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The autocorrelation function, C(t) = (S;(0)S;(t))—(S~(0) ), of Ising spins in an ordered phase
( T & T, ) is studied via a droplet model. Only noninteracting spherical droplets are considered. The
Langevin equation for droplet fluctuations is studied in detail. The relaxation-rate spectra for the
corresponding Fokker-Planck equation are found to be (1) continuous from zero for dimension
d=2, (2) continuous with a Anite gap for d= 3, and (3) discrete for d & 4. These spectra are di6'erent

from the gapless form assumed by Takano, Nakanishi, and Miyashita for the kinetic Ising model.
The asymptotic form of C(t) is found to be exponential for d ~ 3 and stretched exponential with the
exponent P= —' for d=2. Our results for C(t) are consistent with the scaling argument of Huse and

Fisher, but not with Ogielski s Monte Carlo simulations.

I. INTRODUCTION

The statistical fluctuations in a system that has come to
thermodynamic equilibrium in a state of broken symme-
try may be qualitatively different from those that occur in
more symmetric systems. A deep relation between sym-
metry breaking and fluctuations, if it exists, would obvi-
ously be important to understand because symmetries are
broken in continuous phase transitions. An even more
intriguing possibility is that investigations along these
lines might lead to theories of the very slow relaxation
mechanisms that are characteristic of glassy systems.

The simplest example of the situation of interest here is
an Ising ferromagnet below its transition temperature in
zero external field. In the thermodynamic limit, "up-
down" symmetry of this system is broken spontaneously;
it takes an infinitely long time for, say, the "up" state to
transform to the "down" state via thermal fluctuations.
On the other hand, large but finite regions of "down"
spins do occur in the "up" state with finite probability.
Such fluctuations should be specially long lived because
they are locally indistinguishable from equilibrium states
and, thus, the thermodynamic driving force which causes
them to dissipate is relatively weak. If these fluctuations
are statistically significant, they may make observable
contributions to the long-time behavior of the spin auto-
correlation function. It is this possibility that we shall
examine in what follows.

The bases for our discussion are three prior investiga-
tions' in which this problem has been examined from
different points of view. In each of these analyses, the Is-
ing system described above has been studied with
Glauber (nonconserving) kinetics, and an attempt has
been made to evaluate the autocorrelation function C(t):

for large values of the time t. Here, S, =+1 is the Ising
spin at the ith site, and the angular brackets denote a
thermodynamic average for one of the equilibrium states,
say, the "up" state.

Our approach is most directly related to that of Huse

and Fisher. ' These authors make the intuitively appeal-
ing argutnent that the dominant contributions to C(t) at
large times t must come from "down" spin which happen
to be at or near the centers of large, slowly decaying
droplets of the "down" state. Because the deterministic
lifetime of a droplet of radius R is of order &t and the
probability of appearance of such a droplet is proportion-
al to exp( —OR" '), where d is the spatial dimensionality
and 0. is a factor that contains the surface energy; thus

C(t) = exp( —ct~), (1.2)

where P=(d —1)/2 and c is a constant. For d =2, the
right-hand side of (1.2) is a stretched exponential with
P= —,'. Because (1.2) predicts P) 1 for d &3, Huse and
Fisher conclude that d =3 is an upper critical dimension
for the droplet model and that correlations will relax ex-
ponentially (/3= 1) for d ) 3.

Note the strong statistical assumption that is implicit
in the above argument —that droplets which have sur-
vived for a long time t must, with high probability, have
at some time in their history been large of order &t. In
what follows we shall recover a result of the form (1.2) in
a detailed study of fluctuations in the droplet approxima-
tion, but shall show that the strong statistical assumption
is not always justified (e.g. , for d & 3), even with this spe-
cial picture of the kinetic Ising model. (The possibility of
a failure of this assumption in higher dimensions was also
suggested by Huse and Fisher. )

A second recent analytic approach to this problem is
that of Takano, Nakanishi, and Miyashita. These au-
thors start with the Fourier decomposition of the com-
plete time-evolution operator A for the kinetic Ising
(Glauber) model, and write C(t) in the form

