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A general framework for introducing noise into binary networks is developed using random itera-
tive maps. The dynamics of these random iterative networks is written in terms of Markov chains
and notions of ergodicity discussed. Generic features of the statistical dynamics of such networks
are explored and a path-integral formulation of macroscopic dynamics derived. Two examples are
used for illustration. First, the Little model is shown to be equivalent to a random iterative network
with threshold noise, and this is used to derive the mean-field equations for a network with random
dilution. Second, mean-field equations are derived for networks with synaptic noise, whose form de-

pends crucially on how the thermodynamic limit is defined.

I. INTRODUCTION

Recently there has been a great deal of interest in at-
tractor networks of the Hopfield' and Little form.
Much progress has been made in applying spin-glass
techniques from statistical mechanics to the study of
these networks, in the context of associative memory
(Refs. 3 and 4 and references therein}. However, there
are a number of features of the original models which are
nonbiological. Firstly, the connection weights J; are
symmetric, J'j Jj' which underlies the fact that a Ham-
iltonian may be ascribed to such systems. Moreover, the
networks are fully connected. Biological synapses, on the
other hand, are one way, and neurons are, on average,
connected to a fraction 10 of other neurons. Secondly,
memory recall corresponds to an attractor of the dynam-
ics in which some neurons are essentially firing at every
time step, whereas others remain inactive. If the funda-
mental unit of time is taken to be the refractory period,
v =2 ms, then the active neurons have a firing rate of 500
s . Empirically, active neurons in the cortex are ob-
served to have firing rates in the range 30-100 s '. Also
note that spatial firing patterns are much more sparse in
biological systems.

All the above features can be dealt with by modifying
the Little and Hopfield models. Asymmetric and dilute
networks may be obtained using random dilution in
which a connectivity matrix is introduced, whose ele-
ments are random variables with values 0 or 1. Low
spatial firing rates may be achieved by storing biased pat-
terns in either undiluted' ' or diluted networks. '

Finally, a solution to the low texnporal firing rate has
been found by reducing a network of excitatory and inhi-
bitory neurons to an effective model of excitatory neurons
alone. ' An alternative solution' uses the outer-product
matrix of Willshaw, Buneman, and Longuet-Higgins. '

A third discrepancy between theory and experiment is
the nature of the learning rules adopted. The Hopfield

learning rule is unrealistic as pairs of neurons which are
inactive in a stored pattern have an enhanced synaptic
eScacy. Furthermore, it violates Dale's principle, '

which basically states that each neuron is either excitato-
ry or inhibitory, but not both. These issues have also
been considered in Refs. 15 and 16 in which the Hebbian
learning rules' are used. However, there is growing evi-
dence that the synaptic modification mechanisms of bio-
logical neurons are much more complicated than the sim-
ple Hebbian form. There appear to be multiple processes
occurring at the same synapse, both pre- and postsynap-
tic, which differ in time scales and in the nature of chemi-
cals involved.

In this paper we shall be concerned with another
difference between present attractor networks and their
biological counterparts. This relates to the fact that all
such models only consider threshold noise, which corre-
sponds to noise at the axon hillock of a neuron. They
completely ignore the more biologically significant source
of noise arising from the stochastic and quantal nature of
the release of chemical transmitters into the
synapses. Synaptic noise has been modeled by Shaw
and Vesudevan and by Taylor. ' However, the
dynamical behavior of these models in terms of the
storage and retrieval of memories has not been
developed. We shall, therefore, set up a general frame-
work for analyzing the dynamical behavior of attractor
networks in the presence of either synaptic or threshold
noise. Moreover, parameters introduced into the theory
will correspond more directly to biological features such
as postsynaptic eScacy and the distribution functions of
vesicular release. This wi11 then allow more genera1
learning rules to be studied, although we will not consid-
er such issues here.

In Sec. II we discuss a general scheme for introducing
noise into binary networks based on random iterative
maps. We show how the dynamics of these random
iterative networks may be described by a homogeneous
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Markov chain. One consequence of this is that for a class
of finite networks, including the Little and Taylor mod-
els, there exists a unique equilibrium probability distribu-
tion for the states of the network. This ergodic behavior
is undesirable for applications such as associative
memory. Therefore, in Sec. III we consider the statistical
dynamics of random iterative networks, and discuss the
possible breakdown of ergodicity in the thermodynamic
limit. We define the notion of a macroscopic variable and
derive associated deterministic, dynamical equations, fol-

lowing Amari, Yoshida, and Kanatani. These equa-
tions are reformulated in terms of path integrals by intro-
ducing a generating functional for statistical correlations
along the lines of de Dominicis and Peliti.

In Sec. IV we consider the Little model as a random
iterative network with threshold noise. We then use the
path integrals of Sec. III to derive the mean-field equa-
tions for a diluted network with biased patterns. ' ' Fi-
nally, in Sec. V we discuss networks with synaptic noise,
such as the Taylor model, and derive mean-field equa-
tions which, depending on the definition of the thermo-
dynamic limit, correspond to either the nondiluted or the
diluted spin-glass equations at zero temperature. More-
over, a new class of mean-field equations are identified re-
lated to presynaptic, rather than postsynaptic storage.

Equation (2.1) may be interpreted as a random iterative
map. Define the function f by

t

f (a)=8 g J,"to; a +P; —V;
. J

(2.5)

where a; denotes collectively the connection weights and
thresholds of the ith neuron. Introduce a probability
measure p; on the space of maps

:-;=ff;lf;: [0, 1]"
given by

(2.6)

p;(f;)= J gd;Jp;J(to;J) Jdy;p;(y;)5(f; f )—.

:-=tf If:[0, 1I"~to, 1 I",

by taking the product of measures p;,

p(f)=gp, , (f;) .

