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Stability of ballooning modes in a rotating plasma
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An equation describing ballooning modes localized to a magnetic 6eld line embedded in a rotat-

ing plasma is derived and analyzed. On a typical ballooning growth time these modes may be

completely stabilized by shear in the How, in a way which appears to be simple to achieve experi-

mentally. Their long-time behavior is more complicated.

Ballooning modes' are the pressure-driven instabilities
which are considered to be the most dangerous for
confined plasmas, and are believed to impose the most
severe upper limit on the plasma pressure for a given
strength of the confining magnetic field. It is highly desir-
able to stabilize these modes and in this article we suggest
that this aim may be achieved, at least for a sufficiently

long time, by introducing a sheared toroidal flow into the
equilibrium state, of the form u RQ(y)g. (Poloidal
flows tend to damp out fairly rapidly. ) Here g is the
toroidal angle in the axisymmetric device, (' is the toroidal
unit vector, 8 is the poloidal angle (along the short way
around the torus), and R is the distance from the symme-

try axis. y labels magnetic flux surfaces such that the
magnetic field is B V9txV(( —q8), where q q(y), and
u, p, and p are the plasma velocity, pressure, and density,
respectively. An equation for the equilibrium state can be
found in Ref. 4, where we use the relation p S(y)p",
y —', , and S(iir) is given.

It was previously observed that the usual techniques
of deriving the ballooning-mode equations break down if
the toroidal flow is not a rigid rotation. Thus, progress
here requires an improved understanding of the
ballooning-mode phenomenon. The view we follows 7 is

that the ballooning "mode" is actually a wave packet
propagating, or standing, along its ray (a magnetic field

line) in the sense of geometrical optics. The standard
geometrical optics description is to represent the depen-
dent variable g(x, t) as

exp(ig/e)(g +eg'+ ),
where e« I is a measure of the fast variation of the phase,
and Z(x, t) and P(x, t) are functions of order l. Substitu-
tion of Eq. (I) in the given set of equations yields, in lead-

ing order, an equation for g solved along rays, and a set of
"transport equations" for the wave amplitude which
determine the gj along the same rays. Now, ansatz (I) is
often used to generate the ballooning-mode equation for
plasmas without equilibrium flows, with g g(g —q8, y)
being a time-independent function which is constant along
field lines, and the gj having a harmonic dependence of
exp(itat) on time. Indeed, the ballooning equation is

merely the equation for g along a field line, the ray,
which is determined from the phase equation B Vg 0.
Thus, the geometrical optics interpretation of ballooning
modes is consistent with earlier works on the subject.

A distinguishing feature of the ballooning mode is that
it actually consists of four coupled waves, the Alfven and
slow magnetosonic waves of magnetohydrodynamics, each
with two branches of waves traveling either in the positive
or negative direction of the field line, their ray. Uncou-
pled, such waves are stable and were described in Refs. 5
and 7. The reason for the coupling in the ballooning case
is that the spatial direction of the most rapid variation of
the waves considered, the direction of Vg, is perpendicular
to B. The phase velocity of all four waves in this direction
is the same, namely zero, ' which implies a "degeneracy"
of the waves and the coupling of their amplitude equations
along their common ray. '

With the presence of flow in the equilibrium state, all
wave velocities are shifted by the fluid velocity' such that
each wave travels along its own ray which no longer paral-
lels the field line, and thus appears to be uncoupled to the
other waves. For example, the two Alfven waves travel in

the nonantiparallel directions of u+B/Jp and u —B/Jp.
If Q const, a rigid rotation, it was realized in Ref. 5 that
from a coordinate frame rotating toroidally with the flow

frequency 0, the waves are still seen as traveling along
field lines, they are coupled together and the ballooning
modes are present. We now extend this result to the case
Q Q(y), the sheared flow. In principle, we can shift to
a moving frame, which here means moving to a cumber-
some sheared coordinate system which measures g—Q (tit)t, and carry out the geometrical optics procedure
with the time-independent eikonal g g(g —q8, y). In-
stead, we use the fact that the ray phenomenon itself does
not depend on the coordinate system used, only its repre-
sentation does. We thus remain in the laboratory frame,
and express the eikonal in the coordinates of this frame.
Before proceeding, we call attention to the following fun-
damental fact. A finite wave frequency co in a rotating
frame is Doppler-shifted to co+nA in the rest frame,
where n is the toroidal mode number of the wave. The
ballooning mode corresponds' to n ~ ~. Thus, the pres-
ence of flow implies a need to resolve the spectral point of

in the rest frame. As wi11 be seen, this point in-
volves solutions with a nonexponential dependence on the
time t.

