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We consider here the effect of noise on homoclinic crossing. It is shown, by means of a sto-
chastic Melnikov function, that the noise may, on the average, suppress and, in the case con-

sidered here, induce homoclinic crossing.

There recently have been a number of interesting nu-
merical studies of the interplay of both multiplicative and
Langevin noise with chaotic behavior on attractors, utiliz-
ing discrete and continuous models.'™ The principal
effect of noise is to destroy the periodic points embedded
in the positive region of the Lyapunov exponent and to
modify the period doubling route to chaos. This has also
been seen in an accousto-optical device exhibiting bistabil-
ity.> More recently,® “early” chaos, i.e., a shift in the on-
set of chaos induced by multiplicative noise in the logistic
map, has been apparently found below the noise-free
threshold. We would call this “noise-induced chaos.”
Carlson has investigated, in general, the shift map on a
Cantor set in the presence of thermal noise.””® He has
shown that the sequences corresponding to the homoclinic
points of the Cantor set may be removed by the noise.

It is our purpose here to investigate analytically such an
effect on the onset of homoclinic crossing® in weakly dissi-
pative systems. In a more extensive treatment, !° we have
utilized a generalization of the Melnikov function'"!? to
stochastic processes to test the effect of weak Langevin
noise on homoclinic crossing. Assuming initially that the
average value of the position and velocity ({x(0)),(x(0)))
are the separatrix values (x,(0),x,(0)) we have shown,
using the Wentzel-Kramers-Brillouin (WKB) approxima-
tion (and numerically), that the effect of the noise was to
suppress homoclinic crossing on the average and raise the
homoclinic threshold. The system must be driven harder

J

by the external deterministic force in the presence of
Langevin noise, to induce the multiple phase-space cross-
ings of the forward and reverse manifolds near the unsta-
ble fixed point. Here, we will see that this is not necessari-
ly the case when ({x(0)),(x(0))) are no longer the
separatrix values.

Consider a stochastic nonlinear oscillator with non-
linearity f(x):

)?_v, (1)
v+Bf(x)+L(0)f(x) = —kv+Qg(t,10) .

Here k=17 is the damping constant and g(r,70) the
external (usually sinusoidal) driving term, the oscillator
being assumed to have unit mass. In the multiplicative
noise term, we will take the realizations of the noise
w=£(t) to be white with zero mean:

@) =m=0, (L)@ +1)) =c25(1).

For o2 =0, it is well known that such driven oscillators ex-
hibit homoclinic chaos, the Duffing oscillator being a clas-
sic example.”'2 The Melnikov function'' is the only sim-
ple test of the onset of homoclinic crossing and the subse-
quent multiple crossings of the forward and reverse
phase-space manifolds.

In Ref. 10, we introduced a stochastic Melnikov func-
tion A; which, in the framework of a weak -noise approxi-
mation, is given by

A1) =—k f_:)'cz(t)dt+Qf_:k(t)g(t,to)thA,(to) +Ay(0), (2a)
A==k [ x2war+0 [ %, gl 1)t , (2b)
At = =2k 5, 0xWar+0 [ xWgtrodi—k [ x*0ar, Qc)

where x,(¢t) and x,(¢t) are the separatrix solutions to
%+Bf(x) =0, and (X(1),X(t) =V (z)) are small devia-
tions introduced by the noise. Following the procedure of
Ref. 10 we find that these deviations are solutions of the
weak-noise Langevin equation for the time-dependent
Ornstein-Uhlenbeck process:

X=v,
_ ©)
V—aw2()X=F/),

[
where

i
x, (1)

2 | A
w?(r) [dxf(x)

F(t) = — f(x;())¢(2) .

Here, A, (1¢) is the deterministic dynamics Melnikov func-
tion which for the Duffing oscillator is'2

A(19) = —4k/3+2'2xQQsin(Q1o) sech(z0/2) . 4)
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For this case we have '°

Bf(x)=—x+x3,
xs(¢)=2"2sechr ,

»2(t)=1—6sech’t,

and a sinusoidal driving term, QsinlQ (r —1¢)], has been
introduced.

A word should be said about the generalization. Under
each realization of the ensemble of weak noise, A; intro-
duces a shift in the point of homoclinic tangency,
A (26) =0(A;(29) =0,201¢). This is much like the deter-
ministic effect of the term depending on the damping in
Eq. (4). Under many realizations of the ensemble, there
is an average shift (Ap). We must emphasize that
rigorously, there is no stochastic analog to the Birkoff-
Smale theorem’ for nonlinear driven stochastic differen-
tial equations; however, we are here doing weak-noise per-
turbation theory and we expect the Cantor set structure
not to be qualitatively modified by the noise. After
tangency, A¢(to) shows an infinity of zeros as in Eq. (4),
and thus, for each of these ensemble realizations, the same
multiple crossings of the forward and backward mani-
folds. For this reason, we think that the averaged quanti-
ty (Ap) is a significant indicator in the presence of noise.