(2.8)

(2.9)

Then Eq. (2.1) may be rewritten as the random iterative
map

(2.7)

Use Eq. (2.7) to define a measure p on the product space

II. RANDOM ITERATIVE NETWORKS a(t+1)=F'(a(t)) =F'F' ' F (a(0)), (2.10)

a;(t+ 1)=8 g JJ coj (t )aj (t )+p;(t) V;—
J

where e is the step function

1 if x&08(x)= .
0 if x&0.

(2.1)

(2.2)

The connection weights are taken to be the product
J,i'; (t), where J,. is fixed and co; (t) is a random variable

generated from the time-independent probability distri-
bution p,j (co,

&
). At each time step co;J is selected random-

ly from its distribution such that

(oi;&.(t) )~
(2.3)

([coj(t)—toj][co; ) (t') to;,~;]) =5...5115—„.o„
where co; and cr are, respectively, the mean and vari-

lJ

ance of the distribution p;. (co;, ). Similarly, P, (t) is a ran-
doin external field generated from p;(P; ) such that

(p;(t))p=p;

& [0;(t) 0;][0;(t') 0; —] &t,=5 5&—
t, ,

-
(2.4)

The P, act as random modulations of the deterministic
thresholds V, .

Consider a network of X binary neurons and denote
the activity of the ith neuron by a, E [0, 1I. The state of
the network is specified by the vector
a=(a„a2, . . . , a~). Assume that the system develops in

discrete time according to the stochastic difference equa-
tions

—= Qb. , (2.11)

where Qb, is the time-independent transition probability
of going from state a to state b in one time step, and is
defined by

with F' chosen randomly, at each time step, from the
probability distribution p. General aspects of random
maps on networks, such as entropy, are discussed else-
where. We shall refer to a network whose dynamics is
described by Eq. (2.1), or equivalently (2.10), as a random
iterative network.

The above formulation of random iterative networks
could equally well have been written in terms of spin
states s, =El, with the step function in Eq. (2.1) replaced
by the sign function. Note that random iterative net-
works should be distinguished from the random nerve
nets introduced by Amari, Yoshida, and Kanatani.
They consider an ensemble of similar networks and define
a probability measure on this ensemble using the distribu-
tions p; (co; ) and p, (P; ). For each sample of the ensem-
ble, the weights and thresholds are chosen at random
from their distributions and are then held fixed during
the time evolution of the system. Similar to random
nerve nets are the netlets analyzed by Anninos et al.

The dynamical evolution of a random iterative network
may be described by a homogeneous Markov chain. This
follows from the fact that the random map F' of Eq.
(2.10) is reselected at each time step from the same proba-
bility distribution p. In other words,

Prob[a(t+1)=bla(t)=a, a(t —1), . . . , a(0)]

=Prob[a(t+ 1)=bla(t ) =a]
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Qb, = g p(flf(a)=b) (2.12) where ( )„denotes expectation with respect to JM, and

Pb(t+1)=QQb, P, (t) . (2.13)

Introducing the probability P, (t) that the state of the
network at time t is a leads to the homogeneous Markov
chain

f, (a)=1—f;(a), b; = I b—; . (2.15)

Using Eqs. (2.7) and (2.9), the transition matrix takes the
form

Since the activities a; only take the values I0, 1], Eq.
(2.12) may be rewritten as

N b b
Qb. = g [p(t la)] [P(t la)], (2.16)

N
b b

Qb. = g [f;(a)] '[f;(a)] '

i=1 P
(2.14)

p(ila)=(f (a))„=f gdco;, p;, (co;, )

fdic;p;(P;)8

g J,,co;,a, +P; —V,
J

=Prob gJ; a);+/;&V; (2.17)

Having formulated the dynamics of a random iterative
network in terms of the Markov chain, Eq. (2.13), we
may now consider features of the dynamics such as ergo-
dicity in terms of the properties of the transition matrix
Q. We begin with a number of definitions. ' Introduce
the n-step transition probability Pb, (n },

Pb, (n ) =Prob[a(n ) =bl a(0) =a]—=Qb, .

Then the period of state a is defined to be

T(a)=G(In lP„(n) &OI },

(2.18)

(2.19)

lim P, (t)=P "(a),
f —+ oo

(2.20)

which is independent of the initial distribution P, (0).
Equation (2.20) implies that time averages are indepen-
dent of initial conditions and may be replaced by ensem-
ble averages over the limiting distribution P"(a). There-
fore, for any state variable X

lirn g =g P "(a)X(a) .
X(a(t) )

7 —+Qo T a
(2.21)

the greatest common divisor 6 of the times at which re-
turn to a is possible. That is, P„(n)=0 unless n is a mul-
tiple of T(a). We call a state a periodic if T(a) & 1 and
aperiodic if T(a)=1. If all states of the network are
aperiodic, the Markov chain is said to be aperiodic.
Define a Markov chain to be irreducible if every state
may be reached, after a finite number of steps, from every
other state. In other words, for each a,bE I0, 1), there
exists rn & 0 such that Pb, (nt }& 0. We shall only consid-
er, in the following, random iterative networks described
by irreducible, aperiodic, homogeneous Markov chains.
When N is finite, and since the number of states of the
network is 2, the chains are also finite. We may then use
the result ' that all states of a finite, irreducible, aperiod-
ic, homogeneous, Markov chain are ergodic. This means
that the state-occupation probability P, (t) converges, as
t ~ oo, to a limiting distribution P (a),

Qba f(b)
Q b f(a)

Then equation (2.13) becomes

Pb(t+1)=g {?„P.(t) f(b)
a

(2.22)

(2.23)

which has the stationary solution

f(a)
g f(a) (2.24)

Since the limiting distribution is unique, and hence equal
to P'(a), we have the Gibbs distribution

—PH(a)
P "(a)= —IiH(a) (2.25)

where H(a)= —P lnf(a) is an effective Hamiltonian
and P '=x. is a "temperature" parameter for the theory
(see below). An example of a random iterative network
satisfying (2.22) is the Little-Hopfield model (see Sec. IV).
However, most network models, including those with
synaptic noise (Sec. V), are effectively non-Hamiltonian.