To proceed, we use the same equations and notations as
in Sec. III of Ref. 4. The linearized equation of motion is

pg„+2pu Vg, +F(g)+G(p ) 0,
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+p(u Vg) Vu+(B Vterms),
G(p») Vp»+ (B V terms),

p» B (B'Vg —g VB) —
g Vp —(yp+8 )divg.

(3)
(4)

(s)
The B V terms are terms involving derivatives of the ap-
propriate perturbed variables only along field lines, as well

as undifferentiated terms. It is noted that the operator
pu V is anti-Hermitian, while F and 6 are Hermitian.
We now make ansatz (1) in the laboratory frame, where

g g(g —q8 —At, y), and e may be thought of as the in-

verse toroidal mode number. p has a similar expansion.
Note that g —Qt is merely the toroidal angle ( in the ro-

tating frame. We also note that (8/8t +u V)g 0,
B Vg 0, so the first three terms in Eq. (2) that involve

derivatives of the form (8/8t+u V) and B V, do not
produce terms larger than O(1). Equation (5) implies to
O(1/e) that g Vg-O, and Eq. (4) yields p»OVg 0, thus

p» 0. To O(1) we now have G(p») ip»Vg, thus the
two components of Eq. (2) perpendicular to Vg now read

8 8P p 2+2pu V +F Pg 0.at' (6)

Here we have dropped the superscript from g, and P is a
projection operator which annihilates the component
along Vg,

1

, VP'X (7)
VX

where I is the identity operator and the last term is a
dyadic. Note that P is Hermitian, P P, and Eq. (6) de-
scribes two equations for the two components of g normal
to Vg. Such a g satisfies g Pg, and the last P in Eq. (6)
was explicitly displayed in order to point out that the new

operators, such as PFP, have the same symmetry proper-
ties as the original ones.

Equation (6) contains spatial derivatives of g only of
the form u V or B V, thus it may be viewed as restricted
to a magnetic flux surface. For any such surface y yo, it
is now convenient to move to a rigidly rotating frame with
frequency Q(yo). This eliminates all u V derivatives and
yields,

P I—

a2 a .P p +2pQ ix+F Pg 0,
8t Bt

(8)

where the middle term involving i x g, expresses the
Coriolis force, and F(g) F(g) —2pQu Vg~+pQ g~~.
Here g t denotes the derivative of g with respect to g of the
cylindrical coordinates R, g, z, where the unit vectors
remain undifferentiated. [For g-exp(in/), g t in/].
From Ref. 4 it is seen that all spatial derivatives, other
than B V, disappear and F can be made positive definite,
a property which will be used to generate a stability cri-
terion. We note that Eq. (8), the ballooning-mode equa-
tion, depends explicitly on time through P. Indeed,

where g is the Lagrangian displacement, and p» is the
perturbed total pressure (kinetic plus magnetic),

F(g) pu V(u Vg —g Vu)

VZ Z, 5'(p —q8) —tVQ)+gvVy, where a g —q8 —Qt.
Moreover, in the present rotating frame, a g

—q8
which is constant along field lines. Thus g and g~ are
constant in Eq. (8), and we may define A, g„/g such that
Vg V(g —q8) —tVA+XVy. The constant A, determines
the direction of polarization of the wave. For each field
line, Eq. (8) yields a one-parameter family of ballooning
modes, for — & A. & c . This parameter is equivalent to
the parameter yo of Ref. 2 which is used as the origin of
their "quasimode, "and similarly could be eliminated by a
translation shift in 8 if dq/dyeO at y yo, which is as-
sumed here.

