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Several loopless percolation models are described, and low-density series are developed for
Stephen's treelike percolation model. Analysis of these indicates that the two-dimensional bond and

site models do not have an infinite cluster present at finite dilution.

I. TREELIKE PERCOLATION AND OTHER
LOOPLESS PERCOLATIONS

Treelike percolation is concerned with connectedness
and other properties of the ensemble of graphs on a lat-
tice which contain no closed loops. The problem was
first posed by Stephen. ' He defined the treelike percola-
tion problem in terms of a Potts model for s states with
interaction energy —sJ for neighboring sites in the same
state. He showed that in the limit s~0 the graphs with
loops vanish more rapidly than the tree graphs, so that
for a lattice of N sites

lim[Z(P, s )/s ]=g~(z) =gz "T„,
s~o

n

where z(p, s) is the partition function for the Potts model,
T„ is the number of graphs of n bonds with no closed
loops that can be drawn on the lattice, and

z = lim(e' ~—1 )/s =JP .
s~o

In this ensemble every tree graph with the same number
of bonds occurs with equal probability. This ensemble is
the principle subject of this paper. It has been previously
discussed by Wu and by Braswell, Family, and Straley.
The goal of this paper is to learn more about the behavior
near the transition by use of expansion methods.

Other ensembles have been defined, generally due to a
faulty analogy with ordinary percolation theory. Loop-
lessness entails a correlation among bonds on the lattice,
and while it is possible to define bond and site densities, it
is erroneous to think of these as the probabilities that a
given bond or site will be present, independent of the con-
text. As examples of the ways this assumption can inad-
vertantly enter, three other ensembles will be described.
These alternate ensembles are well defined, albeit not well
characterized, and it is certainly possible to study any
one of them. However, it is essential that they not be
confused with each other; it is quite possible that these
different ensembles differ from each other as much as the
percolation problem differs from other bond models, such
as the parking model ' or the Ising model.

(i) Straley proposed attempting to add bonds to an ini-
tially empty lattice at randomly chosen positions, reject-
ing the attempt whenever the chosen bond was already in
place or when its addition would form a loop. The result-
ing ensemble does not contain all tree graphs with equal

weight: at any intermediate stage, some graphs will con-
tain compact clusters such that many links are con-
strained not to be present, whereas other graphs will
predominately contain extended ones to which any bond
can be added. Then there are more possible progeny of
the "extended" graphs, with the result that any particu-
lar outcome is less likely. In this ensemble, graphs hav-
ing compact subgraphs will tend to dominate. The exten-
sion of this construction to a site model runs into the fur-
ther difficulty that the highest density graphs have a
correlated structure that cannot in general be obtained by
placing particles at random, as in the parking model.

(ii) Another construction scheme would be to start
from the ensemble of close-packed trees, and delete bonds
at random. Every deletion is legal, but the ensemble is
again skewed in distribution, because the progeny graphs
are not uniquely derived. The two clusters formed by
deletion of a single bond can be rejoined in many ways,
especially if each is large and they are extensively inter-
calated. The number of ways a graph can be formed by
deletion is the number of ways a bond can be legally add-
ed; thus large, rough clusters are more likely to occur
than any particular graph having small clusters.

(iii) Tzschichholz, Bunde, and Havlin recently pro-
posed a loopless percolation based on a growth process in
which sites are added to the perimeter of an existing clus-
ter with probability P provided that so doing does not
form a loop, and that the site has not already been con-
sidered. They show that there is a critical value of P,
above which the cluster grows indefinitely, and that the
clusters at criticality resemble clusters for ordinary per-
colation at the percolation threshold in having a similar
radial density profile and radius of gyration about the ori-
gin. However, it must be observed that these clusters
will be highly inhomogeneous: to the extent that the clus-
ters grow symmetrically, they will only be connected in
the radial direction, at points distant from the origin of
the cluster the circumferential correlation length will be
much shorter than the radial one. Random walks that
start at points distant from the origin will display an un-
surprising one-dimensional behavior, as wi11 all random
walks at long times. It should also be noted that even for
P =1 this construction scheme will not build clusters of
close-packing density. In this respect the comparison
with the parking problem ' is quite apt.

These alternate construction algorithms are growth
processes, for which the probability of occurrence of a
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At close packing, there is only one tree present, and

the system obviously percolates. It is less clear whether

there will ever be an infinite cluster present at finite dilu-

tion.
The bond problem on the square lattice does not per-

colate at finite dilution, according to an argument of
Wu, based on a duality relationship for the bond per-
colation problem in two dimensions. The dual transfor-
mation relates low-temperature properties of a Potts
model to high-temperature properties of another Potts
model defined on the dual lattice (which is also a square
lattice). The critical temperature of the general Potts
model can be located as the one temperature that is
mapped into itself. Reformulating this argument to the
treelike percolation problem, Wu found that the critical
fugacity is z = ~, which implies that the transition
occurs at close packing. This argument only applies to
the two-dimensional bond problem, and even there is
slightly problematic, since the dual to a tree graph is a
graph which contains only infinite linked clusters; the
tree graphs have this property only at close packing.