From Eq. (3), by standard methods we may obtain the
Fokker Planck equation for the probability density func-
tion P(X,X,1):

52
0P
—67 _ZAU xJP+ 7 EB”(I) 9x;0x; )
where
_ | o 1 |0 0
x=\y | A= 20y o BO= g o202 () |-

A formal time-dependent solution may be written down
for Eq. (5) (Ref. 13, page 228 and following). It is a
time-dependent Gaussian, P(X,X,7). We write the
second term in Eq. (2a) as (Qx);cos¢ where we have set
¢=0t9 and (Qx);=Q [Z.x(t)sin(Q1)dt, the x(1)
[=x,(1)+X(t)] being Gaussian random variables. The
central limit theorem '*~!® suggests that (Qx ). is Gaussian
distributed. Now consider the first 1nte2gral in (2) which
may be cast in the form —(4/7) [°x*(t)dt. Assuming
weak damping, we may write this, approximately, as
—4K = — 4(K),, where we define

EEr“lj;riz(t)dt

in the 7— oo limit, and we have assumed ergodicity for
J

At =~k [ x2war+o [_x.gl.10)dt

the time-averaged kinetic energy. Thus,
A= — 4(K>;+ (QX );COS¢ .

In this weak-noise limit, and for very low damping, A; is
Gaussian distributed in amplitude, (Qx),, and shifted by
a constant ensemble-averaged kinetic energy. We em-
phasize that, in this approximation, the phase ¢, the pa-
rameter of homoclinic crossings is not a random variable.
Let us now consider the ensemble-averaged correction
to the Melnikov function. We require the quantities (X,
(X), and {X?). From Eq. (3) we observe that,
(X)—0*(t){X)=0,
as in Ref. 10. There, the WKB approximation was uti-
lized to obtain

h(t)
h(0)

where we have defined (x(0)) =x,(0) +(x(0)) and we as-
sume that (X(+ ))=0. Thus, {(x(+ o)) =x,(+0c0) =0
and we are lead to the condition

"(')) X)), ®)

(X) =

, X

(x(0)) _x0) _
r(0) h(0) ’

where M is a constant. Effectively, the noise shifts the
point of saddle maximum and not its height, otherwise the
stochastic orbits pass above the unstable saddle and (A,)

diverges. In the above, we have set, '°

h(t) =S§elw2()] A AIl(2 S0) 2,

So = [ war,

where 1. is defined by w2(z.) =0, Ai being the Airy func-
tion. The above WKB approximation has been verified
numerically in Ref. 10.

From Eq. (5) we may write down'® a solution for (X?2).
This differs from the results of Ref. 10 in having a contri-
bution from a time-dependent diffusion coefficient,
02f%(x;(1)). However, this term is even in 7 and we may
readily show that it does not contribute to the integrals in
(Ap. The remaining contribution is

= s X2 = ;
—kf_w(Xz(t))dt-—k—;z(T)-f_whz(t)dt

Finally we have for the ensemble-averaged (A.),

h2(t)dr .

—2um [ s @hdi+om [ W0 —kL? [k D

In the Duffing oscillator, for example, the third term is zero since x,(¢) is odd and A (¢) is even.
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Consider homoclinic tangency. Let (Q/k)o be the
o2 =0 value determined by

o=~ 22+ [%]Of:x,(z)g(z,to)d;,

Let (Q/k) —(Q/k)o=45 be the ensemble-averaged noise
shift of the homoclinic tangency. & is determined by

0= —L2f:;}}2(t)dt+M[-%] f_:li(t)g(t,to)dl
0

+6 [ Lk, 0 +MED1g10). @)

Now, M may be positive or negative. The quantity in
square brackets in the thi_rd term above is positive since,
by hypothesis, x;(¢)>> Mh (1) for all time. g(z,t0) is tak-
en as a simple sinusoidal periodic function and we set the
phase factor to be positive in the second and third terms of
(8). Hence we find,

M<0=6=0, (9a)
M>0—6s0, (9b)
sz_w}iz(t)dt§|M| [%]Of_wli(t)g(t,to)dt. (9¢)

In (9b) and (9¢c) we have a condition for ensemble-
averaged noise-induced crossing. This condition may be
written as

(X2(0)) hEN0) 2k (gt t0)dt
1<Xx(0))] (Q/k)o hT20) 2 h2(t)dt

We recall that our weak-noise assumption excludes
higher-order terms in the second of Eq. (3). Hence, the
transport equation for the mean value (X(¢)) does not in-
clude higher moments of X and a Fokker Planck equation
of the form (5) may be written down and solved for this
problem. Since the time-dependent diffusion term does
not contribute to the Melnikov function, we are lead to the
condition (10) that depends solely on the initial values of
the statistics of the velocity deviation, X (z) induced by the
noise. For sinusoidal driving, the value of the right-hand
side is [for the Duffing oscillator,'® (Q/k)o=0.71] ap-
proximately 0.85. Under these conditions, homoclinic
crossing could, on average, occur for lower Q/k values
than for the deterministic (o> =0) case.

(10)

This work was performed while W.C.S. was an
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