C(t) = g [p, (~)] exp[ —k, (a.)t],
K7 J

where the A,, (tc) are the eigenvalues of A, tc is the wave
vector, j denotes all other indices needed to specify the
eigenstate, and the p (tc) are matrix elements of the spin
S, . Takano et al. , argue that the lowest branch A,o(tt) of
the spectrum of relaxation rates must make the dominant
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contribution to C(t), and they further assume that this
branch is gapless and has the form Ao(~) =x . Their cru-
cial and, in our opinion, most problematic assumption is
that the factor [p.(ic)] is a measure of the probability of
finding a droplet of size ~ ', and thus is proportional to
exp( —e'i~' ), where c' is another constant. Substituting
these functional forms for A, and p into (1.3) and evaluat-
ing the integral over ~ by a saddle-point method, they
find a stretched exponential of the form (1.2) with
P=(d —1)/(d+1) for all d. They also have performed
Monte Carlo simulations for two-dimensional systems
with results that are consistent with their prediction,
p —1

In an attempt to resolve these two conflicting results,
Ogielski has performed extensive Monte Carlo simula-
tions for the two-, three-, and four-dimensional kinetic Is-
ing models. His data for C(t) fit the stretched exponen-
tial form (1.2) quite well for all three cases, and his values
of P are inore nearly consistent with the predictions of
Takano et al. than with those of Huse and Fisher. On
the other hand, he interprets his computations to indicate
that there is a gap in the spectrum of relaxation rates
A,o(ir) for d =3. Because a gap necessarily implies an or-
dinary exponential decay at large times, the latter result
seems to be inconsistent with the stretched exponential
seen in the autocorrelation function. Perhaps, as suggest-
ed by Ogielski, the truly asymptotic exponential decay
appears only at times much longer than those which can
be achieved in this simulations.

In this paper we study in detail the Langevin equation
which describes fluctuations in the radius of a single
droplet of the kind considered by Huse and Fisher. Sec-
tion II contains a general description of the transforma-
tion to a Fokker-Planck equation and the way in which a
spectral analysis of that equation can be used to compute
the autocorrelation function C(t). In Sec. III we show
that the eigenvalues of the Fokker-Planck operator (not
to be confused with the time-evolution operator A men-
tioned previously) form (1) a continuous spectrum of re-
laxation rates starting from zero for d =2; (2) a continu-
ous spectrum with a finite gap for d = 3; and (3) a discrete
spectrum for d )4.

Detailed solutions for the various cases are presented
in Sec. IV. For d =3, the Fokker-Planck equation can be
solved exactly and we find, as expected from the spectral
analysis, a simple exponential decay law. For d =2, we
use a Wenzel-Kramers-Brillouin (WKB) method to ob-
tain an approximation that is asymptotically accurate at
large times. We find that C(t) is a stretched exponential
with P= —,', consistent with Huse and Fisher but incon-
sistent with the numerical simulations of the full Ising
model. Interestingly, we find that the dominant contribu-
tion to C(t) for d =2 comes from droplets which are ini-
tially small and grow to sizes of order v t at times of or-
der t/2 before decaying almost to zero at time t. The
analogous statement is incorrect for dimensions d ~ 3.

II. GENERAL FORMALISM

We consider the equilibrium dynamical fluctuations in
one of the two symmetry-breaking states of an Ising sys-

tern with nonconserving kinetics. Specifically, we consid-
er the spin autocorrelation function C(t) defined in Eq.
(1.1) and, following Huse and Fisher, assume that the be-
havior of C(t) at large times t is determined by droplet-
like fluctuations as described in the Introduction.

%e now make the following more specific assumptions
regarding these droplets: (1) Only a single droplet cen-
tered at the given spin site is relevant. (2) Only a spheri-
cal droplet needs to be considered. (3) Translational
motion of the droplet is negligible. Given these assump-
tions, we write the autocorrelation function in the form

C(t)= fB(RO)P(Ro, t)dRO, (2.1)

where B(RO) is the probability density that a droplet of
initial radius Ro is present at time t =0, and P(Ro, t) is
the probability that this droplet is still present at time t.