It is a general property of treelike percolation that the
percolation threshold will be close to the close-packing
limit. Any tree graph at finite dilution can be generated
by randomly deleting a finite fraction q of the elements
from a close-packed tree, and the graphs built this way
are composed only of finite clusters (there is only one
path joining any pair of sites in the close-packed tree, and
the probability that this path survives the deletion pro-
cess is exponentially small}. This argument seems to im-

ply that the tree percolation and close-packing densities
must coincide; however, the ensemble of bond graphs
built this way is skewed, and it is possible (and consistent
with the discussion above) that this has led to an improp-
er estimate of the probability of an infinite cluster being
present.

The close-packing limit of tree graphs is readily deter-
mined from geometrical considerations. At the close-
packing limit there will be only one cluster present. In
the bond percolation problem every site will belong to
this cluster, and the number of occupied bonds 8, will be
given by Euler's theorem

S=B,+1, (3)

from which we may immediately conclude that the bond
density per site is unity at close packing for treelike bond

given graph is dependent on how it has been constructed
and is not readily computed from the form of the graph
itself. Under these circumstances one must be careful in
the application of concepts from equilibrium statistical
mechanics.

Uniformly sampling the ensemble of treelike graphs is
not simply achieved. In principle this can be done by
adding bonds at random to an empty lattice, and only ac-
cepting the results if a loop is never formed. Of course,
the success rate would be extremely low. A more
efficient algorithm has been described by Braswell, Fami-
ly, and Straley; it is still much slower than the construc-
tion of uncorrelated percolation clusters.

II. THE PERCOLATION THRESHOLD

percolation. (It is more common to use the bond density
per lattice bond in bond percolation problems. The num-
ber of bonds on the lattice is zS/2, where z is the coordi-
nation number, because z bonds meet at each site, and
each bond is shared by two sites. Then the close packing
bond density per lattice bond is 2/z. However, in what
follows, all quantities will be quoted on the per site basis. )

In the site problem, the sites of the lattice are classified
as being occupied (o), constrained (c), or free (f), where
the constrained sites are those whose addition would
form a loop, and the free sites are those that are neither
occupied nor constrained. The state of a bond is deter-
mined by the sites that it joins; they may be classified as
oo, oc,of, etc. At close packing there are no free sites.
Euler's theorem relates S, to B as before [Eq. (3}];the
bond-counting relationship now relates the number of oc-
cupied sites to the bonds internal to the cluster and bonds
between occupied and constrained sites

zS, =28„+8„.
Bond counting around the constrained sites gives

zS, =8„+28„.

(4)

III. LOW-DENSITY EXPANSIONS

Since the region of interest is the high-density limit, an
expansion about this limit would be preferable. However,
the high-density configuration is not unique, and in fact
there is a finite entropy per bond. '

Low-density expansions are quite straightforward.
Two problems were considered: treelike graphs of bonds
(for which the bond set for each graph is specified explic-
itly) and treelike graphs of sites (for which the sites of the
graph are specified, and neighboring sites in this set are
always connected). The goal is to determine the number
T„ofgraphs of n bonds that can be drawn on a lattice of
N sites. According to Eq. (1), these determine the parti-
tion function as a power series in z. The number of ele-
ments per site belonging to finite clusters is

z ding~
N

which in the Potts language is the internal energy densi-
ty.

The constrained sites have at least two neighboring sites
that belong to the cluster, and may have as many as z in
loose-packed structures. In this latter case, 8„ is zero,
and combining these three equations gives

S, z

(S,+S, ) (2z —2)

Configurations which achieve this density are readily
constructed for the quadratic, honeycomb, and simple cu-
bic lattices. Accomplishing this relatively high density
requires that the vacant sites be multiply constrained (oc-
cupying the site would form more than one loop); then
there are also configurations of lower density which still
have no free sites, and cannot be obtained by deleting
sites from the close-packed configurations.
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For a finite cluster, such as a L XM rectangle of sites,
the partition function is a polynomial PLM. A transfer
matrix can be defined which describes the effect of adding
one row of sites to such a rectangle, and in this way the
polynomials P2L, P3L, and P4I were determined for the
bond problem, and in addition the PSI and P6L were

found for the site problem. Following Enting, " a "re-
duced" series RLM corresponding to each rectangle is
constructed by dividing the polynomial for the rectangle
by the polynomials for all enclosed rectangles. For exam-
ple, the nine-site square has the polynomial P33 R33 is
computed by dividing by P»Pz, Pz2P32 representing the
9 sites, 12 bonds, 4 squares, and 4 rectangles it contains.
Each series is of the form 1 —Czz, where K is the num-
ber of elements in the smallest nondecomposable graph
that contains a loop and that fits into the rectangle but
not into any smaller rectangle; Cz is the number of such
graphs.

The site and bond problem differ in that the smallest
bond polynomial is P2, for a single bond, whereas for the
site problem it is P&&. They both have the value 1+z.