One of the consequences of Eq. (2.20) is that, strictly
speaking, aperiodic, irreducible, random iterative net-
works cannot display any long-range order in time. For
any injection of new information, from external sources,
say, can only produce fluctuations about the limiting dis-

Note that in practice time averages are considered over a
finite time T=~,b, . These averages may still be replaced
by ensemble averages provided v,b, &&~,„, the maximum
relaxation time characterizing the rate of fluctuations of
the system.

General techniques for analyzing P " have been
developed by Schnakenberg and applied to the Little
model by Clark. Expressions for P" tend to be very
complicated except for the special cases in which the
transition matrix Q satisfies, for some function f,
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lim p; (co; )=5(co;.—co; ),
x'~0

lim p, ($, )=5($;—P;) .
v~0

Equations (2.7) and (2.26) imply that

lim p; (f; ) =5(f; f )—
x —+0 t

(2.26)

(2.27)

and Eq. (2.1) reduces to the deterministic Caianello equa-
tions,

a;(t+1)=B g J;jco;/aj(t}+ctp; —V,
. J

(2.28)

The dynamics of these equations consists of many fixed
points and cycles and hence corresponds to a reducible
Markov chain. By taking v suSciently small, ~,„&)r,b,
and the stationary solutions of the Caianello equations
persist for practically meaningful lengths of time.

An alternative to the low-noise limit is a large-N limit,
in which a breakdown of ergodicity may occur. In such
a situation the time averages of Eq. (2.21}are equivalent
to ensemble averages over a nonergodic measure P.
Thus, the state space decomposes into disjoint invariant
subsets n~ of positive measure, i.e., P(Q ) )0, such that

n=Un. , n. n n„=y, A, n. cn„, (2.29)

where A, is the generator of time translations by t.
Moreover, P may be written as the convex sum

tribution P "(a), and eventually disappear. This is un-

desirable for applications such as content-addressable
memories. One possible solution is to operate the net-
work near the deterministic limit. This involves intro-
ducing a "temperature" parameter v into the theory so
that

of memories. The behavior of random iterative networks
in the thermodynamic limit is discussed in Sec. III.

III. STATISTICAL DYNAMICS

and

co; =O(1/N), Ji =O(1) (3.1)

co;i =O(1), J;i =O(1/N) (3.2)

Note that Eqs. (3.1) and (3.2) should be distinguished
from the weak and strong dilution conditions of random-
ly diluted networks. For the random weights co; are
taken to be annealed rather than quenched. Therefore, if
we were to view co; as a connectivity matrix, the connec-
tions between neurons are broken and reassembled at
every time-step. Randomly diluted nets correspond to
taking quenched weights such that

In Sec. II we discussed two equivalent descriptions of
random iterative networks, one in terms of random maps
and the other in terms of Markov chains. The random
map formulation is more useful for setting up a statistical
dynamics of networks. In particular, it may be used to
construct a generating functional for all statistical corre-
lations of the system, and to derive macroscopic dynami-
cal equations in terms of path integrals.

We begin by defining more precisely the limit N~ 00,
in terms of the N dependence of the means and variances
of the connection weights and external fields. Assume
that the distributions of the P; are N independent. Then,
for the limit N~ Oc to be well defined (and assuming the
network is fully connected), we require that the product
co;tJi is O(1/N). Consistent with this are the two alter-
native conditions

P=ga P,pa =1 (2.30)
p;J(co;J)=5(co;i —1), J;i=C;,J;i, (3.3)

lim lim
X(a(t) ) =g P (a)X(a)

T N - T a

(2.32)

where each P is a time-invariant measure on 0
Hence,

P (n~)=1, P (A, n )=P (n ), P(n )=a . (2.31)

The corresponding time averages now depend upon ini-
tial conditions with

with C, a quenched random variable. We may then
define strong or weak dilution conditions on the connec-
tivity matrix C,J in the usual way (see Sec. IV).

Taking the limit N ~ 00 to be defined by either (3.1) or
(3.2), we introduce the notion of a macroscopic variable,
along the lines of Amari, Yoshida, and Kanatani. A
finite collection of state functions, X(a)= IX„(a),
r =1, . . . , R l is said to be a closed set of macroscopic
variables if there exists a set of functions 4„,r = 1, . . . , R
such that for arbitrary a,

for all a(0) EQ . Note the ordering of the limits in Eq.
(2.32). In general, the long-time dynamics of the network
is not equivalent to the equilibrium situation character-
ized by the ensemble averages

lirn (X,(f (a)})~=4„(X(a)),

lim var [X,(f (a) }]=0,

(3.4)

(3.5)

lim gP "(a)X(a) .
N~ oo a

(2.33)

It is the dynamical, rather than equilibrium, properties of
networks that is important for the storage and retrieval

l

where ( ) and var denote respectively, the mean and
variance with respect to the distributions of the weights
and external fields. The mapping f has components f

I

as defined in Eq. (2.5). Thus

(X„(f (a))) =f gdco; p; (co; )f dP. ;p;(P;)QX„(a'}g 5 a„' —B g J„,co„,a, +P„—V„
k=1

(3.6}
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Equations (3.4) and (3.5) imply that

lim ~X„(f (a))—{X„(f(a))}~~=0.N~ oo

Hence, in the large-N limit, the probability that in a given
trial, X„(f (a}}=(X„(f(a))},approaches 1. In other
words, for N sufficiently large, a good approximation to
Eq. (3.4) is

and the eigenvalues A,„ofthe Jacobian

(3.10)

