic Hamiltonian. The basis used for the
diagonalization was the same as that used in Ref. 2, and
was truncated to the harmonic quantum number A, = 120.
For v'm R greater than 10 (a.u.), where the singlet and
triplet channels merge, our analytic results match the nu-
merical ones quite well. Our method cannot, of course,
include the exchange symmetry. Recently, a numerical
procedure has been developed to incorporate the ex-
change symmetry in the asymptotic region. '

D. Conclusions

We have developed a systematic asymptotic expansion
for the two-body fragmentation channels of three-body
systems. Our method applies quite generally to any
three-body system which interacts via Coulomb forces.
The wave functions obtained are polarized orbitals which
incorporate the dominant polarization energy as well as
corrections due to our choice of reaction coordinate.
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