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Analytical fits to the one-component plasma (OCP) equation of state have been derived for inter-
nal energies that have reduced all N-dependent effects to within the statistical uncertainties intro-
duced by the Monte Carlo computational process, which themselves are very small. Values of
N 500 adequately represent the thermodynamic limit. Using the fluid internal energies for only
N =686, various analytical fits are generated, compared, and discussed. The thermal energy is accu-
rately represented by a simple power-series fit with the leading term given by I' ', but also requires
a small correction to the bcc Madelung term that brings that coefficient down to nearly —0.9, the
value derived for hypernetted-chain theory. The fluid thermal energy data are reproduced to better
than 0.2%%uo over a11 I by our fit(s). The solid phase requires both anharmonic terms to be included in

the fit, implying that the previous justification for dropping the first anharmonic correction is
unwarranted. The location of the fluid-solid phase transition utilizing these new fits yields
I b„=178 and I f„=192.

Monte Carlo simulations of the classical one-
component plasma (OCP) have been used extensively dur-
ing the past two decades to obtain the OCP fluid equation
of state (EOS) and the location of the fluid-solid phase
transition. ' The use of the Monte Carlo results is
made difficult by the fact that the thermal energy
( U,h/NkT) is less than 2% of the total energy ( U!NkT)
at high I near the phase transition. Reliable results re-
quire that U,„/NkT be known to an accuracy of about a
tenth of a percent in both phases. The Monte Carlo re-
sults are very sensitive to any number dependence for the
ions (N dependence) that may exist in the numerical
simulations. Using data calculated for a wide variety of
N, Slattery, Doolen, and DeWitt (SDD ) made an at-
tempt to account for the behavior of the N dependence by
adding a term to their fit for the EOS of the form eI /N,
where e is a constant generated by the fit and used for ob-
taining results in the limit N~ ~.

Rather than trying to use the data for different values
of X, as in these previous studies, in this paper we obtain
very accurate fluid internal energy and Helmholtz free-
energy expressions utilizing only data for %=686. We
have found this to be a sufficiently large enough N for the
fluid phase such that any residual number dependence is
less than or equivalent to the unavoidable statistical error
inherent in the Monte Carlo simulations. Consider the

radial pair distribution functions g(r) for N =500 and
686, which are displayed in Fig. 1 for two values of I,
one on each side of the phase transition. For each I the
fluid curves for N =500 and 686 have essentially identical
radial distribution functions out to at least seven ion
sphere radii, which is the reason for the internal energies
being statistically equivalent (see also Table I). There-
fore, N ~ 500 accurately reflects the thermodynamic lim-
it. Note that, at these values of N, the center-of-mass
correction proposed by Hoover et al. is negligible, fal-
ling within the statistical errors of our data. In the solid
phase, however, the plasma can freeze into either a face-
centered-cubic (fcc; N=4n where n is an integer ~ l) or
body-centered-cubic (bcc; N=2n ) configuration, de-
pending on the value of N. Thus there is an energy
difference between the bcc and fcc high-N solid data due
to the lattice structure of the two configurations (see Fig.
l). Utihzing these results, we will now proceed to obtain
the equation of state for the OCP in both the fluid and
solid phase. We use only the %=686 data of SDD, sup-
plemented (or replaced) by the values presented here for
the fluid phase, thereby avoiding the introduction of ad-
ditional systematic errors. Our new values of the Monte
Carlo internal energies UMC are given in Table I.

DeWitt originally studied fits to the OCP internal en-
ergy fluid data' of the form
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FIG. 1. Comparison of the bcc and fcc particle pair correlation functions g (r) for high N plotted against the ion separation r (in

units of the ion sphere radius) at several I in the fluid and solid phase: (a) at I =160 the fluid (solid curve) and solid (dashed line)

phases are presented for N=500; (b) the same as (a) except for N=686; (c) I =200 for N=500; and (d) the same as (c) but for
N =686.

UMc =a I +bI'+c

from which he concluded that s =0.25+0.02 for I"&40
and s =0.3+0. 1 for I ~ 50. The high-I data, back then,
was simply not accurate enough to allow a precise fit over
the entire range of I. In addition, the coefficient a

differed markedly from the Madelung bcc lattice value
when left as a free parameter in the fit to be determined
by the data. Subsequently, DeWitt and Rosenfeld ap-
plied a variational hard-sphere calculation that included
the virial entropy and found that the form of the internal
energy could be expressed as

TABLE I. New Monte Carlo internal energies, uncorrected for center-of-mass motion, computed for
selected values of N. Initial conditions (IC) are either fluid (F) or lattice (L).

