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Properties of a quantum system during the time interval between two measurements

Yakir Aharonov and Lev Vaidman
Department of Physics, University ofSouth Carolina, Columbia, South Carolina 29208
and School of Physics and Astronomy, Tel A-uiu Uniuersity, Ramat Auiu 69978, Israel

(Received 6 February 1989)

A description of quantum systems at the time interval between two successive measurements is

presented. Two wave functions, the first preselected by the initial measurement and the second
postselected by the final measurement, describe quantum systems at a single time. It is shown how

this approach leads to a new concept: a weak Ualue of an observable. Weak values represent novel

characteristics of quantum systems between two measurements. They are outcomes of a standard
measurement procedure that fulfills certain requirements of "weakness. " We call it weak measure-

ment. Physical meaning, underlying mathematical structure, and prospects of practical usage of
weak measurements are explored.

I. INTRODUCTION

Recently we have developed a description of quantum
systems during the time interval between two measure-
ments. This description uncovered several new aspects of
quantum theory. '

In our approach we assign to a quantum system at a
given time two wave functions (instead of one). In addi-
tion to the standard wave function we consider another
wave function, evolving from the future toward the past.
The two-wave-functions formalism was introduced by
Aharonov, Bergman, and Lebowitz" in order to simplify
the calculation of the probability of finding a given result
in a measurement that is performed in an intermediate
time between two other measurements.

The most important outcome of our approach is the
possibility to define a new concept: the weak ualue of a
quantum variable. It is a physical property of a quantum
system between two measurements, i.e., a property of a
system belonging to an ensemble that is both preselected
and postselected. This property can manifest itself
through a measurement that fulfills certain requirements
of weakness. In fact, the effect of any interaction that is
weak enough will depend on such weak values. The weak
value of a variable may differ significantly from the eigen-
values of an associated operator. Due to this property
weak measurements can be used as a novel arnplification
scheme.

The plan of this article is as fo11ows. In Sec. II we dis-
cuss symmetry under time reversal in quantum theory.
In Sec. III we show how the two-wave-functions ap-
proach leads to the idea of weak measurements. In Sec.
IV we define the concept of a weak value for both
preselected and postselected ensemble and prove that the
weak value can be obtained in a suitable "weak" rnea-
surement. Section V considers an example of a spin- —,

'

particle. In Sec. VI we consider the "weak value" for
regular preselected ensemble and show that it is equal to
the mean value of the corresponding operator. In Sec.
VII we describe situations in which weak values can be

detected in a single experiment. In the end of Sec. VII an
explanation of this result is given in the framework of the
standard formalism. In Sec. VIII we derive an unexpect-
ed mathematical identity underlying our results and we
discuss a procedure that seemingly transmits (but actual-
ly does not) signals faster than light. A few comments
concerning the feasibility of experimental tests of our pre-
dictions are given in Sec. IX. The conclusions are drawn
and some remarks about directions of the future work are
made in Sec. X.

II. TIME REVERSAL

In this section we discuss the description of a quantum
system at the time interval between two measurements
that is symmetric under time reversal. First, let us dis-
cuss time assymmetry of the standard approach. In
quantum theory the dynamical laws are time symmetric
as are their classic counterparts, namely, Hamilton's
equations of motion. The asymmetry enters through the
theory of measurements. The "collapse" of a wave func-
tion which is a part of the measurement process is not (at
least in the standard approach) time symmetric: the
wave function existing before the measurement "col-
lapses, " in general, to a new wave function in accordance
with the result of the measurement. In the standard ap-
proach it is not clear how we can restore time-reversal

symmetry since there is no state evolving backwards in
time. The following example will clarify the difference
between the two time directions.

Suppose that we have an ensemble of spin- —,
' particles,

which were found at time t, in the state o.„=1.We can
predict that the probability of finding o.„=1immediately
after is —,'. However, we cannot ascertain by "retrodic-
tion" that the probability of finding o =1 immediately
before the time t is also —,'. It may happen that all parti-
cles in the ensemble were prepared in the state o.

~
= —1,

in which case no particles would be found with o = 1, or
it may be that all particles were prepared with o~ =1 and
then they all yield o. =1 again. We can still ascertain by
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retrodiction that the probability of finding 0. =1 before
the time t is 1; however, for the outcomes of rneasure-
ments of other observables we have to take into account
the state of the system before the time t. We assume that
such a state existed, and if we do not know what it was,
we cannot find the probability for given outcomes of most
measurements.