Bond graphs having free ends or loops joined at a sin-
gle point are decomposable, and K is the perimeter
2L +2M —4 of the rectangle; the set of graphs that con-
tribute to the leading term of the series are formed from
the rectangular loop by turning in its corners. The num-
ber of such graphs is simply determined; in this way it
was determined that R»=1 —1110z' . This made it
possible to determine the first 16 terms of all RIM. for
large L and M all terms are zero, and for small L and M
the reduced series have been constructed explicitly or
generated by this combinatorial method.

For the site problem, loops that share one point are not
decomposible, and K =2(L —M)+3M + 1 (assuming L is
greater than M); for L =M, Csr = —

(
—1 ) 2, because the

minimal nondecomposable graph is a diagonal series of
corner-sharing squares. Thus, in particular
R77=1—2z' +Dz, where D is approximately 150. Ex-
cept for the small uncertainty in the value of C20, this
determines the first 20 terms of all RLM for the site prob-
lem.

The leading terms of the polynomial for a very large
rectangle of N sites can now be computed from the re-
duced series RLM, since every rectangle is contained N
times (to order N). Thus the partition function is the
product of the Nth powers of all the reduced series

Taking the Nth root of both sides we obtain the "parti-
tion function per site" Q, and N drops out of the prob-
lem.

The coefficients of the series for Q, derived in this way
are given in Table I. If there were a percolation thresh-
old at which an infinite cluster forms for finite z, there
would be a corresponding singularity in these series.
However, Pade analyses of the series for Q„ the series for
p, and the logarithmic derivatives of these series indicate
no poles on the positive real axis for the bond problem,
and only a few scattered occurrences for the site problem,
indicating that in both cases the transition is at close
packing (z = ae).

These series can be inverted to give z as a series in
powers of p (or p/2 in the bond problem) These. series

TABLE I. Coefficients of low-density series.

0
1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

Q(zl
Bonds

1

2
1

0
—1

2
—5

16
—54
184

—628
2136

—7229
24 378

—82 185
278 276

—951 192

Sites

1

1

0
0

—1

3
—4

2
—8
64

—220
434

—626
1612

—7236
25 246

—64493
149 603

—435 820
1 358 526

—5 103 194'

z (p/2)
Bonds

0
1

1

1

3
3
9

11
33
45
73

399
—357
2715

—1619
2715

32 109

z(p)
Sites

0
1

1

1

5

5
—7
43
71

—355
497

2749
—10703

—149
114223

—281 109
—509 937
4 378 279

—5 598 677
—34 309 333

152 066 419'

'These coefficients assume R» =1—2z' +150z' . The uncertainty in the coefficient of z gives a cor-
responding uncertainty in Q(z).
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are also given in Table I. The Pade analysis of these
series showed a singularity near the close-packing densi-

ty, as did the Pade analysis of the series for
Approximant Residue

TABLE II. Pole positions and residues of selected Pade ap-
proximants to d lnz(p) /d lnp.

1S=—lnT 1V' (9)

Wu' has shown that the N ~ ao limit of S exists and has
determined its value to be S=1.16624. . . for the square
bond lattice. This quantity can be calculated from the
series in the following way. First note

lim lng~ =lnz T~,g~ 00
(10)

g dz dlnz
z dp dlnp

The poles and residues for selected Pade approximants to
the logarithmic derivative series are given in Table II.
They clearly indicate a reciprocal square-root singularity
at close packing for the bond model. The site model re-
sults indicate the present of a singularity of the form
z = (0.6—p) ' . This failure to correctly identify the
close-packing density may be a consequence of the
greater degree of positional correlations in the site model.

A check on the bond model results can be obtained by
determining the degeneracy of close packing. For a finite
cluster at close packing define

[8/6]
[7/7]
[6/8]
[7/6]
[6/7]
[6/6]

Bond problem

0.9964
0.9818
0.9819
0.9452
0.9810
1.000 69

[10/8]
[9/9]
[8/10]
[9/8]
[8/9]
[8/8]
[8/8]
[8/7]
[7/8]

Sites problem
0.5931
0.5965
0.5977
0.5939
0.5876
0.5567
0.6628
0.5946
0.5881

Jp(~) dlnz ~ p —1 dlnz
ddp+ 8p lnz

o d lnp p(zj p d lnp

—0.5306
—0.4735
—0.4737
—0.3739
—0.4709
—0.5338

—0.7752
—0.8162
—0.8328
—0.7843
—0.6962
—0.2777
—0.7407
—0.7920
—0.7036

(12)

thus

S= lim [lng, —Inz]

z= llm dz —lnz
z~co O Z

L

where Eq. (7) has been used to evaluate the partition
function. Changing variables in the integration,

where z is an arbitrary number and p (z) is the corre-
sponding value, which can be accurately determined if z
is chosen to be small. The logarithmic derivative in the
integrands was represented by the [6/6] Pade approxi-
mant, and the factor (p —1) was replaced by
(p —1.000 69) so that the critical pole in the approximant
was accurately removed; then the integrals could be done
numerically, giving S=1.21. This is comparable to Wu's
value; the 6% error is consistent with the residue of the
approximant being 0.53 rather than 0.5.
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