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We give a rigorous proof for the following result that combines those discussed earlier by Kruger
and Poffyn [Physica 85A, 84 (1976)] and by Springborg [J. Phys. A 16, 535 (1983)]:The Wigner
correspondence of a quantum operator can be obtained by simple substitutions under an arbitrary
linear phase-space transformation. This property cannot be generalized to any other transforma-
tions or rules of phase-space correspondence. As an application of this result, the Wigner distribu-
tion functions of an anisotropic harmonic-oscillator system in crossed magnetic and electric fields

are obtained.

I. INTRODUCTION

A. Brief review of the phase-space representation
of quantum mechanics

f d "p P' '(q, p)=if(q)

"qP 'qp = p

(2a)

(2b)

with

Wigner proposed a quantum distribution function'

„ f d "y 0'(q+y)4(q —y)e"'"'"1

(vrR)"

for a pure state described by wave function g(q), where n

is the number of dimensions, d "y =dy, dy„,
y&, . . . , y„are the components of y, and likewise for oth-
er vectors. It is a real function and satisfies the following
properties that are usually required for probability distri-
butions:

quantum-mechanical average of A through a phase-space
integration:

& ~) =&OISIN&= f d"qd"pP' '(q, p)A' '(q, p) . (4)

Similar results hold for mixed states. In addition to the
Wigner distribution function, other quantum distribution
functions (QDF's) have been introduced. For example,
there are the Kirkwood ( antistandard), the standard-
ordered, the Husimi' (anti-normal-ordered), the P (Ref.
6) (normal-ordered), and the symmetric-ordered distribu-
tion functions. They can be calculated from each other
by differentiations. Each QDF corresponds to a particu-
lar rule of associating phase-space functions with
quantum-mechanical operators. In general, the super-
scripts (tv) in Eq. (4) may be replaced by an arbitrary
correspondence (0).' A QDF is simply the phase-space
correspondence (PSC) of the density operator through the
conjugate rule (0), apart from a factor of (2M) ".'o The
Wigner PSC is the only one that has the property
A=A=tv, i.e., both the Wigner QDF and the Wigner
PSC can be obtained from the same Weyl rule.

and

P(p) =(2rh) " f d "q e' "g(q), (2c)
B. Phase-space transformations

d "q d "p P' ' q, p = l . (2d)

&' '(q, p)= f d"ze"*'"&q—
—,'z~ J~q+-,'z& (3)

with an arbitrary operator 3, one can evaluate the

The range of integration in this paper is always from
—~ to + ao. For clearness we use a hat to denote an
operator. If one associates a Wigner correspondence'

Coordinate transformations are frequently encoun-
tered. For instance, as a remarkable development in
quantum optics, O' Connell" has proposed the use of the
Wigner distribution function for squeezed states'
through coordinate transformations. This idea has been
enhanced by other authors and much work has been done
in line with this new trend. '

Let us now consider an arbitrary phase-space transfor-
mation:
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q=q(q p } p=p(q p }

which is an abbreviation of

(5)

C. Oscillator systems in crossed 8 and B fields

As an application of the general discussions on phase-
space transformations, we shall derive the Wigner distri-
bution functions in different phase spaces for an aniso-
tropic harmonic-oscillator system in crossed magnetic
and electric fields, where coordinate transformations are
necessary. There are two additional reasons for these
derivations.

First of all, the harmonic-oscillator system is one of the
few exactly soluble models and has enjoyed enormous ap-
plications in both physics and physical chemistry. '

The Schrodinger equations for both isotropic and aniso-
tropic harmonic oscillators either without or with mag-
netic field have been solved exactly for some time. '

Recently there has been renewed interest in various ques-
tions related to the harmonic oscillator. In particular,
the Bloch density matrix, the propagator, the lattice
effect of a harmonic oscillator in a magnetic field, as
well as the free energy of a Fermionic ensemble of such
systems, have been evaluated exactly. Hence deriva-
tions of the Wigner distribution functions for an aniso-
tropic oscillator system in crossed magnetic and electric

r I
qnsP i s ~ ~ spn

I I I
p; —p i~), . . . , Q„,P &, . . . ,p„&,

where i =1,2, . . . , n Given the QDF P( '(q, p) and the
PSC A'"'(q, p) of an operator A in one phase space
(q, p}, one may ask the following question: is it true that
the QDF P'")(q', p') and the PSC A' '(q', p') of the
operator A in phase space (q', p') can be obtained simply
by substituting Eq. (5) into P'"'(q, p) and A(")(q, p)?
Considering the complexity in the definitions of QDF's
and PSC's, the answer is not obvious.