With the measurement after time t this problem does
not arise because we do not assume that there is a state
(even unknown) coming from the future. So the
difference between past and future is not an intrinsic
property of quantum theory, but it is the feature of our
approach to the arrow of time: at present we view the
past as existing and future as nonexisting (yet). Howev-
er, if our task is a description of a quantum system be-
tween two successive measurements, then we know the
boundary conditions in the future as well as in the past.
(We assume that both measurements are complete. )

Therefore for the intermediate time interval we have a
complete symmetry under time reversal. The contribu-
tion to the description of the quantum system from the
result of the initial measurement is the usual wave func-
tion evolving from the past toward the future, from the
initial measurement to the final measurement. Because of
the symmetry under time reversal, the contribution of the
final measurement should be similar: the wave function
evolving backwards in time from the final measurement
to the initial measurement. This is our proposal: to de-
scribe a quantum system between two measurements by
two wave functions evolving in opposite directions of
time.

Let us consider a quantum system between the mea-
surements of two variables A and B. At time t, an ob-
servable A was measured and a nondegenerate eigenvalue
a was found, and at time tz 8 was measured and nonde-
generate eigenvalue b was found. At the intermediate
time t the system is described by the following two wave
functions: a bra

~ 4, ) (wave function evolving toward the
future) and a ket (%z~ (wave function evolving toward
the past):

~%'&) =exp i f H—dr ~A =a),
(l)

(42 =(B=b~exp i f H —d7.
t

These two wave functions (%z~ and ~4, ) are very use-
ful for calculating probabilities of measurements at the
time t. They were used for this purpose by Aharonov,
Bergman, and Lebowitz already in 1964. In the next
section we show how the two wave functions description
leads to an idea of weak rneasurernents which, as it will
be shown in Sec. IV, yield a new type of values: the weak
values.

III. TWO NONCOMMUTING OBSERVABLES
HAVE DEFINITE VALUES AT THK TIME

PERIOD BETWEEN TWO MEASUREMENTS

Equation (l) shows how to take into account the time
evolution of the wave functions describing a quantum
system. Interesting phenomena appear even if the free
Hamiltonian of the system is zero, and we shall consider,

IV. WEAK VALUES ARE THE OUTCOMES
OF WEAK MEAS UREMENTS

We begin this section by reviewing brieAy the standard
von Neumann measuring procedure. The Hamiltonian
describing the interaction with a measuring device is

H = —g(t)qA, (2)

where g (t) is a normalized function with compact sup-
port near the time of measurement, and q is a canonical
variable of the measuring device with conjugate rnomen-
tum p. After the interaction (2) is over, we can ascertain

for simplicity, this case. Now, the description of the
quantum system at the time t, t, & t & t2, by both
~%, ) = ~A =a ) and (%z~ =(B=b~ suggests that both
A =a and 8 =b at that time. Obviously, if A were mea-
sured at time t, the result would be A =a, and if 8 were
measured instead, the result would be 8 =b. The discus-
sion above may be taken to imply that the value of
C = A +8 in the intermediate time should be a +b. But,
for noncornmuting variables A and 8, the value a+b
may differ from any eigenvalue of C and, therefore, the
measurement of C cannot yield the value a+b. The
reason for this discrepancy is that both A =a and 8 =b
are correct at the time t if only one of these two measure-
ments were performed. If A and 8 were measured in be-
tween and the measurement of A occurred before the
measurement of 8, then clearly the results are A =a,
8 =b. However, if 8 were measured before A, then the
outcomes of the rneasurernents of A and 8 yield, in gen-
eral, different results. If we perform the measurements of
A and 8 simultaneously, then they again disturb each
other and, consequently, the result of the measurement of
A +8 is not a +b.

The failure of obtaining both properties A =a and
8 =b using the measurement of C = A +8 is not surpris-
ing. The measurement of C changes the situation and,
therefore, we cannot anymore associate the wave func-
tions ~V, ) and (%z~ with our system in the time period
[t„t2]. This suggests that we use measurements that do
not change significantly the two wave functions above.
We are thus led to consider a measuring procedure with
"weakened" interaction which should yield A =a and
8 =b even if the measurements are performed in the
"wrong" order, namely, 8 before A. But the same
should be correct if the measurements are performed
simultaneously and, therefore, the weakened measure-
ment of C=A+8 must yield the "forbidden" value
a +b.