(3.11)

X,(f (a))=4„(X(a)) . (3.8)

Equation (3.8) still holds if a is replaced by the dynami-
cal variable a(t) satisfying Eq. (2.1). This follows from
the fact that the weights and external fields are reselected
at randotn at each time step. Since f~{a(t))=a(t+1),
and defining X,(t) =X„(a(t)),we obtain the deterministic
dynamical equations

(3 9)

Equation (3.9) contains information about the long-time
dynamical behavior of the network in the limit N~ 00.
Suppose, for simplicity, that the set IX„, r= 1, . . . , R ]
completely characterizes the macroscopic dynamics of
the system. Moreover, assume that there are stationary
solutions of (3.9) which are stable fixed points, denoted
X' '. Each such solution satisfies

satisfy the stability criterion, ~A, „~ &1. Then, assuming
that X(0)EA, where A, is the basin of attraction for
X' ', the time average of X( t) is given by

(3.12)

for all initial states a such that X(a)GA . We see that
the breakdown of ergodicity is reflected by the existence
of more than a single fixed point of Eq. (3.8). In practice,
the dynamics may be much more complicated with cycles
and chaotic regimes.

We now turn to the general formulation of statistical
dynamics in terms of path integrals. To achieve this we
set up a stochastic generating functional along the lines
of de Dominicis and Peliti. That is, we replace Eq. (2.1)

by

Z 4[l]=gf dG(t)du(t)exp i g l, (t)u;(t) exp i g u;(t) u;(t+1}—e +co; (t)JJuj(t)+(I};(t) V;— (3.13)

Taking the average over the (}};,to; yields the functional which generates correlation functions for the stochastic vari-
ables a;(t),

Z[l]=g fd;J(t)p;, (co;, ) g f dy;(t)p;((t); )Z„/[i] . (3.14)
t, i,j t, i

For example,

I a(t), a(t —1), . . . , a(1) I

[ Qa(t) (at —1)Qa(t —1)a(t —2) Qa(1)a(0) i( )] (3.15a)

Note that there are no contributions from Z[l] for times t') t since gbQb, =1. We are taking the boundary condition
that a(0) =a0, where a0 is fixed. Similarly,

p(i ~a) = {u, (t+1)5(u(t) —a) },
Qb, = (5(u(t+1) —b)5(u(t) —a) },

To write Eq. (3.13) in a more useful form introduce the identity

1=g f dh(t)dh(t)exp i g h, (t) 'h;(t) —+01;,Jju (t) it),
'. —

t t, i J
so that Z[l] becomes,

Z[l]=g f du(t)dG(t)dh(t)dh(t)

(3.15b)

(3.15c)

(3.16}

Xg f d~;, p(~;, ) g fdip;(P;)exp ('gl;(t)u;(t)

Xexp i g [h;(t)h;(t)+u;(t)[u, (t+1)—e(h;(t) —
V, )]j

Xexp i g h, (t)—g 01,J(t)J,&ui(t)+p, (t)
. J

(3.17)
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The connection weights now appear linearly in the ex-
ponential of the generating functional. This will enable
quenched averages to be performed in Sec. IV.

Equation (3.17) can be used to construct a path-
integral form for Eqs. (3.9). Firstly rewrite (3.17) as

Z[l]= fD(u, u, h, h, co, g)e' (3.18)

(3.19)

where the X, are macroscopic variables, as defined by
Eqs. (3.4) and (3.5},we obtain

with S considered as an action. Then, introducing the
identities

1=fD(m, fh)exp iN g m„(t)[m„(t)—X„(u(t))] ',

iterative network with threshold noise.
Equation (4.4) may be substituted into Eq. (2.16) and

the dynamics described in terms of the Markov chain
(2.13). Solutions for the limiting distribution P "(a) may
then be discussed along the lines of Clark. In particu-
lar, for symmetric connections, J;~=JJ, , the matrix Q
satisfies condition (2.22) so that P "(a) is a Gibb's distri-
bution. This allows spin-glass techniques to be used to
study the long-time dynamics of the network for
N ~ 00. ' More recently, statistical-dynamical formula-
tions of the Little model have been developed in which
asymmetric weights are incorporated using randomly di-
luted networks. We shall consider an alternative ap-
proach to such networks using the statistical dynamics of
random iterative networks developed in Sec. III.

We begin by showing that the variables

Z[l]= fD(m, fh)ei~™~l (3.20) X;=g J;.a
J

(4.5)

Here, S is the action

S=N g m„(t)m„(t)

+ln fD(u, u, h, h, co, g)

Xexp i S Ng m—„(t)X„{u(t)} (3.21)

We may now take the thermodynamic limit of Eq. (3.20).
Then Eq. (3.9) is obtained by finding the path that mini-
mizes the action (3.21). Explicit examples will be given in

Secs. IV and V.

form a closed (infinite) set of macroscopic variables. We
shall take the limit N~ oo following Eq. (3.2) with

p; (co; )=5(co;, —1) and JJ = JJ/N, JJ independent of N.
Using Eq. (3.6}

{X;(f,( ))) =—g J;,p(j~ ) .
1

J

For the Little model p(j~a)) 0 and hence Eq. (4.6) is
well-defined and nonzero in the limit N ~ 00. Combining
(4.4), (4.5), and (4.6) we obtain

{X;(f,(a))} =—g J; (1+e ' '
)

' . (4.7)
J

Hence condition (3.4) is satisfied. Moreover,

IU. NETWORKS WITH THRESHOLD NOISE:
THE LITTLE MODEL

var [X,(f (a))]= g J,,var [f, (a)] .
N

(4.8)