In order to determine the time dependence of solutions
of Eq. (8), we recall again that all the coefficients have
their value at y yo. We now write

Vg Vg —qV8+XVy —(8+t Q/q)Vq, (9)

((8,t) e'"'tt(8+2nt/T, t), T 2nq/Q . (10)

The ballooning-mode structure is modulated periodically
in time (the last t variable of rt), and also drifts in space
along a field line at a poloidal angular speed of 2'/T, un-
like the no-Bow case. This drift is responsible for possible
parametric destabilization when the mode interacts with
the periodic structure of the underlying magnetic field.
Such a behavior was recently verified numerically. ' We
note that the boundedness in time of g amounts to a sta-

where the dot denotes d/dy, and we consider 8, the po-
loidal angle, to be the parameter along the field line, such
that B V (B V8)8/88. The coefficients in Eq. (8), ex-
cept for the secular term in Vg, the last term in Eq. (9),
have a period of 2x in 8, representing the periodic struc-
ture of the equilibrium state as seen when moving along a
field line. We now transform Eq. (8) to a coordinate
frame drifting along the field line by defining
8 8+tQ/qwh, ere again Q and q are the value of the
functions at y yo, such that in Vg we have V8 V8.
Note also that tl/88 tl/88, 8/at- tl/at+(A/q)8/t18.
Now t does not appear secularly since it is absorbed in 8 in

Eq. (9). Instead, the coefficients in the ballooning equa-
tion are functions of 8 —tQ/q and are periodic in time
with period T 2'/Q.

An evolution equation with periodic coefficients in time
gives rise to solutions analogous to those described by
Floquet's theory for ordinary differential equations. "
That is, solutions are sums (or integrals) of elementary
solutions of the form g(8, t) e'"'tI(8, t), where, for fixed
8, g is periodic in t with period T, while v may be real or
complex. To see it, we define the solution operator (the
propagator) U(t), such that U(t)g(8, 0) g(8, t), and
observe the property due to periodicity of the coefficients;
U(t+T) U(t)U(T). Defining the v spectrum by
U(T)$0 e'" (o, we can verify directly that rt(8, t)

e '"'U(t)$0(8) is periodic in t. This result means that,
just as in the well-known Mathieu equation, " solutions
may be parametrically unstable on the time scale of
t/T» 1, although instability may be avoided by the right
choice of equilibrium profiles. To summarize, the time
dependence of a ballooning mode in the presence of shear
flow, up to a rotation of the particular flux surface with
the flow frequency, is
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bilization of the ballooning mode by the flow shear. The
possible exponential increase described by v is due to a
parametric instability rather than to a ballooning instabil-

ity (which we denote by to).
In order to proceed with a more detailed investigation

of the behavior in time of q we use the following approxi-
mation. We observe that 0 is typically rather small, as
the flow velocity is at most of the order of the sound speed
which scales with the (low) plasma pressure. This will be
made more precise shortly, when we discuss the large-
aspect-ratio scaling. Without transforming to 8, and us-

ing Vg in Eq. (9), we can represent P P(bt), where
b a[VQ) «1. Defining r bt and replacing a/at by
b8/lti, Eq. (8) attains the form of a singular perturbation
to which we apply the standard WKB method. Using the
ansatz g exp[i&(r)/b](gp+b(i+ ), where gl (J(x,
r) but p depends on r only, we find to O(1),

P( pro —+2itopQi x+F)Pgp 0,

where to(r) dp/dr, P P(r), and gp Pgp. The slow

time r only enters as a parameter in Eq. (11),which now
looks as if a dependence g-exp(itot) was assumed in Eq.
(8). We note that our asymptotic expansion is valid for

O(1), or t up to order T of Eq. (10). This range of T
is contained in the periodic part of g in Eq. (10). Thus in-
stability with a complex m only means that the mode am-
plitude grows initially (up to time T) at an exponential
rate, before decreasing again. (On a longer time scale it
may become parametrically unstable. ) Again this is con-
sistent with the calculation in Ref. 12. It is interesting to
notice that the time dependence may be eliminated from P
by changing k —tdQ/dy X. (This again indicates that
the mode drifts along the field line. )