In the next section we shall show that the outcome of
such weakened procedure for the measurement of C,
which we call weak measurement, will indeed be a+b.
"Weakening" of the interaction will necessarily decrease
the accuracy of a single measurement such that it will

provide almost no information. In order that such mea-
surements provide meaningful information they have to
be performed on an ensemble of identical systems. The
ensemble will, however, be of a special kind: any system
belonging to this ensemble is both preselected and post-
selected.
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(4)

To this end consider an ensemble of systems which are
both preselected and postselected. All members of the
ensemble are described by the same pair of wave func-
tions ~%, ) and (%z~. We perform the same measure-
ments on each individua1 system with a separate measur-
ing device. The interaction Hamiltonians are

H, = —g(t)q; A;, (5)

where the index i refers to the ith system in the ensemble
or ith measuring device. For convenience we take the in-
itial state of each measuring device to be the Gaussian

4(b,q)
1

exp
v'b, q (2n )'

We measure p; for each measuring device after the in-
teraction. Subsequently we perform the final, postselec-
tion measurements on the systems of our ensemble. We
then collect the outcomes p; only of those systems for
which the final state turned out be

~ %2 ).
To simplify the following proof we note that changing

the time ordering between the p, measurements and the
postselection measurements will not affect their out-
comes. Indeed, after the measuring interaction is aver,
there is no further interaction between the systems of the
ensemble and the corresponding measuring devices and,
consequently, any action on one system will not affect the
results of measurements performed on any of the other
systems.

This sequence of events, where we measure p; only
after postselection, is much simpler to analyze. It also
corresponds (as will be shown in Sec. IX) to a practical
method for performing this type of measurements.

The state of each measuring device that has been post-
selected is given, up to normalizatian factor, by the fol-

the value of A from the final value ofp

pf pin =~p

Any precise measurement of 3 necessarily disturbs in
an uncontrollable manner the values of observables that
fail to commute with A. This is due to the fact that a
precise measurement of 3 requires that the value of p be
precisely fixed prior to the time of measurement. Conse-
quently, the uncertainty in q during the measurement in-
teraction described in Eq. (2) (and hence the possible
strength of that interaction as well) is arbitrary large.
(This explains how the measurement of C of the example
in the Sec. II changes the values of A and 8 and, conse-
quently, does not yield the outcome a +b. )

Our proposal is to modify the von Neumann measuring
procedure by weakening the interaction (2). This can be
done by preparing an initial state of the measuring device
for which the probability of finding a large q is sufficiently
small. We shall now prove that such "weak measure-
ment" of A performed on an ensemble of systems, which
were preselected in a state ~%i ) and were postselected in
a state (%2~, will yield an outcome which we call a weak
value of A

lowing wave function (we omit the index i referring to
each individual system):

(f12~exp i—fH dt ~O, )exp
4(b,q )

2=
& +2 ~ exp(iq A ) ~ +, )exp

4(bq)

co
( )n 2

,
&q, ~A "~e, &exp-

„=o n ' 4(b,q)

( 4z~ ql, ) g, ( A ") exp —
2

o
n' 4(hq)

T

(e,[A/e, &

=(%2~%~)exp iq q

4(hq)

+&q, ~q, & y 'q, [(A").—(A. )"]
n =2

2

X exp
4(b,q)

We are interested in the p representation of the state of
the measuring device. By taking hq such that for all
n~2

we can neglect the contribution of the correction in the
Fourier transform of (7) and, therefore, the final wave
function of the measuring device in the p representation
is to a good approximation

exp —(hq) p—
&q, lq, )

The probability distribution of p is a Gaussian with
spread bp =(2bq) ' centered at p =Re( A„).

The weak value of A, A as defined by (4) may have,
also, an imaginary part. This part affects the distribution
of the canonical variable q. Indeed, in the q representa-
tion the state of the measuring device wi11 turn aut ta be

[q +2(b,q ) Im( A )]
4(b,q)

(10)

Consequently, the probability distribution of q is a Gauss-
ian with the same spread b,q centered at q = —2(b,q)
Im( A ). The uncertainty in p and q will not allow us to
deduce Re(A ) or Im(A ) from a single measurement.
However, performing the measurement on an ensemble of

(i )"
=(%2~4, ) g (A") exp

0 ti' 4(bq)

where [as defined in Eq. (4)] ( A ") —= (%2~ A "~%, ) /
(%2~%, ). The last expression can be rewritten as the ini-
tial wave function of the measuring device multiplied by

iqA
e plus a correction term which is negligible for small
hq



14 YAKIR AHARONOV AND LEV VAIDMAN 41

N systems will decrease the uncertainty of the outcome
by a factor 1 W ¹ Therefore, by taking N large enough
[(2hqv'N ) '«Re(A ), Im(A )], we can measure the
complex value of A with any desired precision.