Consider the random iterative network defined by

a;(t+1)=e g J}aj(t)+P;(t) V;—(4.1)

where J; is fixed and P; is a random variable with proba-
bility distribution

p;(P, )= (1+e ') '=P4, —i e

ay,. (1+
(4.2)

XB(gJjaj+p, —V, ) .
J

(4.3)

Integrating by parts and using the identity c}8(x)/
Bx =5(x),

p(i~ )=a(1+e ' " ' '
) (4.4)

This is precisely the updating rule for the Little model.
Hence the Little model is a specific example of a random

Here P ' is a temperature parameter. The conditional
firing probability of Eq. {2.17) is

T

p(i~a)= f dP, (1+e ')
BP,

We have used the fact that each P, is independently dis-
tributed. Since var [f (a)] is finite for each j, condition

j
(3.5) is also satisfied and the X; form a complete set of
macroscopic variables. Thus we have the set of deter-
ministic equations, for large N,

X;(t+1)=—g J; (1+e ' '
)

J

(4.9)

R

J;, =—g (n4 p)(rt," p»)— —
p=1

(4.10)

where g"; denotes the value of the ith neuron in the pth
nominated pattern. The bias of the patterns is p such

Note that the N original stochastic equations have been
replaced by N deterministic equations (4.9). However,
this still leaves a large (infinite) number of equations to
solve. To make further progress, it is necessary to put re-
strictions on the weights J; so that the macroscopic dy-
namics may be described by a finite number of variables.
In other words, a learning rule should be specified. For
comparison with spin-glass techniques, we shall consider
a Hopfield' form for the J; corresponding to the storage
of R biased patterns, "
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that the quenched random variables g are generated from
the distribution

M"(t+ 1)=—g (rt"; —p )K g (rt,
"—p )M'(t) —V;

1

V

p(il) =p5(g —1)+(1—p )5(ri) . (4.11) (4.14)

M"=—g (ri"; —p)a;,
N,.

(4.12)

N
M= —g a, (4.13)

The corresponding macroscopic dynamical equations are

We may then define a finite set of macroscopic variables
(for finite R) given by

M(t+1)=—g K g (il,"—p)M"(t) —V, , (4.15)
1

V

with I(.'(x)=(1+e ~") '. The analysis so far is limited
as it may only be applied to the storage of a finite number
of patterns. Letting R ~ 00 still gives an infinite number
of equations to solve. We wish to consider cases in which
a finite number of patterns are marked for condensation
with the remaining infinite number acting as background
noise. To achieve this we may use the path-integral
techniques of Sec. V. For the Little model, Eq. (3.17) be-
comes

Z[1]=g fdu(t)d6(t)dh(t}dh(t) g f dP;p;(P;)exp ig 1, (t)u;(t)
t t, i t, i

Xexp i g [h;(t)h;(t)+u;(t)[u;(t+1) —e(h;(t) —V;}]I

X exp i g h—;(t) g J;,ui(t)+P, (t) (4.16)

where p;(P, ) satisfies Eq. (4.2). The connection weights appear linearly in (4.16). Therefore, since Z[0]=1, we may
perform quenched averages over the weights to take into account an infinite number of patterns. To illustrate this we
shall consider a randomly diluted network. ' Take the modified connection rule' '

R

J;, = C X (n"; p)(n," p—)=C;,J;—, —
@=1

where C; is a quenched random variable given by the distribution

p(C;, )=—5(C; —1)+ 1 ——5(C,, ) .
C C

(4.17)

(4.18)

Assume that C/N~O as N~ oo. Then

(Z[l])c =g f du(t)dG(t)dh(t)dh(t) g f dP, (t)p, (P, )e g 1 ——+—e
t t, i tj

where

S =g Ih,.(t}h,(t)+u;(t}[u;(t+ 1)—e(h;(t) —
V, )]+1;(t)u;(t) —h;(t)P;(t)] .

(4.19)

(4.20)

We may now proceed in exact analogy to Refs. 7 and 13 to obtain

(Z[l]) =g f du(t)dG(t)dh(t)dh(t) ff fdP, (t)p, (P, )e",
t, i

with S=So+S, where

5
S= —g g MI'(t)(riI' p}h, (t)+ ga—p 'h, (t)—C(t —t')h, (t'),

i, t }M=1 i, t, t'

and a =R /C and p =p(1 —p ). The quantities M"(t) and C(t t') have to —be calculated self-consistently:
N

M"(t) =—g (ri;" p)( (u))tL, —
i=1

(4.21)

(4.22)

(4.23)

C(t t')= —g (u,—(t)u, .(t'))L .
i=1

(4.24)

The contributions of random overlaps with most patterns vanishes as R /N, whereas a finite number of marked patterns
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M', M, . . . , M could be of order 1. The last term in (4.22) corresponds to an additional noise &any(t) which has a
Gaussian distribution with zero mean and correlation function

(y(&)y(&')) =C(& —&') .

Hence, Eq. (4.21) becomes

(Z[l]) =g fdu(t)d+(t)dh(t)dh(t)g f dP, (t)p, (P; ) g f dy, (t)d. y;(t')e ' ' e
t, i i, t, t

with

(4.25)

(4.26)

S
L =g h;(t) h;(t) —g M"(t)(ril," p) —&any—;(t) P;(t)—+g ii;(t)[u;(t+1)—e(ii;(t) —V;)]++I;(i)u;(t) . (4.27)

L

We note that &any(t) acts as an additional contribution to the external random field. To evaluate (4.23) we perforin
the integration over the fields u(t), u(t), h(t), and 1'i(t) first and then integrate over P(t) This. yields the result

S
M"(t)=—g(ri", —p) f —e ~ ~ K g (ri,

"—p)M"(t —I)+&aM(t —1)Py —V,N, .
' v'2~

5
M(t)= —g f e ~ ~ K g (r),

"—p)M"(t —1)+&izM(t —1)Py —
V,

v 2'

(4.28)

(4.29)

which are the mean-field equations previously found in
Refs. 13 and 14. Similarly for the correlation C(t t'}. —

We have shown that the spin-glass-type models of
Little-Hopfield are equivalent to random iterative net-
works with a non-Gaussian threshold noise and quenched
connection weights. In fact, we could have taken any dis-
tribution p;(P;) for the thresholds and applied the same
techniques. However, it is not clear that threshold noise,
whatever its distribution, is an important feature of most
biological neurons. Alternative sources of noise are con-
sidered in Sec. V.