Kruger and Poffyn' have first shown that the answer
to the above question is positive only to the Wigner PSC
rule when the phase-space transformation considered is
one of the Galilean transformations, i.e., rigid displace-
ment, uniform translation, space reflection and rotation.
Springborg' has shown that the Wigner PSC rule is the
only one to remain invariant after a canonical phase-
space transformation. But further restrictions on the
canonical transformation, i.e., Eq (25} in Ref. 15, have
been used in Springborg's proof of this result.

We shall prove rigorously in this paper that the invari-
ance of any given QDF and PSC is guaranteed only in the
case where the Wigner PSC rule is used (Q=u)) and the
transformation is a linear transformation, i.e.,

r

q a b q' e
+c d p' f

where a, b, c,d are n Xn matrices. This result combines
those discussed in Refs. 14 and 15 [i.e., rigid displace-
ment e, uniform translation f, and canonical transforma-
tions including reflection and rotation given by the
2n X2n matrix in Eq. (7)].

fields can be considered as a supplement to the works
mentioned above.

Secondly, there have been extensive applications of
quantum distribution functions and the Wigner-
Kirkwood expansions in physics and physical chemis-
try. In particular, Dickman and O' Connell '"' have re-
cently developed a useful perturbation expansion for
quantum correlation functions via Wigner distribution
functions (WDF's), for a system with Hamiltonian
8=80+A8', where the WDF corresponding to 80 is
known exactly. This formulation has been applied to cal-
culate phonon frequency shifts in an anharmonic lattice,
where Po is a harmonic-oscillator Hamiltonian, in the
absence of external fields. '"' Hence the present work is
needed for a possible generalization of the Dickman-
O' Connell expansion to include electric and magnetic
fields.

II. QUANTUM DISTRIBUTION FUNCfIONS
AND PHASE-SPACE CORRESPONDENCES

UNDER PHASE-SPACE TRANSFORMATIONS

We start by considering a definition for the Wigner
PSC that is equivalent to Eq. (3). For an operator in the
following Weyl form

A =A(q, p)= J d"o d"re' ""~4+'P'a(c'r, r), (8)

its Wigner PSC is simply

A(~)( )= i d crd re(«q+ .Pa(cr r) . (9)

I dn idn ie(i«)(cr' cl +v'p')a~'(o~ r~)

where we have defined

(10}

o'(o, r) a c o
r'(o r) b d (11a)

cr(cr, r~)

r(cr', r')

r

a e o'
b d (1 lb)

and

a'(cr', r') =a(cr(o', r'), r(o', r }}IJ I

X e(ilk )[n(o'', Y).e+go'', Y).f] (12)

where
~
J

~
is the Jacobian determinant of the transforma-

tion given in Eq. (11b}.
Since Eq. (10) is still in the form of Eq. (8), the Wigner

PSC of operator A in phase space (q', p') is therefore, ac-
cording to Eq. (9),

Here a(o, r) is frequently called the characteristic func-
tion. After phase-space transformation given by Eq. (7},
the operator A becomes

A = A(q(q', p'), p(q', p'))
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A& w
( i) f d id (i ii)(cr'. '+s'

= A "(q(q' p'»p(q' p'» (13)

For instance, for the standard-ordering rule

y(s)(Cr ) e
—ilia s/2 (15)

Hence we have proven that the Wigner PSC of an opera-
tor in a new phase space after a transformation can be ob-
tained from that in the original phase space by a simple
substitution [see Eq. (13)]prouided the transformation is a
linear one.

It is easy to see from the above proof that this result
does not hold for any nonlinear phase-space transforma-
tions. For correspondence rules other than the Wigner
one, the PSC can be calculated from the Wigner PSC
(Ref. 10),

and

iA 0
A "(q,p)= exp

2 Bq Bp
A' '(q, p) .

Substituting Eq. (7) into Eq. (14), we obtain

A '"'(q(q', p'), p(q', p') )

&('/4)( ' q'+~ p') &, (~)&

(16)

(17)

A (n)(q p) y(n) A (Ill)(q p)
fi 8 A' ()

i Bq' i Bp

—f d cr d r e( ~ q+ P)c2(cr T)y n (cr, T)'
(14)

where we have defined

y'"'(cr'', r')=y'"'(cr(cr', r'), r(cr', ~')) .

However, by definition [Eq. (14)], the 0 PSC of operator
A in the new representation should be

A '(n)(q~ p~) y(n) A (w)(q p )
ra ~a'
i ()q'

'
i c)p'

(0) ra ~a n i n i (i/fi)(n q'+r' 'p')

l ()q l ()P

n r n r (i/A )(cr' q'+& p')&r (19)

where in the second equality we have used Eq. (13).
Comparing Eqs. (17) and (19), since y("'Xy'"', if
y(")Al, which can be readily checked out through the
example given by Eq. (15), we conclude

A '"'(q', p')A A '"'(q(q', p'), p(q', p') )

if y'"'Al (or QWw) . (20)

In other words, the Wigner PSC rule is the only one with
the property that under linear phase-space transforma-
tion the PSC can be obtained through a simple substitu-
tion [see Eq. (13)].