150
160
180
180
200
200

160
160
180
180
200
200

UMC

NkT

—132.1070
—141.7254
—158.8972
—159.6684
—176.7739
—177.6060

—141.0381
—141.7006
—158.8943
—159.6489
—176.7697
—177.5856

0.0016
0.0010
0.0008
0.0009
0.0011
0.0010

0.0012
0.0010
0.0012
0.0010
0.0010
0.0010

686
686
686
686
686
686

500
500
500
500
500
500

bcc

fcc

Thermalizations

{X10')

0.1

2.0
1.0

32.0
11.0
0.7

2.0
0.5
6.0
0.1

2.0
0.1

Configurations

( X10')

31.9
77.2

143.0
80.0
83.0
46.5

78.0
111.5
90.0
79.9

142.0
79.9

IC

F
L
F
L
F
L

F
L
F
L
F
L
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UMc =aI +bI' +c+d I
NkT

(2)

Uth =5aI +bI'+c+dI
NkT

(3)

where U,h
= ( UMc —

Ul,„). Here 5a represents the
amount by which the term aI differs from the bcc
Madelung term where a~« = —0.895 929,

aI =(a~„+5a )I (4)

Notice that we have constrained the terms with

in agreement with the form of the fit [Eq. (1)] found previ-
ously. Since then, Eq. (2) has been used to represent the
EOS for the OCP.

Since we are interested in discovering the best empiri-
cal representation of the EOS, we have chosen to general-
ize Eq. (2) to the form found in Eq. (1}and to explore a
broad range in the parameter s. Since it does not matter
whether the internal energy or thermal energy is chosen
to be fit, we elect to use the latter. Hence we will be deal-
ing with a fit function of the generalized form

coefficients b and d in Eq. (3) to have the same value of
the exponent s. In so doing we preserve the ability to ex-
press our final fit in terms of a single power-series expan-
sion in s. Thus we have four independent parameters (5a,
b, c, and d) in which a linear least-squares fitting can be

performed for various values of s.
We explore a range of 0.20~s 0.50. A sample of

these fits are presented in Table II, which lists the
coefficients and the resulting standard deviation o (the
square root of Eq. 14.1.5 in Ref. 10) for each fit. The
internal energies and their associated errors have been
rounded ol' to three decimal places when fitting. Previ-
ous fits ' to the OCP have not taken into account the
experimental (numerical) errors as we do here. The first
striking observation, which is obvious from these results,
is that an accurate fit to the data requires 5aAO. Cou-
pled with this is the surprising result that the coefticient a
is very close to, but slightly larger than, —0.9; the exact
value recently derived for the coeScient of the Madelung
term in the hypernetted-chain approximation (HNC). "
However, the HNC equations yield power-series expan-
sions in s of —,

' (i.e., —0.9I +bI i2+ }. This is the

TABLE II. Linear least-squares fits to the N=686 (bcc) data in Table I and SDD'. Each functional
form is given prior to listing the coeScients resulting from the fit. The parameter s is the exponent of I
in the function, and 5a is the difference required by the fitting process over that of a|„„the bcc value of
the Madelung constant. The standard deviation, which we use as a quantitative measure of how
"good" the fits are, is denoted here as cr. The absence of an entry implies that term was not used in the
fitting function. Powers of 10 are given in square brackets.