V. NETWORKS WITH SYNAPTIC NOISE

The Little model discussed in Sec. IV introduces noise
into a network via a random modulation of the threshold
V;. Thus, it is only concerned with noise at the axon hil-
lock of a neuron. It does not take into account other
more biologically significant sources of noise arising from
the quantal release of chemical transmitters into the
synapses. Such transmitter release provides a mech-
anism for converting incoming axonal signals into
changes in membrane potential of a postsynaptic neuron.
We shall model such synaptic processes as follows.

(a) There are N binary neurons with activities a; =0,1.
(b) Time is discretized in terms of the smallest unit of

time v., related to the refractory periods, synaptic time de-
lays, etc. , of the neurons. (For simplicity set 7 = 1).

(c) The arrival of a nerve impluse from the jth neuron
causes the release of n -"' packets of transmitter substance
into synapse (ij)

(d) In the absence of an incoming signal there is the
spontaneous release of n -' packets of transmitter sub-
stance into synapse (ij )

(e} The packet size is qo, which may vary from synapse
to synapse. We shall take qz to be a positive constant.

(f) The contribution to the postsynaptic membrane po-
tential at time t+1 is

V, (t+1)=g e;, [qon, '"'a (t}+qonij'8 (t)], (5.1)

(5.2)

(h) The n,j ' and n,"J" are independent random variables
selected at each time step from the distributions p';J"' and

(s)
PlJ

Comparing Eqs. (5.2) and (2.1) we see that the above
models of synaptic noise are random iterative networks
with

co;~(t}=qon '(t} qon, '1 '(t), J,—"=ej (5.3)

P, (t) =qon, "(t)e,,
The distributions p';"' and p', "are taken to be of the same
form, but with n ' '((n ';J"'. For simplicity, we shall drop
the spontaneous activity in the following discussion. If
nij is generated by a Poisson distribution

(5.4)

(5.5)

with pij nij we obtain the Taylor model. ' A more
biologically realistic distribution is a binomial of size M,
where M is the maximum possible number of vesicles
released. For lower animals and the peripheral nervous
system M=10 —10 and M=1 —10 for the central ner-
vous system. The case M = 1 is the one-vesicle model

p; (n; )=p, 5(n; .—1.)+(1—p",")5(n; ), (5.6)

where E''j is a postsynaptic eScacy and 9 =1—a . Here
~e,, ~

1 with negative e; corresponding to inhibition.

(g) If the postsynaptic potential exceeds the threshold
V, , the neuron fires. Thus

a;(t+1)=e ge; [qon "'a (t)+qon 'a(t)) —
V,
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which is an annealed version of random dilution [cf. Eq.
(4.18)].

To derive mean-field equations for networks with
synaptic noise, it is first necessary to specify the limit
N p oo according to either Eq. (3.1) or (3.2). If we take

CJ

n,J. =.O(1), e;~=, Z;J independent of N (5.7)

then the central limit theorem applies to each of the ran-
dom variables gZ;Jn;Jaj. , allowing their replacement by
their mean value, the white-noise term vanishing as
N '~ . Equation (5.2) reduces to the deterministic
Caianello equations

a;(t+1)= lim 8 —gqoZ; tT; a (t) —
V; . (5.8)

1

pf —+ oo
J

Thus the synaptic noise is eliminated in the large-N limit
defined by Eq. (5.7). To apply the central limit theorem
we have assumed that Z," is 0(1). If we take e;, to satisfy
the Hopfield learning rule, Eq. (4.10), then this assump-
tion corresponds to taking the number of patterns 8 to be
finite. We may consider the storage of an infinite number

I

n;~ =0(1/N), e;~ =0(1) . (5.9)

In the following we shall only consider distributions
p;J(n; ) for which, to leading order in N, the higher mo-
ments are of comparable size to the mean n, in"Eq. (5.9).
Hence, o „=0(1/N), etc. Such distributions include the

tJ

Poisson and binomial distributions. Then the Mth rno-
ment of the random field qog E; n, a"is 0(qo ). Note
that qo is the size of postsynaptic potential due to the
release of a single packet of transmitter substance and is
much smaller than the thresholds V;. Taking units
defined by V= 1, where V is a typical neuronal threshold
such that, for all i, V; = V, then qo is a dirnensionless pa-
rarneter with qo && I. Introduce the partition function

of patterns by using the functional techniques of Sec. III.
The resulting mean-field equations are those of nondilut-
ed spin-glass models at zero thermodynamic tempera-
ture. Thus the synaptic noise is still eliminated, the
remaining Gaussian noise being due to the crosstalk of
unmarked patterns.