The dynamical fluctuations of a spherical droplet may
be described by the Langevin equation

dR I o g(t)
(d 1)/2 (2.2)

where u is (apart from a constant factor) the surface ten-
sion at the droplet boundary, I is a transport coefficient,
and rt(t) is a Gaussian noise with ( rt(t ) ) =0 and

(q(t)q(t')) =2815(t t'), 0—=—k T . (2.3)

R (d+1)/22
d+1 (2.4)

Equation (2.2) becomes

x(d —3il(d+i)+ (t)
dt

= —I +g(t),U

dx
(2.&)

where

d + l (2d —2)/(d+1)
2d 2

(2.6)

Equations (2.5) and (2.6) describe a one-dimensional ran-
dom walk in a potential U(x). The random walkers are
subject to a drift force —dU(x)/dx towards the origin.
The probability density p(x, t) of the random walkers
satisfies the Fokker-Planck equation

1 Bp(x t) 8 dU+& Bp
r at Ox dx+ ax

(2.7)

To complete the statement of the problem, we must
impose a boundary condition at x =0, in addition to re-
quiring p(x, t)~0 (x~ ~ ). We assume that if a droplet
shrinks to size zero at some time t, it will not contribute
to C(t) for t ) t'. Similarly, new droplets which appear

The reduction of noise by a factor of R'" " is due to
averaging over the surface of the droplet. Equation (2.2)
is valid for R ) g, where g is the correlation length. For
T well below T„g is of order of the lattice constant.

Now let
(d —3)/(d + 1)
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8 (x ) = /I exp[ —U(x ) /0],
where

/I =1 f dx exp[ —U(x)/0]
0

(2.8)

is a normalization factor. Note that this distribution has
the correct R dependence, 8 —exp( —cR" '), if x is ex-
pressed in terms of R using Eq. (2.4).

One sees from Eq. (2.6) that for d =3, the drift force
on the random walkers is a constant, independent of the
walker's position. For d )3, the force is larger for larger
x; for d (2 the force is smaller for larger x. As we will
see later, d =3 is the borderline separating two di6'erent
long-time behaviors.

We now proceed to express C(t) in terms of eigenfunc-
tions of the operator on the right-hand side of Eq. (2.7).
Let

after t =0 will not contribute to C(t). Thus for purposes
of computing the autocorrelation function, we place an
absorbing wall at x =0; that is, p(x =0, t) =0.

Now our original problem of computing the autocorre-
lation function C(t) becomes the following problem:
Starting with an ensemble of random walkers distributed
according to a thermal equilibrium distribution at t =0,
compute how many of them are still present (not having
been absorbed by the wall at x =0) at time t

For an initial distribution, we choose the Boltzmann
function

[ U(x) U(xO )]/20 ~ ~ E( k)Pfe o
k

(2.17)

The survival probability for this random walker is

P(xo, t)= f p(x, tixo, t=0)dx .
0

(2.18)

We now define the weighted Green's function G(x, xp
—U(xo )/8

G( x, xot}=de ' p(x, t~ xot=0)
—[ U(x)+ U(xo )]/20=de 0'k xo 0'k x e

k

(2.19)
where /I exp[ —U(xo)/0] is the equilibrium distribution,
Eq. (2.8). Note that G(x, xo, t ) is invariant under the in-

terchange of x and xo. If we start with the equilibrium
distribution at t =0, the distribution function at time t,
p(x, t), is simply

p(x, t)= f G(x,xo;t)dxo . (2.20)
0

The weighted survival probability is

ak = exp[U(xo)/2(9]gk(xo). The Green's function, i.e.,
the probability density that this random walker will be at
position x at time t, is

p(x, t ixo, t =0)
=e " P(x, t ~xo, t =0)

p(x, t)=q(x, t)e-" '"'.
Substituting (2.9) into (2.7), we obtain

where

82X=—0 + V(x),
Bx

and

(2.9)

(2.10)

(2.11)

P(xo, t ) =—Ae ' P(xo, t ) = f G(x, xo; t )dx, (2.21)
0

where P(xo, t) is the unweighted survival probability
given in Eq. (2.18). The right-hand sides of Eqs. (2.20)
and (2.21) are equal to each other, thus P (x o, t )

=p(x =xo, t), because of the symmetry in G(x, xo;t).
From Eqs. (2.1) and (2.19)—(2.21), we have