10 0

0.20
0.25
0.30
1/3
0.35
0.50

U,„/Nk T=bi"+c
—0.895 929 1.110153
—0.895 929 0.795 416
—0.895 929 0.586 695
—0.895 929 0.483 579
—0.895 929 0.439 884
—0.895 929 0.192 813

—0.802 975
—0.471 288
—0.244 360
—0.128 644
—0.078 566
—0.022 505

4.80
4.14
8.50

11.50
12.92
22.49

0.25
0.30
1/3
0.35
0.50

—4.07100 [ —3]
—4.07100 [ —3]
—4.07100 [ —3]
—4.07100 [ —3]
—4.07100 [—3]

( U +0.9I ))/NkT= bI'+c
—0.900 000 0.960 506 —0.669 656
—0.900000 0.713 343 —0.402 447
—0.900 000 0.590 673 —0.265 690
—0.900000 0.538 536 —0.206 357
—0.900000 0.240 904 0.156 539

12.88
5.74
1.54
1.05

14.85

0.25
0.30
1/3
0.35
0.40
0.50

—6.72790 [ —4]
—2.36281 [ —3]—3.64830 [ —3]
—4.34551 [—3]—6.68868 [—3]—1.28571 [ —2]

U,h!NkT=5aI +bF'+c
—0.896 602 0.822 700 —0.504 071
—0.898 292 0.660 202 —0.336 114
—0.899 577 0.579 554 —0.251 460
—0.900 275 0.545 188 —0.214 974
—0.902 618 0.460 076 —0.123 001
—0.908786 0.344697 0.008672

2.55
0.81
0.43
1.01
2.80
6.38

0.25
0.30
1/3
0.35
0.40
0.50

—2.10211 [—3]—2.84506 [—3]
—3.44615 [ —3]—3.78227 [—3]—4.95248 [ —3]—8.23158 [—3]

U,„/NkT=5aI +bI'+c+dI
—0.898 031 0.969 821 —0.866 074
—0.898 774 0.692 060 —0.417 913
—0.899 375 0.569 333 —0.224 470
—0.899 711 0.520 112 —0.147 826
—0.900 881 0.406 187 0.027 318
—0.904 161 0.270 085 0.232 832

0.222 700
0.052 585

—0.017 875
—0.045 145
—0.105 785
—0.173256

0.40
0.21
0.19
0.24
0.52
1.24
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reason for extending the range of the exponent s to —,
' in

the fits presented here.
We can see from Table II that the fits with s= —,

' are
not good at all. Hence the HNC theory derived for the
second-order terms (beyond the Madelung term) are not
appropriate for the fluid Monte Carlo results. Instead,
we are zeroing in on a value of s =—,'. This value of s is

quite difFerent from those previously determined. ' ' A
small variation about this value, s -0.30-0.35, also gives
pretty good fits to the fluid data as long as three or more
terms are included, but only with 5a%0. Let us closely
examine some of our best statistical fits taken from Table
II for the various functional forms listed there. These fits
are graphically presented in Fig. 2, where in the main
portion of the figure the thermal energy is plotted for the
entire range of I' while the insert shows an enlarged view
for the region from 80~I ~200. The actual N=686
fluid data are given by the open squares. In the insert the
vertical height of the square corresponds to
b U,b jNkT=0. 006, equivalent to an error of C0.003.
Thus, if a fit that reproduces the fluid thermal energy
data to & 0. 15% is desired (as discussed above), then the
curves in Fig. 2 should at least pass through the sides of
every square in the insert at each I .

The series of fits with two terms and the constraint

5a=0 are clearly unacceptable, and if extended to in-
clude a third term (1I '), the fits are even worse. This
implies that the first term in the analytical fit cannot be
the Madelung term for a bcc lattice. All of the two-term
fits with a = —0.9 are also not accurate enough and devi-
ate noticeably from the real data; as seen in Fig. 2, the
best fit using this form overestimates the thermal energy
of the system for I )60. The best three-term fit with
a = —0.9 (see dotted curve in Fig. 2) is fairly good every-
where over the region 110& I ~ 180, but the thermal en-
ergies are overestimated for I (110 and underestimated
for I ~ 180. The fit is noticeably bad close to the phase
transition. Our most accurate fits are for s =

—,
' with three

or four terms where the coeScient a remains completely
unconstrained. These are shown in Fig. 2 as the dashed
and solid curves, respectively. The four-term fit is the
most accurate over the entire range in I, behaving well
near the phase transition and below I =110. This latter
point is crucial in accurately determining the location of
the phase transition since the free energies are an integral
property of the internal energies. While the addition of
the extra term dI ' fine tunes an already very good fit,
the three-term fit simplifies the resulting expression for
the equation of state, but at the expense of some accura-
cy.