The requirement (8) ensures that the outcome of the
measurement is A defined by Eq. (4). In particular, if
the initial or the final state is an eigenstate of A, then (8)
is automatically satisfied. This must be so because the
weak value is, in this particular case, also the usual
"strong" value of A.

One can argue that a weak value is obtained after some
mathematical manipulation on an ensemble and does not
have a physical meaning. To emphasize the "reality" of a
weak value we note that after the interactions (5) of a
physical ensemble of identical systems with an ensemble
of measuring devices (but before observing the measuring
devices) there is a physical variable of the measuring de-
vices that rejects the weak value of the measured vari-
ables. Indeed the observable gp;/N has a mean value
which is equal to A, while its uncertainty (2hq&N )

is negligible when the number of members in the ensem-
ble is large.

The properties of weak values (4) imply that if
C=A+B then C =A +B . In the example of Sec.
III we considered the weak measurement of C= A +B
between the measurements of A and B. Since
~%', )=~A =a), (0'z~=(B =b~, we have A =a, B =b
and, therefore, the weak value of C is indeed equal to
a +b. The fundamental property of weak measurements,
namely, that the disturbance caused by them may be
neglected, manifests itself in this example. Since the in-
teraction Hamiltonian of the weak measurement is
sufficiently small, the weak measurement of B causes a
negligible change in A and vice versa. Thus the results of
the weak measurements of A and B remain unaltered
even if we perform them simultaneously which is, in
effect, the weak measurement of C.

V. WEAK VALUES OF SPIN COMPONENTS
OF A SPIN-2 PARTICLE

The weak value of A can differ widely from any eigen-
value of A. In particular, the real part Re(A ) can be
much bigger (smaller) than the maximum (minimum) ei-
genvalue of A. To illustrate how weak measurements can
yield forbidden values let us consider the following exam-
ple. Let A =cr„, B =cr& be the operators corresponding
to the components of a spin- —,

' particle along the x and g
unit vectors, and let a be the angle between x any g (see
Fig. 1). Let the free Hamiltonian of the system be zero.
The operator C —= A +B is then proportional to o where
8 is the unit vector bisecting the angle a

C =cr„+cr&=2cos(a/2)o s .

If a particle were initially in a state ~cr„= 1 ) and were
found in the end with o &=1, then the weak values of 0.

and o.
&

at all intermediate times will also be 1. Combin-
ing the above results with Eq. (11), we find the surprising
result that the weak value of o & is

0, =1

(cr„) +(cr~)
(crs)

2 cos(a/2) cos(a/2)
(12)

The following simple geometrical picture illustrates
how one may find the weak value of the spin in any direc-
tion given the above boundary conditions 0 =1, o&=1
(see Fig. 1). We draw in the xy plane a vector of the size
1/cos(a/2) pointing in the direction 8. Its projection on
any axis in the xy plane yields the weak value of this com-
ponent. This result can be derived easily from the prop-
erty of "linearity" of weak value (i.e., C = A +B implies
C = A +B ). The spin component in any direction g
in the xy plane can be decomposed along the orthogonal
directions 8 and P where

(13)
2cos a/2

g —x
2 cos(a/2)

The decomposition is

o „=cr 0 cos(P ) + cr
&

sin(P ) . (14)

In the case presently discussed (o„=1, err= 1), however,

(cr C)
—(o„)

(cry) = =0
2 cos(a/2)

and therefore

(15)

(o.„) =(crs) cos(P) .

The weak value of the component of spin in the the z
direction turns out to be imaginary:

(o~——lio, io„=l)
(o, ) (17)=i tan(a/2),

so the "weak vector" o in three dimensions (the axes
are O,g,z) will be

FIG. 1. Geometry of weak values of spin components of a
spin- —,

' particle in the xy plane. The particle was prepared in the

initial state cr„=1 and was found in the final state o&=1. At
the time between these two measurements the weak values of
spin components in the xy plane are described by the weak vec-
tor cr . Its size is 1/cos(a/2) and it points in the direction 8.
The weak value of a spin component in arbitrary direction g is

equal to the projection of the weak vector o on this direction:
(o„) =cos(P)/cos(a/2).
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, 0, i tan(a/2)
1

cos u/2)
(18)

The weak vector, apart from being complex valued,
behaves similarly to a classical vector. This is the conse-
quence of the linearity property of weak values.