Alternatively, consider

Z[l] =ID(u, G, h, h) g g [pj(n;J(t) }]exp[ig 1;(t)u;(t)]
I n,"(t)I t, i,j

X exp i g [h, (t)h;(t)+ u;(t)[u;(t + 1)—8(h;(t) —
V~ )]I

t, i

Xexp iqo g—h, (t)n, j (t)e;, u J (t) (5.10)

along similar lines to Eq. (3.17). In general, the summation over the random variables n; leads to terins in the action of
Eq. (5.10) which are highly nonlinear. To make further progress we shall use a Gaussian approximation by expanding
in the small parameter qo. Note that we are effectively expanding in the dimensionless parameter qo/V. Performing
the Gaussian expansion, Eq. (5.10) reduces to

Z[1]=fD(u, G, h, h)exp i pl;(t}u;(t} exp i g [h;(t)h;(t)+u;(t)[u;(t+1) —8(h;(t) —V;)]I

Xexp —iqo g h;(t)n; ejuj(t) exp ——
qo g h;(t)o„e~~juj(t)t 5 ~ - EJ J

t, t,J i,J, t

To obtain (5.11) we have used the approximation that at each time step

(
exp iqeh;Zn;;e; a; )

=exp Iqeh;Zn, E, .a; (exp iqeh, Z(n, ,
—n, )E,,a,

J P

(5.11)

=exp iqoh; g n;J.e;J.a~ exp ——qoh; g .o„e;~aj
tj

J J
(5.12)

p(i la) = {u;(t)&(u(t —1)—a) )

1 1+erf
2

qo&n, eja, —V,
J

2y 2 2 '1/2

J

(5.13)

The conditional firing probability of equation (2.17} be-
cornes

The average in Eq. (5.13) is with respect to the partition
function of Eq. (5.11). A siinilar equation was derived by
Shaw and Vesudevan, but in a more specific context.
Note that the Gaussian approximation corresponds to
dropping the higher moments of the random field

qogn; e; a, which . is-valid for small qo, since these mo-
ments are 0(qo }. [See discussion below Eq. (5.9).] Us-
ing Eq. (5.13) it may be shown that, analogous to Eq.
(4.5), the variables
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2 2
Xi g qoeij ij aj & i g qo~ij trn, .j

J J
(5.14) variance must be determined. Suppose, for simplicity,

that

form a closed set of macroscopic variables as defined by
Eqs. (3.4} and (3.5). The corresponding macroscopic
dynamical equations are

X,(t)—
V,

X,(t+1)=—g qon;pj 1+erf
2 j +qoY (t)

(5.15}

X,(t) —
V,

Y;(t+1)=—g qocr„e; 1.+erf
QqoYj(t)

(5.16)

As with the Little model, Eq. (4.9}, to make further
progress it is necessary to specify a learning rule for the
connection weights. However, now both their mean and

l

qon; =qoa„=—,A =O(1} .
tJ

(5.17}

Note that taking the mean and variance in Eq. (5.16) to
be equal is valid for the Poisson distribution and, when X
is large, for the binomial distribution. Furthermore, im-
pose the Hopfield-type learning rule similar to Eq. (4.10)

R

J Apl ' J (5.18)

with the quenched variables rj generated from Eq. (4.11).
When A is large, we may replace e;, by ap /N, where a
and p are defined below Eq. (4.22). Then, in terms of the
macroscopic variables M" and M of Eqs. (4.12) and
(4.13), Eqs. (5.15) and (5.16) reduce to the mean-field
equations of a randomly diluted Little network in the
zero temperature limit P~ ~ [cf. Eqs. (4.28) and (4.29)],

g M "(t)(rt", p) —V—,

M"(t+1)=—g (rl", —p) 1+erf2; [qoaP M(t)]'
(5.19)

S

g M"(t)(rj," p) —V;—

M(t+1)= —g 1+erf
[qoaP M(t)]'~

(5.20)

As in the treatment of randomly diluted networks, Sec.
IV, we are marking p= 1, . . . , S patterns for condensa-
tion.

We conclude that the thermodynamic limit defined by
Eq. (5.9) leads to mean-field equations similar in form to
spin-glass models with quenched random dilution at zero
temperature. Synaptic noise may then lead to the
enhancement of pattern retrieval by removal of spurious
states, since the term Qqo Y;(t ) acts as an efFective tem-
perature. Such a temperature is both space and time
dependent. Shaw and Vesudevan suggested taking
some space-time average of this temperature, so that Eq.
(5.13) becomes

p(i ~a)= —1+erf Pqog n;, e~jaj —PV,
1

J

1+exp —Pqogn, e; a +PV;. .

J
(5.21)

which is the updating rule for the Little model. Shaw
and Vesudevan concluded that the Little model may be
derived in terms of synaptic noise. However, we have
found that the statistical dynamics of networks with
synaptic noise depend crucially on how the thermo-
dynamic limit is taken. If the limit is defined using Eq.
(5.7), then the synaptic noise is eliminated and Eqs. (5.13)
and (5.21) are no longer valid.

Moreover, it is possible to obtain a different class of
mean-field equations by taking pattern storage on the

means q; =qon,". For example, consider the Hebbian
learning rule

R

q,, =—g rj";rj,", e;, = 1

p=1
(5.22)

where the g are restricted to be 0 or I, since q; ~0. For
the Taylor and binomial models, Eq. (5.22) leads to the
mean-field equations

Mi'(t+ 1)=g i)i' g [rt, M(t)lq, ]"e
i n~0

Xe(nqo —
V, ), (5.23}

where M& is the overlap with the pth pattern. The
derivation of Eq. (5.23) does not require any Gaussian ap-
proximation but it is necessary to assume that e; is

synapse independent. Taking e;. to be unity corresponds
to a purely excitatory network. This is consistent with
Dale's principle' which requires that, for a given neuron,
efferents are either all excitatory or all inhibitory. In oth-
er words, for a given j, E' j & 0 for all i or E' j &0 for all i.
Note that the learning rules of Eqs. (4.10) and (5.18)
violate Dale s principle since e; has an equal probability
of being positive or negative. One of the consequences of
taking a purely excitatory network is that the simple
Hebbian rule, Eq. (5.22), leads to mean-field equations
(5.23) which do not have Mattis-type solutions and re-
trieval of memories is not possible. However, it has re-
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+g J,J co,'J (t)bj(t)+p, —
&,