2.5

A

O

1.5

.5

0
50 100

r
150 200

FIG. 2. Analytical fits to the fluid thermal energy N=686 data (open squares; SDD', and Table I) of the form given by Eq. (3) are
plotted for the entire I range in the main portion of the figure. The inset shows an expanded view of U,„/NkT for 80~ I ~210.
Shown are the fits for 5a =d =0 with s =0.25 (long-short dashed curve); a = —0.9, d =0 with s =0.35 (dot-dashed curve); a = —0.9
and s =0.35 (dotted curve); s =

—,', d =0 (dashed curve); and s =—' (solid curve), with a unconstrained for these latter two, our bestPts
Except for the dotted curve (a = —0.9, b =0.531 685, c = —0. 176699, d = —0.027067, a =0.0061), see Table II for the appropriate
values of the coeScients. In the inset the vertical extent of the open squares have b Ut&/XkT=0. 006, which is equivalent to an error
of+0.003 and ~0.15% of U,h/NkTat large I .
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=1.5+fI '+&I
T

(5)

The first term in Eq. (5) comes from harmonic theory and
the last two terms are anharmonic corrections derived
from perturbation theory whose contributions provide
minor but important adjustments to the thermal energy,

Of course, one imagines that the more terms that are
added to the fit, the "better" one can potentially repro-
duce the data. However, it has been our experience that
this is true only for judicious choices of the terms being
added. Bad choices require even further terms being add-
ed to rectify their harm; for example, the two- and three-
term fits with a =ab„. Extra terms complicate unneces-

sarily the deduced form of the equation of state. A sim-

ple three- or four-term fit is much more desirable than
other tedious functional forms in application. The fits
produced herein strongly indicate that a power series ex-
pansion of the form I' with s = —,

' and a very close to, but

just slightly larger than, —0.9 is appropriate. Currently,
there are limited theories that generate series expansions
with s =

—,
' (which also yields the —0.9 coefficient exact-

ly") and s= —,', but nothing yet that produces s= —,'. Fur-
ther work is required to incorporate a theory than can ex-
plain our new results.

The thermal energy in the solid phase has been success-
fully reproduced using the functional form

in particular at lower values of I near the phase transi-
tion. In Fig. 3 the solid data for N=500 and 686 clearly
show the sizeable difference between the fcc and bcc
configurational energies, so we must fit each set of data to
Eq. (5). Our new fits to the N=500 and 686 data in Fig.
3 are indicated by the dot-dashed and solid curves, re-
spectively. For comparison, we show the fit of Ref. 6
(dotted curve) to the fcc N= 108 data (inverted triangles)
and our fit to the bcc N=686 data without the fI
term in Eq. (5) (dashed curve). Also shown are the bcc
N = 128 UMC data (triangles).

Table III gives the fitted coefficients f and h in Eq. (5)
to the fcc and bcc data in the solid phase. Our fit to the
bcc N=686 data with both anharmonic terms accurately
reproduces even the highest-I thermal energies (i.e.,
I =300). This is not the case with the old SDD fit that
included only the hi term in Eq. (5). Pollack and
Hansen showed in their appendix that the coeScient of
I ' is zero in a cell model calculation for the OCP, but
this is not a rigorous proof. If the thermal energy data
below I (240 is to be fitted simultaneously with that for
I ~ 240 to within the desired accuracy, then the first term
must be nonzero, as a comparison of our fits in Fig. 3
shows. Note that if we force the I ' term in Eq. (5) to
vanish, we essentially reproduce the fit obtained by
SDD . Our new fcc N=500 solid data have lower
thermal energies and are statistically more accurate than
the N= 108 data previously used, and for these reasons is
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I I I

f

I I I
f

I

1.64 ~
bcc fcc
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1.58
I
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1.54
(U —U )/NkT = 1.5 + 3.9441 + 8490I

— - (U —U, )/NkT = 1.5 —0.766I' + 3673l'

I I I I I I I I I I I I I I I I I I I I I I I I I I I

160 180 200 220 240 260 280 300

FIG. 3. Thermal energy in the solid phase for both the bcc and fcc data. Here we represent the generic Madelung term as U„„
since the thermal energy is defined as the excess energy over the respective lattice configuration. The various analytical fits shown are
our fit to Eq. (5) for the N=686 data (solid curve), and excluding the fl ' term (dashed curve); our fit to the fcc N= 500 data with or
without the first anharmonic term (dotted curve); the fit of Ref. 6 to the X= 108 data of Ref. 4 (dot-dashed curve).
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10 o