UI. MEAN VALUE OF AN OPERATOR
AS AN EXAMPLE OF A %'EAR VALUE

Many real experiments performed on ensembles of
identical systems fulfill the requirement of "weakness, "
i.e., each individual system practically does not change its
state during the measurement. However, the forbidden
outcomes have not been observed so far because the stan-
dard experiments are performed on ensembles of systems
that are preselected only. As an example of such a weak
measurement we may consider a compass needle near an
ideal ferromagnet (consisting of one domain). The needle
will point out the direction of the total spin of the above
ensemble of identical systems, while its interaction with
each individual spin of the ferromagnet is negligibly
small.

We shall prove now that weak measurements of the
type described above yield the mean values of the ob-
served variables provided that only preselection measure-
ments were performed. The weak value of Eq. (4) is not
defined for an ensemble of systems that have been
preselected only. We need a result of a future measure-
ment as well. However, since weak measurements hardly
disturb the initial wave function, we can predict, with
probability arbitrarily close to 1 the result of a future
verification experiment of the known (initial) state, even
in the event that such weak measurements were per-
formed during the intermediate period. Since future ac-
tions cannot affect results of experiments already per-
formed, whether or not the verification measurement in
the future in fact takes place will not change the outcome
of the weak measurement at the present time. %'hen no
verification measurement is performed in the future, the
above is the normal procedure for a measurement of a
mean value of the ensemble. With the verification mea-
surement added, the above procedure describes a proper
measurement of weak value for the special situation when
the two wave functions are the same. From Eq. (4) we
see indeed that the weak value between two identical
states is the same as the mean value for one of them

compass needle illustrates the general situation where one
measuring device measures an average property of an en-
semble. We shall show now that in such a case the state
of the ensemble is nearly an eigenstate of the "average"
operator g; &

A;/N.
To prove the above statement we shall start with the

following simple formula:

(20)

where b, A =[(3 )
—(3 ) ]', while ~4~& is a state or-

thogonal to ~4&. For an ensemble of identical systems
we obtain

(21)

In the limit of large N the second term on the right-hand
side of (21) can be neglected because of the mutual ortho-
gonality of the states in the sum, i.e.,

(22)

Therefore the product of N identical states is, in the limit
N ~~, an eigenstate of an.y average operator.

The present discussion is reminiscent of the previous
idea of a nondisturbing measurement since the interac-
tion Hamiltonian now is

(23)

Its action on each separate system is weakened by the
factor 1/X.

The equation A =
& %~ A ~% & can be taken as a

definition of a mean value for a single system. In general,
an ensemble of identical systems is needed for measuring
A, however, if the uncertainty AA is small compared
with 5, the desired precision of the measurement, then
even a single measurement of 3 will yield an outcome
close to A. We shall see in the next section that a similar
statement is valid also for weak values.

The above measurement, with the compass needle serv-
ing as a measuring device, is indeed a weak measurement
in the sense that it is almost a nondisturbing experiment,
but it differs from the weak measuremenfs described in
previous sections. One distinction is that the systems in
the ensemble considered here are not postselected. But
there is also another difference: while in the previous
cases separated measuring devices have been used for
different members of the ensemble, here a single measur-
ing device is used for all spins. The experiment with a

VII. WEAK MEASUREMENT PERFORMED
ON A SINGLE QUANTUM SYSTEM

From our presentation so far one could infer that since
one weak measurement because of its uncertainty, pro-
vides almost no information, the weak value can be mea-
sured only on an ensemble. However, this is not always
the case. Even a single measurement may yield informa-
tion about a weak value provided the "weak uncertainty"

(24)

is small compared with the desired precision of the mea-
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surement, i.e., 6 A «6. In this case the effective uncer-

tainty of the outcome will be

Ap&=[(bp, „) +(b A ) ]'~ (25)

N—g (og);
i=]

1

cos(a/2)
(26)

while its weak uncertainty (24) is

N

(o e);
i=1 W

1

v'N

1/2
1 —cos(a/2)

cos(a/2)
(27)

The weakness requirement (8), which will ensure ob-
taining outcomes close to the weak value (26) for the
above interaction, will be satisfied if the following restric-
tion is imposed:

hq «v'N cos(a/2) . (28)

where, again, Aq is the uncertainty of the canonical vari-
able of the measuring device. For large N, Eq. (28) will
be fulfilled if, for example,

b, q =N" 'cos(a/2), (29)

In order for one measurement to yield information about
A, we have to require, on the one hand, that the mea-
surement is weak enough so that the equation

p& =Re( A ) [which follows from Eq. (9)] is valid, and, on

the other hand, that the measurement is strong enough so
that a single outcome yields meaningful information.
Thus, if the initial wave function is a Gaussian with
hp;„=(2hq) ', then b, q should fulfill the condition (8)
while the final uncertainty should be small compared
with the desired precision Ap& «5.