The relevant ballooning stability criterion for t O(T)
is that every eigenvalue co of Eq. (11) is real. Since we re-
quire stability for all X, we might as well consider Eq. (8)
without the frozen tVQ term in P(i). The flow shear now
enters one through F. A sufficient condition for stability5
is for PFP to be positive semidefinite. Expressing Pgp

XN+ZB/p, where N V@&B/8, we find, similar to
the calculation in Ref. 5,

A dl ~
, i d! AbW~ PFPgp gp a~(Z'+a2X) + [~ N

~

X' —X [2(x N)(J&&B N) —R(N R)N V(pQ )

+(pRQ ) (N'R) /yp]] 8 (12)

Here the integral is taken along the infinitely long field
line, ai and a2 depend on equilibrium quantities, a~ )0,
and the energy BW is minimized by taking Z' —a2X.
This leaves a quadratic form in the single variable X. In
Eq. (12) R is the radial unit vector, a prime denotes B V,
J V&B, and ~ is the curvature of the magnetic field,
x b Vb, where b B/8. In the absence of flow the po-
tentially destabilizing effect comes from the familiar
term'2 (x N)(Vp N).

The contribution of the flow to the stability criterion is
most clearly seen when using a large-aspect-ratio expan-
sion, where e a/Rp, and Rp is the major radius of the
torus. Instead of nondimensionalizing the equation, we
take a and the toroidal field to be of order 1, R O(1/e),
p O(e), y O(1), and Q O(e ). This implies that
the Mach number is O(1). As in Ref. 5 one finds for an
instability to O(e), and the middle term in Eq. (11)
drops out as too small. Thus, the positivity of BW is
necessary and sufhcient for ballooning stability on the
time scale of t O(T). We point out that the validity of
the asymptotic expansion in small 0 leading to this result
holds, as noted following Eq. (11), for t up to O(e t ).
A typical ballooning-mode growth time is O(to ') -e

Thus, our criterion is indeed relevant to the
modes under consideration. Continuing with the asymp-
totics, we have to order e,

bW „{~N) X' —X [2(x N)(Vp N)

—R(N R)N. V(pQ )]] 8

I

To leading order x —R/R, and R in Eq. (13) may be
taken to be the constant Rp. The terms in the brackets of
this equation are then equal to 2(x N)N V(p+ pRp Q /
2). For further simplicity, we write Eq. (13) in a more fa-
miliar form' appropriate for the limit of t. &(1 and cylin-
drical flux surfaces,

[I+(es+i) ']
8

G[cos8+ (H—s+k)sin8]X d8. (14)

Here G 2Rp(q/8p) (p+pRp2Q /2)', s rq'/q, where r
is the poloidal radial variable and the prime denotes d/dr.
8p is the (constant) toroidal field, and the parameter 2 is
related to the previous X, such that we still need to consider
all —~ (X & . The two other parameters of the prob-
lem are the magnetic shear s and the pressure gradient 6.
We find that the effect of the flow on ballooning stability,
aside from changing the equilibrium state, is to modify
the kinetic pressure by adding to it the flow pressure, such
that the gradient of the total pressure is the force that
may act against the magnetic curvature. In particular, we
may completely stabilize the ballooning modes during
their typical growth time by generating an D which in-
creases fast enough from the center of the plasma to the
outer flux surfaces, as has been anticipated recently. '

This may be achieved by injecting neutral beams tangen-
tially to the plasma boundary.

Finally, we point out that the introduction of sheared
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flow may not necessarily give rise to the Kelvin-Helmholtz
instability. Such a side effect does not appear unavoidable
since it is known that the presence of a magnetic field
parallel to the flow, a condition which approximately
holds in a tokamak, acts to suppress the instability. '

Thus, by eliminating the ballooning instability, the use of
sheared flow may offer the way to increase the plasma

pressure to a much higher level' known as the "second
stability regime. "
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