We comment that a conclusion has been reached in
Ref. 15 that the Wigner PSC rule and QDF are the only
ones to remain invariant under canonical phase-space
transformations, which is a special class of linear trans-
formations; however, the proof given in Ref. 15 for the
inequality stated by our Eq. (20) makes explicit use of a
particular canonical transformation, i.e., q' =p and
p'= —q, as well as the properties of the eigenstates of
coordinate and momentum operators. A direct generali-
zation of this proof to the case of an arbitrary canonical
transformation does not seem obvious.

tric fields, where phase-space transformations are una-
voidable.

A. Phase-space transformations

The Hamiltonian that we work with is

P
e

A + (M( 2g'2+ 2|)'2+ 2g 2)
2M c 1 2 3

—e (E)X+E2 Y+E3Z), (21)

A=8( —c02yi+co)xj)/(co)+c02) . (22)

We can simplify the Hamiltonian (21) by the following
definitions:

eE)

Mao)

where M and e are the mass and charge of the particle,
which has been assumed to be spinless. We have chosen
the direction of the magnetic field as the Z direction
an

III. WIGNER DISTRIBUTION FUNCTIONS
OF AN OSCILLATOR SYSTEM IN CROSSED FIELDS

As an application of the general discussions in Sec. II,
we derive the Wigner distribution functions for a
harmonic-oscillator system in crossed magnetic and elec-

eE2

Mm2
L

eE3

Mco

(23a)
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p=p„i+p j+p,k=P . (23b) 8,=(ata+ ,')A—'Q +(P P+ ,')&—Qp, (37)

The Hamiltonian now takes the form
2

p ——A + —,'M(co, x +coiy +coqz ) —co,
1 e

16coLco co
Q = ,'(-co„+co, ) ——(co„—coy)'+

(co„+co» )

' 1/2

(38)

where

2

2M

E E E1 + 2 + 3

603

(24)
1 2

1 6&L~+~y
Q&= —,'(co„+co» )+—(co„—co» ) +

(co+ +co» )

1/2

(39)

(26)

The Hamiltonian given in Eq. (24) can be diagonalized
through the two transformations used by Datta and
Richardson. The first one is the standard definition for
the annihilation operators:

1/2
Mao„

o = x+i (2MA'co, } '» p„,

+ —,'Mco3z (40)

The energy spectrum is

e& „=(l+ —,')fiQ +(m + ,' )AQ—&+(n + —,')fiQi —eo, (41)

and

b=

where

' 1/2

2' y+i(2Mirico )
'

p (27)

x '+i (2M%'Q~) '»
p „ (42a)a=

where l, m, and n can be 0,1,2, . . . .
In order to derive the WDF's, we wish to use coordi-

nates and momenta (phase space) instead of annihilation
and creation operators. We now introduce a new set of
operators x', p„., y', and py by

' 1/2
a

CO~
—EC01, COy

—K C02,

K =[1+4coL/(co, +coi) ]'

coL =eB/2Mc (Larmor frequency) .

(28)

(29)

(30)

1/2

y '+ i (2MRQ&) '»
p „. (42b)

After this transformation, the Hamiltonian consists of di-
agonal terms (8 & and b b) and crossing terms of the
form 8 b or b &. To eliminate the latter, Datta and
Richardson used another transformation, which we
note is identical to a prescription in the theory of antifer-
romagnetism:

By making use of Eqs. (34) and (35), we can verify the fol-
lowing commutation rules obeyed by those new opera-
tors:

(43a)

and

a =(cosP)ct i (sing)b—, (31)
Ix ',"']=[x ',P, ]=[P. y']=[P. P, ]=o. (43b)

P=(sing)& +i(cosP)b,

where

(32)

tang=(16coLco„co») '
I [(co„co») +16coi co—,co»]'

Furthermore, we are able to show that those new opera-
tors are Hermitian. To achieve this purpose, we obtain
the relationship between (x',p„,y ',p» ) and (x,y,p„,p»)
by substituting (26) and (27) into (31) and (32), then com-
paring with (42). We find

(cox co») I . (33)

' 1/2
~x

x '=(cosP) x+ (Q co»)
' p»,

a
(44)

The operators thus defined obey the following commuta-
tion relations:

' 1/2

P„=(cosg) P„—(sing)M(Q co» )' y,
CO

(45)

and

[»b]=[&,b ']=[a,P]=[a,P']=0 .

