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It is known that attempts to improve the signal-to-noise ratio of measured chaotic signals
through low-pass filtering lead to wrong results from subsequent calculations of the attractor di-
mension. We show that the use of acausal filters avoids this problem. The benefit in recovering
the chaotic signal from noise is demonstrated to be considerable.

Deterministic chaos is a ubiquitous phenomenon in all
fields of science. For a characterization of chaotic dynam-
ics, algorithms are widely used that give estimates of the
process entropy and the attractor dimension from a single
time series. Such procedures are by no means trivial be-
cause these algorithms are strictly proven only for condi-
tions unattainable in real world experiments: One must
work with a finite number of data points, each of which
has finite resolution, and very often, experimental signals
are marred by noise that makes it difficult to extract reli-
able information about the deterministic process. For ex-
ample, an extraction of the attractor dimension is subject
to systematic errors due to both additive and quantization
noise. '

It is therefore desirable to reduce the noise as much as
possible. A standard laboratory procedure to improve
signal-to-noise ratio is the application of a low-pass filter.
This relies on the fact that if the digitization is done
reasonably, i.e., at such a rate that no high-frequency in-
formation is lost, it is automatically implied that the sig-
nal bandwidth is less than the Nyquist frequency. Noise,
on the other hand, is often at least approximately white.
In such a case a low-pass filter would attenuate the noise
more than the signal, and thereby the ratio would im-
prove.

Unfortunately, there is a severe penalty when this pro-
cedure is applied to chaotic signals. It has been suggested
by Badii and Politi? that low-pass filtering of chaotic sig-
nals can lead to grossly false results in a subsequent evalu-
ation of the filtered signals for the attractor dimension.
The idea has been tested and confirmed with a computer-
simulated filter in Ref. 3 and with real world filters in Ref.
4. In the latter paper it was also observed that the digiti-
zation noise leads to a different systematic error which
was studied in more depth in Ref. 1. It was further shown
in Ref. 4 that the entropy of the process is not affected by
either of these systematic errors.

It might seem that one has the choice between relying
on noisy signals that do not lead to well-defined dimension
estimates, or “‘beautified” signals that do yield values but
false ones. In this Rapid Communication we show that
this dilemma can be avoided: there are filters that can
achieve both, cleaning the signal without leading to false
dimensions.

In their prediction Badii and Politi? considered a partic-
ular class of filters, namely those which can be described
by differential equations. Adding such a filter to a
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dynamical system raises the number of differential equa-
tions describing the combined system. This implies an in-
crease in the number of Lyapunov exponents. The new
exponents can, depending on their values in comparison to
the other exponents of the system, enter the Kaplan-
Yorke equation and thus bring about a dimension in-
crease.

Real world filters do not only attenuate different fre-
quency components differently (“amplitude response”),
they also cause frequency-dependent phase shifts (“phase
response”). Both are inseparably connected through
Kramers-Kronig dispersion relations which are a conse-
quence of causality, i.e., the time ordering of cause and
effect.

A simple RC low-pass filter, for example, contains a
capacitor which in its electric field can store energy. It
thus forms a memory element (with decay time v =RC).
Therefore, at each instant in time the filter’s output con-
tains information about both the present and past filter’s
input, but no information about the future input. Such a
filter is therefore equally temporally asymmetric as the
flow of time, or arrow of time, itself.

It was speculated in Ref. 4 that the filter-induced di-
mension increase is deeply related to the phase shifts
brought about by these “causal” filters. If that is true,
filters that introduce no phase shifts might not affect the
dimension. We show here that this is indeed the case.
However, filters with a low-pass frequency response and a
perfectly flat phase response are not consistent with the
dispersion relations.

There is a class of filters called “acausal” because they
are not subject to the time arrow; they therefore do not
have to obey the dispersion relations.®> Acausal filters can
be used whenever a certain time span of a signal is first
stored, then evaluated afterwards. Time reversal, e.g.,
amounts then to nothing more than going backwards
through a file. The only case where acausal filters cannot
be used is when filtering is required in real time.

In our experiments, we performed acausal filtering
through manipulating measured signals in the frequency
domain. The time domain signals were first Fourier
transformed, then multiplied by a filter function. A low-
pass filter requires a filter function that peaks at Q =0,
then rolls off towards higher frequencies. Finally, we
transformed back to the time domain.

As a signal source we used an electronic chaos genera-
tor very similar to the one described in Ref. 6 and em-
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ployed in Ref. 4. This source has the advantage that the
Lyapunov exponents of the signal are known. Here we
will use the same time units as in Ref. 4 for the Lyapunov
exponents and filter rolloff frequencies. The chaotic signal
x(¢) was measured with ten-bit resolution with a desktop
computer, equipped with an analog-to-digital converter.
Fourier transformation was performed for 2! points with
a fast Fourier transform routine on the same computer.
The result are sine and cosine coefficients S(2) and
C(n) which are related to the power spectrum P(Q)
through P(2)=S(0)%+C(0)% Both coefficients were
multiplied by the same filter function F(Q)=[1
+(021)2] /2, Note that using the same real function for
both S(2) and C(Q) creates no phase shifts whatsoever.
Finally, the data were transformed back to the time
domain.