Let us now demonstrate that there are situations in
which A is far from the range of eigenvalues of A, and

yet the above requirements are fulfilled. In such cases the
measurement of A, even when performed on a single

system, yields a forbidden value. The measurement is im-

precise, but the uncertainty is much smaller than the
desired precision. For the cases with weak values far
from the range of eigenvalues, the probability of obtain-
ing the desired result in the final measurement is extreme-
ly small and cannot be easily realized. Nevertheless, it is
important conceptually to bolster our conviction that the
weak values do indeed describe the reality of a quantum
system. We shall describe now such an example.

Consider N spin- —,
' particles, all prepared in the state

cr„=1 and all found later in the state 0&=1 (the direc-
tions x and g are shown in Fig. 1). At an intermediate
time t the operator corresponding to the 8 component (8
bisects the angle between x and g) of the total spin divid-
ed by N is measured. Its weak value is

This experiment on a system of N spin- —, particles is

conceptually different from the experiment on an ensem-
ble of N particles discussed in the previous sections.
Here one weak measurement on one system yields the
weak value. This outcome is indeed most surprising. For
example, when the angle a is chosen to be close to m, the
total spin of the above N spin- —, particles in the direction
8 turns out to be much larger than N [it is equal, in fact,
to N/cos(a/2)]. Note, however, that this is a very rare
event. The result of the experiment is taken into account
only if the outcome of the final measurement happens to
be o.&=1 for all particles. The probability for this event
is approximately [cos (a/2)] . Thus, in order to obtain
this surprising result, we have to perform the experiment
approximately [cos (a/2)] times. Still, it should be
emphasized that for those rare cases when the final mea-
surement yields the desired result [(o&);=1],the above
measurement shows what appears to be an absolutely im-
possible result.

We shall now show how the above result can be ex-
plained using the standard formalism, which we in no
way dispute. In the single-wave-function formalism the
above situation is described as follows. Before the weak
measurement, the wave function of the measuring device
in the p representation is chosen to be a Gaussian cen-
tered around zero with the variance given by Eq. (30).
The interaction describing the measurement is

N0 = —g(t)q g(ere), . —
N

1

(31)

The resulting state of the measuring device after the
above interaction is over will be a superposition of Gauss-
ians that are shifted in correlation with the spin wave
functions. These shifts range from —1 to 1 with steps of
size 2/N. The postselection, i.e., the measurement of the
spin components o.

&
of the particles, will leave the

measuring device in a pure state again. This pure state is
a particular superposition of Gaussian wave functions
which turns out to be approximately a Gaussian located
at 1/cos(a/2). A "paradox" happens: all the Gaussians
interfere destructively in the region [ —1, 1] and their
tails create a Gaussian centered at a definite point
p = 1/cos(a/2) far away (see Fig. 2). We shall prove this
result in the next section.

VIII. A MATHEMATICAL "PARADOX, "
CAN WE USE IT FOR SENDING SIGNALS

FASTER THAN LIGHT?

Let us show that the "paradox" described in the previ-
ous section happens not only for Gaussians, but for a
large family of functions f (q) describing the initial state
of the measuring devices in the q representation, provided
they satisfy the condition

where e is some small positive number. Therefore [f (q)/ &ae (32)

1Ap=
2hq

N
—(]./2)+e

2 cos(a/2)
(30)

For N large enough, the uncertainty (25) is smaller than
any desired precision 5.

where a is an arbitrary posistive constant and
b =

—,'tan (a/2). Again, as we did before, we shall consid-
er the measuring device after the postselection has been
performed. Its wave function (up to normalization fac-
tor) is
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1% MD &
=

& 0'/1exp —i fH dr 10,„&f ( q)

N=g & l~l;exp i fg(r)q —g (o ) « ff 11„&i,f(q)
i=1 j=1 k=1

N= g & l(1; exp i (o;)e 1l, &;f(q) .
i=1

(33)

In order to facilitate the calculations it is convenient to represent & 7&1; and 1l„&, in the oe representation (8 bisects the
angle between x and g)

P & tel; exp i (o;)e I t. &; f (q)
i=1

N= g ( i)[c—os(a/4)& ls1; —sin(a/4)& le1;]exp i~(o;)s [cos(a/4)11'8&;+sin(a/4)lie&;]f(q)
i=1

N

=( i) —cos (a/4)exp i —sin (a/4)exp i—
N

f(q) . (34)

We shall use later the binomial expansion of this formula, but now we shall continue the calculation in another way:
N