The Hamiltonian is now simply

(35)

(36)

' 1/2
cos(nfl

( Q

p». = (sing)
P

X

~x
y

' = (sing }
Qp

1/2

P„+(cosg)M(Q~ )' y .

(46}

with
It is therefore transparent that x ', p„., y ', and p ~ are
indeed Hermitian operators, which, in combination with
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(p„+p +p, )
-2

+ —,'M(Q~ ' +Q~' +co3z )
—eo . (48)

Eq. (43), enables us to conclude that x',p„.,y ',p». are
coordinate and momentum operators.

In the light of the above results, it is readily proven
that the Hamiltonian can now be cast into that of an an-

isotropic harmonic oscillator, with nature frequencies 0,
0&, and co3, in the absence of external fields:

satisfies

I dx'dy'dz dp„.dp .dp, PT(x', y', z,p„.,p .,p, )=1 . (55)

Here the partition function of the system is obtained by a
phase-space integration:

Z(P)= Tr(e ~ )

=(2irfi) ' I dx'dy'dz dp„dp„dp,

X A (x,y &z&p» &p»~&pz )

B. Wigner distribution functions

The Wigner distribution functions for the pure state
corresponding to the eigenenergy given by Eq. (41) in the
representation of (x',y', z) can be readily deduced from
that in the absence of external fields

where

Z(P, co) = 2sinh
'Aco

2

=Z(P, Q )Z(13,Qp)Z(P, co3), (56)

(57)

~imn(x &y p p» p

=Pi(x',p„,Q, )P (y', p ., Q&)P„(z,p„co3),

where

(49)

P„(q,p, co) = 1
( 1)ne

—2HIsuI (4H/fico)n ) (50)

H =p /2M+Mco q /2, (51)

and L„ is the nth Laguerre polynomial.
Similarly, we generalize the WDF for an ensemble of

oscillators at temperature T without external fields ' to
our present case, i.e., with crossed magnetic and electric
fields.

'1/2 '

~ 1/2

x =(cosP) x '+(sing) y ',
~x ~x

(58)

One of the important applications of WDF's is to cal-
culate quantum-mechanical averages through classical
phase-space integrations. This approach is especially
powerful in the case of mixed states when the infinite
summation over all quantum states cannot be performed
easily, whereas an approximate form for the WDF, e.g.,
the Wigner-Kirkwood expansion, can be obtained. In
this section we present a simple demonstration of applica-
tions of WDF's by calculating the mean-squared displace-
ment (Rz)—:(X'~+9 +2 ) by using the WDF's de-
rived. We take the inverse of Eqs. (44)—(47) as follows:

A'(x', y', z,p„,p,p, )

=A(x', p„,Q )A(y', p, Q&)A(z, p„co3),

where

A(q, p, co) = sech(ficoP/2)

(52)

xp„=(cos&I) ) 0

' 1/2
~x

p„.+(sing)
I3

' 1/2

Py (59)

(60)

X exp[ (2H/fico) tanh—(ficoP/2)], (53)

and P= 1/kT is the inverse teinperature.
We note that the WDF given by (52) and (53) is not

normalized. Instead,

Pr(x', y', z,p„,p .,p, )

—:[(2irfi) Z(P)] 'A'(x', y', z,p„,p .,p, ) (54)

P =(sing)M(Q co )' x' —(cosg)M(Q~ )' y
' .

By also using Eq. (23a), we obtain

(R ) = Tr(e ii~R )

= (r') T+L'

where

(61)

(62)

fi

2 tanh(PiiiQ /2) Mco„
+sin P Mco

+ sin P2 tanh(PfiQIi/2) Mco„
+ cos P Mao

1

2 tanh(Pfico3/2) Mco3
(63a)

and

L2— E
M

2 E 2
1 +

CO 2 CO 3

(63b)
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We denote phase spaces (X, Y, Z, Px, P„Pz),
(x,y, z,p„,p,p, ), and (x',y', z,p„,p,p, ) by 5, 5, and 5',
respectively. In other words, the transformation cornbin-

ing Eqs. (23), (44}—(47) can be expressed by P, (X, Y, Z, Pz, P„,Pz ) =P'(5'(5(g)) ) (65)

those in the 5' representation, i.e., P' and A', simply by
substituting (64):

5':—5'(5(h)) . (64)

So far we obtained the WDF's in the 5' coordinate.
Since the transformation is linear, the general result ob-
tained in Sec. II enables us to conclude that the %DF's
and the Wigner correspondence in the 6 representation,
which is the orginal real coordinate, can be derived from

A (X, Y,Z, PJ,Pr, Pz)= A (5 (5(b ))) (66)

In (65) the subscript o may be lmn (pure state) or T
(canonical ensemble}.
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