3.9437

bcc N=686
3212
2490

3.63
1.73

—0.7660

fcc N=500
3544
3673

0.79
0.70

TABLE III. Linear least-squares fit of the form given by Eq.
(5) to the bcc N=686 and fcc N=500 solid data (uncorrected
for the center-of-mass motion) from SDD' and this paper (Table
I).

physically inconsistent; the fcc lattice will always have
thermal energies higher than or, in the limit as I ~ 00,
equal to those for the %=686 lattice. We expect the fcc
lattice (N=500) thermal energies to behave similar to
those of the bcc lattice (N =686) at high I .

The location of the fluid-solid phase transition is deter-
mined by finding the I where the free energies of the
fluid and solid are equal. For I"s above this critical value
the' solid is more stable than the fluid, having lower
thermal energies. Equation (3) yields a general
Helmholtz fiuid free-energy expression

F b, d=al +—I'——I '+(3+c)lnI
NkT s s

preferred over the fit obtained by Ref. 6. The fact that
we have only three thermal energy values makes it ir-
relevant whether one or two anharmonic terms are in-
cluded in the fit to N=500; both of the fits presented in
Table III in this case differ almost imperceptibly from
one another. We must emphasize strongly that none of
the curves are guaranteed to be valid, yet alone accurate,
if extrapolated beyond the range of the data being fit.
This is exemplified by the crossing of the fits to the
N=500 and 686 solid thermal energies in Fig. 3. This is

b —da+ + 1.1516 (6)

The integral from 0 & I ~ 1 evaluated by SDD, including
the ideal gas contribution, ' leads to the value —1.1516 in
Eq. (6). The free energy in the solid phase is given by the
sum of harmonic and anharmonic contributions. The
harmonic contribution is taken from Ref. 2 [Eq. (2.10}]
and the anharmonic contribution to the internal energy
in Eq. (5) is integrated over I from ae down to some
finite value. Putting al1 this together yields

r

Ubcc

NkT + 91 I. fp i h p —t 1.8856, for bcc
~I T Uf 2 2 1 8454 for fcc

1V T

for the bcc and fcc lattice configurations. The entropy
constants in Eq. (7) result from the sum over the normal
mode vibrations of the ions in the crystal in the limit
X~oo and have been provided by Folland. ' The bcc
entropy constant agrees to four decimal places with the
value used in other studies, but the value for the fcc lat-
tice in Eq. (7) is smaller by 0.0110 than that coinputed by
Heifer, McCrory, and Van Horn. Both the bcc and fcc
lattice thermal energies approach 1.5 in the limit I'~ ao.
Let us now discuss the location of the phase transition,
first in terms of a transition to the bcc lattice, for specific
cases of the fiuid and solid free energies. Consider our
best overall fit: Eq. (3) with s= —,

' and a%a&„or —0.9.
We find that I ~„=180.5 with f=0 for the solid free en-
ergy in Eq. (7},and I i,„=178.0 if both anharmonic terms
are included. The former value agrees with Ref. 7, which
used a fit derived from various values of X to different
groups fluid data, and the latter value is exactly that
found by SDD; both used the SDD fit to the solid that
neglected the first anharmonic term fI

Generally speaking, the phase transition from the fluid
to the fcc lattice always occurs at a value larger than I b„
for our fits. Specifically, I &„=13.5+I i,„, where I ~,
corresponds to the critical I using the bcc solid fit with
both anharmonic terms included. This gives I &„=192
for our "best fiuid fit" (four-term fit with s =

—,
' and a un-

constrained). Comparing the fluid free energy for this fit

with the free-energy expression presented by Heifer,
McCrory, and Van Horn, but with our value of the en-
tropy constant, we get I &„=193.5, whereas they ob-
tained I &„=196. The free-energy curves for the fluid
and solid lie very close to one another over a small range
in I whether the transition occurs to the bcc or fcc lat-
tice. It seems plausible that perturbations to the system
occurring near the phase transition could alter the exact
values for either I t,„or I &„. There is probably an intrin-
sic uncertainty of about k2 in the critical I because of
this and other uncertainties introduced through the fiuid
and solid fits.
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