( i) cos—(a/4)exp i~ —sin (a/4)exp i—
N N

f(q)

=( i) —cos(a/2)cos +i sin

N

f(q)

=[ i cos—(a/2)] I+tan (a/2)sin
N

N/2

e'~ f (q), (35)

where

tan(q/N)j=N arctan
cos(a/2)

Now, if 1q1&N"~ ' ', where e is a small positive number,
we obtain

is equal to I/cos(a/2) provided that the contribution to
the Fourier integral from the region 1q1) N" ~2' ' may be
neglected. The rough estimate of the upper bound of this
contribution can be done in the following way. From Eq.
(35) we see that, up to normalization factor, the contribu-
tion to the Fourier integral is smaller than

lim I+ tan (a/2)sin
N —+ oo N

N/2
2 f „„ ]+tan (a/2)sin

But

N/2

ae "~dq . (38)

lim P= lim N arctan
N~ oo N~ oo

tan( q /N) q
cos(a/2) cos(a/2) I+tan (a/2)sin

N

N/2

Therefore, in the limit N~ &x), the wave function of the
measuring device (up to normalization factor) is

& exp tan (a/2)sin2 . 2 q N
2

lim 1+MD&=exp i f(q) .
N —+ oo cos(a/2)

(37)

&exp —tan (a/2)q
l

2
In order to find wave function of the measuring device

in the p representation we cannot just take the Fourier
transform of Eq. (37). Instead we have first to take the
Fourier integral of 1+MD&, and then to take the limit
N~ oo. We shall then obtain the desired result, that is,
that the shift of the wave function in the p representation

and therefore the contribution is smaller than

oo 12a exp . —tan (a/2) bq .dq . —
N(1/2) —e 2
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If b ) —,'tan (a/2) then this integral vanishes as N~ ~.
Thus the requirement (32) allows us to take the Fourier
transform of Eq. (37). This leads to the surprising re-
sult: the superposition of shifts (all smaller than 1}of the
function f(p) [the Fourier transform of f (q)] is

equivalent to a shift by an arbitrarily large value
1/cos(a/2), i.e., (see Fig. 2)

Hamiltonian

N8 =c—$ tr, .p; (41)

where c is the velocity of light. The velocity of the center
of mass of the above system of particles is proportional to
the total spin

N

gc„j p+
n=0

1

cos(a/2)
(39)

N

V=c—go, .
N, .

(42}

where c„was obtained from the binomial expansion of
(34)

'N
cos (a/4)

Cn cos(a/2)
—tan (a/4)

n N!
n (lN n)l—

(40)

It would appear that the above procedure may lead to
a violation of a number of physical laws. For example, it
may seem that we can use this method to send signals
with superluminal velocity. To this end we take a system
consisting of N spin- —, particles which is described by the

2x1p

I ~ ~ 1 I I I I

1P6

Q)

o
a
F)

106

-2x106-
~ ~ I I 1 s I I 1 I I I

0 5 10

Q)

0
0

x

0 5 10

FIG. 2. A mathematical "paradox": superposition of Gauss-
ians shifted by values between —1 and 1 equal to a Gaussian
shifted by the value 3. The graph on the top shows all terms in
the sum [left-hand side of Eq. (39)] for N = 15, a = 140',
f(p)=exp[ —p /4(0. 8) ]. The solid line of the bottom graph
shows the sum of the Gaussians itself, while the dashed line is
the Gaussian shifted by 1/cos(a/2) —=3 [the right-hand side of
Eq. (39)].

The eigenvalues of the total spin are bounded by N,
therefore the velocity of the system in any direction is
limited by C. Let us now repeat our procedure for the
weak measurement of a spin component. Initially we

prepare the system with all spins pointed in the x direc-
tion and finally we postselect all spins that point in the g
direction (x, 8, and g are specified in the Fig. 1). The ini-
tial state is also a product of momentum wave functions
that fulfill the weakness condition (32). Consequently,
the free Hamiltonian (41) plays the role of a weak mea-
surement of the components of the total spin. For large
N the above outcome [(o &);

= 1] for a final measurement
is an extremely rare event, but again, theoretically, we
can prepare enough systems so that it will happen at least
once. For this rare case the weak value of the component
of the total spin in the 8 direction [the direction of the
real part of the weak vector (18)] is N/cos(a/2) and,
consequently, the effective velocity of the system is [see
Eq. (42)] c/cos(a/2), which is bigger than the velocity of
light. This is the velocity of the wave packet which
represents our system. Since the form of the wave packet
practically does not change, it seems that we can use this
wave packet to send information faster than light.