The particular choice of F(Q) was intended to facili-
tate a comparison with a causal first-order low-pass filter
which has a square-root-of-Lorentzian amplitude
response. For this comparison we filtered the test data
also with a simulated RC filter. While this can be done in
the frequency domain also (the filter function would then
have to be complex), we found it more convenient to do it
in the time domain, as in Refs. 2-4.

From the two differently filtered versions of the test
data, correlation dimensions D, and entropies K, were
then determined using the well-known algorithm due to
Grassberger and Procaccia.” We used 10000 of the data
points, again rounded to ten-bit precision for better com-
parison. The whole procedure was repeated several times
for different rolloff frequencies n=1/7. We find that
whatever 7, the entropy is unaffected by either filter; this
was to be expected from the discussion in Ref. 4. As for
the dimension, our results are presented in Fig. 1.

The causal filter (open squares) leads to the increase as
predicted in Ref. 2 (solid line). (As in Ref. 4, the data
points fall below the solid line because the latter is for D,
and D, = D,.) In contrast, the acausal filter of the same
n does not affect the dimension (filled squares). Let us re-
mark, however, that for extremely small n (=< 0.05)
where the causal filter still yields a dimension (if the

w

dimension

N

) 05 T2 3o
filter rolloff n

FIG. 1. Attractor dimension as a function of filter rolloff fre-
quency 7. Solid line: Lyapunov dimension D, as predicted in
Ref. 2. Open squares: D, for the causal filter. Filled squares:
D, for the acausal filter. D; is an upper bound for D,. Note
change of scale at n=1.
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FIG. 2. Slope of correlation integral from Grassberger-
Procaccia algorithm, obtained from noisy data. For clarity, only
the slope for embedding dimension d =10 is shown. Filter
rolloff frequency was n=0.075 for both traces. Only the
acausal filter gives a plateau at the correct value of the dimen-
sion.

wrong one), there is no useful plateau and thus no dimen-
sion estimate for the acausal filter. At this point it is not
entirely clear whether this is really indigenous to the
acausal filter, or caused by some other step in our pro-
cedure.

So far we have considered low-noise signals which are
not very realistic for most experiments. In the next step
we added about — 30-dB white noise to the test data and
repeated the procedure on this noisy signal. It now be-
comes apparent that the acausal filter does not only do no
harm to the dimension estimate but that it is actually
beneficial. Figure 2 shows the slope of the correlation in-
tegral of the Grassberger-Procaccia technique for embed-
ding dimension d =10, for both types of filters. It is obvi-
ous that there is no useful plateau for the causally filtered
data because noise and filter-induced dimension increase
conspire to drive the slope up. In contrast, the data from
the acausal filter of the same rolloff frequency give a
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FIG. 3. Same as Fig. 2 except that coarsely digitized data
(seven bits) were used and that 7 =0.125.
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well-defined plateau which yields the same value as the
low-noise data. The acausal filter can thus correctly re-
cover the deterministic part of the signal. Its superiority
over the causal filter is obvious.

Finally, we repeated the procedure after we rounded off
the ten-bit precision low-noise test data to seven-bit reso-
lution. This amounts to an increase in the quantization
noise from about —60 to —42 dB. In general, quantiza-
tion noise does not act the same way as uncorrelated addi-
tive noise,! but here the results are similar. We find that
while the causal filter leads to the usual substantial di-
mension overestimate, the acausal filter again recovers the
correct dimension (see Fig. 3). This is remarkable be-
cause in a very coarse-grained representation of phase
space one would expect that most information about the
intricate fractal structure of the attractor is lost beyond
retrieval. However, the smoothing by the acausal filter in
effect interpolates between the coarse steps and “guesses’
at the true structure—successfully at least in the case
tested here.

We conclude that processing chaotic experimental sig-

nals by an acausal filter prior to further evaluation is ad-
vantageous. Particularly in cases of bad signal-to-noise
ratio, a substantial benefit can be expected.

More research is required, however, to determine exact-
ly why the dimension increase is avoided. We think that
an important point is the loss of asymmetry between past
and future brought about by acausal filters, particularly
by those with real coefficients as used here. While an at-
tractor dimension, as a geometric concept, is certainly in-
variant under time reversal, the Kaplan-Yorke equation is
not, because arranging the exponents in decreasing order
presupposes the forward direction of the time arrow (note
that time reversal inverts the Lyapunov spectrum). This
suggests that the Kaplan-Yorke equation does not hold for
the case considered here. Consequently, the above ex-
planation for the usual dimension increase would not be
applicable.
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