J

b;(t+1)=e g J; co; (t)a (t)
. J

+g JJ a),"J (t)b (t)+p, —
V,

J

(5.24)

(5.25}

We could now proceed as in Secs. II and III. For exam-
ple, the transition matrix of Eq. (2.16) becomes

NE I I

Qh. ,&.
= g[p.«la, b)] '[P, «la, b}] '

x g [pt, (tla, b)] '[Pt, (tla, b)] ', (5.26)

where p, and pb are, respectively the conditional firing
probabilities of the excitatory and inhibitory neurons.
Note that the dynamical equations of the inhibitory neu-
rons may, in principle, be solved in terms of the excitato-
ry neurons provided J; =0. Thus it may be possible to
store patterns on qon; by introducing inhibition via Eqs.
(5.24) and (5.25) or by considering alternative learning
rules to (5.22). This will be considered elsewhere.

VI. DISCUSSION

In summary, a general framework has been presented
in Sec. II which allows the incorporation of various sto-
chastic effects, such as synaptic quantal transmission,
both stimulated and spontaneous, and threshold variabili-
ty. This structure is that of random iterative networks,
which has been used to analyze the dynamical evolution
of network activity at the microscopic (single neuron} and
macroscopic levels. In particular, a path-integral formu-
lation of a generating functional was constructed in Sec.
III to allow full expression of the dynamics. These tech-
niques were applied in the Secs. IV and V to the Little
model (threshold noise} and to networks with synaptic
noise, to deduce mean-field equations. A new derivation
was given in the former case of the known mean-field
equations for a randomly diluted network with biased
patterns.

The conclusions of the analysis are presented here.
(1) The general framework of random iterative net-

works is a natural dynamical approach to the study of
known sources of neuronal stochasticity. The dynamics
of such networks may be formulated in terms of generat-
ing functionals.

(2) Noise enters neuronal activity in at least two

cently been shown by Amit, Wong, and Campbell that
it is possible to define a learning rule which allows pat-
tern storage in a purely excitatory network. They extend
this to networks with a mixture of excitatory and inhibi-
tory neurons satisfying Dale's law. Such networks may
be incorporated into the framework of random iterative
networks. Denote the activities of the excitatory and in-
hibitory neurons, respectively, by a;, i = 1, . . . , NE, and

b;, i = 1, . . . , Nt. Then Eq. (2.1) becomes

a,.(t+ 1)=e g J,'J.'co';I'(t)aj(t)
. J

different manners, viz. , due to synaptic transmission vari-
ability and from threshold fluctuations. However, biolog-
ical measurements indicate at most a few percent fluctua-
tion of the threshold in central nervous system neurons,
so that a temperature of (0.1 is to be expected. This
seems to be below the cutoff value of 0.46 for which
Mattis states can be retrieved without the problem of
spurious states. However, threshold noise may be im-

portant for neurons operating near zero threshold, such
as the CA2 region of the hippocampus. Under certain
circumstances, the retrieval of stored pattern may be aid-
ed by synaptic noise. This follows from the mean field

equations of Sec. V, which were similar in form to either
diluted or nondiluted spin-glass models at zero tempera-
ture. In the former case synaptic noise has an effective
thermodynamic temperature which is space-time depen-
dent and which may eliminate spurious states. The size
of this temperature depends on parameters such as the
size of packets of chemical transmitter and the variance
of the number of packets released.

(3) A new class of mean-field equations are possible for
networks with synaptic noise by taking pattern storage
on the mean number of transmitter packets released.
This requires alternatives to the simple Hebbian rule and
leads naturally to a more realistic incorporation of inhibi-
tion which obeys Dale's law.

Extensions of the above analysis are possible along the
following lines.

(a) Analysis of the approach to asymptotic dynamics
by means of Liapunov exponents, etc., as discussed by
Kifer. There is a natural metric (Hamming distance) on
the state space, so such techniques may be applicable.

(b) Analysis of alternative learning rules such as the
Hebbian learning rule of Willshaw, Bun eman, and
Longuet-Higgins. ' Moreover, short-term synaptic
effects are known to occur which are purely postsynap-
tic, and hence non-Hebbian. These also need to be inves-
tigated.

(c) Evaluation of Hebbian and non-Hebbian storage
without going to the large-N limit, by taking a reducible
Markov chain, Eq. (2.13}. Such reducibility occurs in the
training of probabilistic logical nodes (PLN's) and pro-
babilistic random access memories ' (PRAM's) to obtain
asymptotic states depending on the initial probability dis-
tribution. It may be possible that nonergodicity also
arises by inclusion of refractory periods and extended
summation, although it is not yet possible to analyze this
in detail.

(d) Extensions to analog networks. The introduction of
noise using random maps may be applied to any neural
network, analog or digital, whose operation is described
by relaxation dynamics. Stochastic dynamical equations
are obtained by taking the connection weights and
thresholds to be random. The major difference for analog
models is that state space is no longer discrete or finite.

More general questions also need to be answered.
Many neurophysiologists have asked whether there is any
value in neuronal noise. Conclusion (2) above indicates
that synaptic noise may help the retrieval of stored pat-
terns under certain circumstances. Independently of this,
noise may have other uses, such as introducing "dither"



41 RANDOM ITERATIVE NETWORKS 1137

to prevent phase locking. It may also be important to in-
terfere with incipient chaotic activity arising from long
summation periods. " More generally, are fixed points at
all used by the brain in the storage of patterns? There is
not, as yet, conclusive evidence that any parts of the
brain act as content-addressable memories. An alterna-
tive picture may be developed which uses only feedfor-
ward nets which have local endogenous bursters to

preserve learned activity or to phase-lock distant features
of a common object.
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