The solution of the paradox is that the amplitude of
the wave packet which represented the system initially
could not be zero at the Anal location of the system. In
fact, our procedure wi11 not increase the probability of
Anding the system there because the probability of ob-
taining the required result for the final measurement is
extremely small. We also cannot send the information
using the shape of the wave packet which moves with
effective superluminal velocity. Indeed the restriction on
the wave function of the system that follows from the
weakness requirement [similary to (32}]is

If (p) I (exp ——tan (a/2) Ipl
2

Consequently, the Fourier transform f(r) is an analytic
function in a strip around the real axis. Therefore, even
before our measurement procedure took place, there
could be found in any open region the information about
the shape of the wave function everywhere. However,
the desired information about the form of the wave func-
tion in a given specific initial location of the wave func-
tion is, usually, hidden under the "noise." The above
procedure, although it just recovers the existing inforrna-
tion, is still very interesting. It does accomplish a very
nontrivial task of recovering the information in a way
that is not sensitive to the noise; only the signal is
amplified.
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IX. PRACTICAL REALIZATION OF WEAK
MEASUREMENTS

Many of the measurements performed in the laborato-
ry are indeed weak measurements. All thermodynamical
variables are some averages of an extremely large number
of microscopical systems. During a typical measurement
of a thermodynamical quantity only a negligibly small
fraction of the microsystems are disturbed.

Although weak measurements are performed regularly,
they generally do not yield the surprising outcomes dis-
cussed above [such as the spin component of a spin- —,

'

particle equaling 100 (Ref. 3)]. Surprising outcomes ap-
pear only when the measurements are performed on en-
sembles that are both preselected and postselected and,
moreover, they happen only when the postselection is for
an improbable outcome. However, weak experiments on
an ensemble will yield strange outcomes even if we shall
postselect an appropriate finite fraction of the initial
preselected ensemble. The problem is to choose the
"right" fraction. Before the postselection takes place
there is no way to know which are the right systems, so
we have to perform measurements on all of them and,
after postselection, to take into account the results of
measurements only for systems with the proper outcome
of the final measurement. This procedure, which seems,
at first, very difficult to perform, becomes feasible when
the measuring device is the observed system itself. Some
other (not the measured one) degree of freedom plays the
role of a pointer of the measuring device. In a realistic
experiment suggested by us before the weak value of the
spin component of a spin- —, particle is measured while the
position of the particle serves as the pointer of the
measuring device. This experiment is of the standard
Stern-Gerlach type, modified to fulfill the requirements of
weakness, with both preselection and postselection in-
cluded. A clear discussion of experimental conditions for
this experiment is given by Duck, Stevenson, and Su-
darshan.

It is possible that, as in the case of checking Bell ine-
qualities, it is easier to perform an optical analog of the
above proposed experiment. One of the possibilities is to
replace the preselection and postselection spin measure-
ments by filters of linear polarization, while the optical
analog of a weak Stern-Gerlach measurement will be a
small-angle prism made from optically active material. '

X. CONCLUSIONS

In this article a formalism that describes a quantum
system at a given time using two wave functions evolving
in opposite directions of time has been discussed. This
description introduces new characteristics of quantum
systems between two measurements: the weak values of
physical variables. The weak values are measurable
quantities. We can obtain them as an outcome of weak
measurements performed on an ensemble of both
preselected and postselected quantum systems. Although
usually we can measure weak values with good accuracy
only by performing an experiment on a large ensemble of
identical systems, there are situations in which one weak
measurement performed on a single system yields a weak
value of a measured value with good precision.

The weak values of an observable can differ widely
from the range of eigenvalues of the observable. The
weakness requirement of the interaction which ensures
obtaining weak values is not an extraordinary one. In
fact, many standard experiments fulfi11 this weakness con-
dition. No strange weak values have been observed so far
because usually the experiments do not involve ensembles
that are both preselected and postselected. It seems,
however, that such experiments can be done. For exam-
ple, a set of Stern-Gerlach devices or their optical analog
can apparently suit this purpose.

The effective value of A for any (weak enough) interac-
tion with the systems belonging to preselected and post-
selected ensembles is, in fact, the weak value 3„. This
result does not contradict the standard theory, but its ex-
planation in the standard approach is rather subtle and is
due to peculiar quantum interference.

Weak measurements of this type hold a promise for im-
portant applications. When performed on an ensemble of
systems that are both preselected and postselected they
can effectively amplify or "tune" any physical variable to
a certain (even forbidden) value.
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