C(t)= f P(xo, t)dxo
0

= f p(x, t)dx
0

V(x) = 1 dU
40 dx

2
1 d'U

(x &0) .
dx

(2.12)
g y e

—E(k)I t f —U(x)/26 (x)dxx x
k 0

(2.22)

Xyk (x }=E( k)q)„(x},
with yk(x =0)=0 and

(2.13)

Let (pk(x) denote the eigenfunctions of the operator X,
As we will see later in the paper, another quantity of

interest is the half-time history. Namely, if a random
walker is at position xo at t =0 and at t, what is its distri-
bution at t /2? This quantity is simply the product of two
Green's functions

Then

Pk ( x )&Pk.(x )dx =5k k
0

(2.14) H(x, t/2ixot;xo0):—p(xo, tax, t/2)p(x, t/2~xo, t =0)

y ~e(x ) (x)e c(k)&t/& 2

k

P(x, t)= gakyk(x)e
k

where

(2.15)

where Eq. (2.17) is used for the last equality.

(2.23)

ak = f g(x, t =0)tpk(x)dx . (2.16)

If we start with a random walker at x =xo at t =0,
then p(x, t =0)=5(x —xo), and, from Eq. (2.9),
g(x, t =0)=e '"'/ 5(x —xo). Equation (2.16) then gives

III. RELAXATI(3N-RATE SPECTRA
FOR THE FOKKER-PLANCK EQUATION

Before calculating C(t), let us derive some features of
the relaxation rates. The relaxation-rate spectra for the
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d=3

of

d=4 tribution to C(t) starting from relatively early time t;
that is, C(t)- exp( —eoI t ) except for very small t. There
is no way to get a stretched exponential within this model
for d ~4.

B. Exact results for d = 3

d=4

Density of Modes 0 Density of Modes 0 Density of Modes

FIG. 1. Schematic graphs for the potentials V(x) (upper
row) and the density of modes (lower row) for d =2, d =3, and
d =4.

Due to the extremely simple form of the potential (3.2),
we can calculate C(t) exactly in this case. Because there
is a gap in the relaxation rate spectrum, we expect that
the asymptotic form of C(t) will be exponential. Howev-
er, the lowest mode has zero weight in Eq. (2.22), and
thus there turns out to be a power-law correction.

The equation we must solve is (2.13) with the operator,

Q
2 g 2

X=—8 +
Bx

(4.1)

The set of eigenfunctions satisfying the boundary condi-
tion gk (x =0)=0 is

yk(x) =&2/n. sin(kx) (k )0), (4.2)

Fokker-Planck equation (2.7) are the same as the eigen-
value spectra e( k ) of (2.13). Without the absorbing
boundary at x =0, the smallest relaxation rate of (2.7)
would be zero, the equilibrium distribution (2.8) would be
a stationary solution, and a11 other solutions wi11 decay in
time. With the boundary condition p(0, t) =0 or
P(O, t)=0, the eigenvalues of (2.11) will be pushed up
somewhat because, in quantum mechanical language,
more "kinetic energy" is needed to suppress the wave
function at the boundary; thus, all solutions now decay.

For d =2, the potential is given by

with the eigenvalue

g 2

s(k)=8k +
40

(4.3)

C(t)
o' f —(Hk +u 148)1 t

2m. O o (o /28) +k

Substituting Eqs. (2.6), (4.2), and (4.3) into Eq. (2.22), we
have

V(x) = +
4g 2/3 6 4/3 (3.1)

r+2 —&r/me (4.4)

All the eigenstates are scattering states and the spectrum
is continuous from zero without a gap. The density of ei-
genvalues has an c ' singularity at c=0. For d =3, the
potential is constant,

C7
V(x) =

40 ' (3.2)

and the spectrum is again continuous but with a finite

gap, o. /40. The density of eigenvalues has the same
singularity, as in the case of d =2 above the gap. In the
case d 4, the potential is monotonically increasing with
V(x)~ —oo (x~O), and V(x)~+ oo (x~ao ). All the
eigenfunctions are bound states and the spectrum is
discrete with a lowest eigenvalue co greater than zero.
These results are illustrated in Fig. 1.

IV. CALCULATION OF AUTOCORRELATION
FUNCTIONS

Now we consider the autocorrelation functions in this
model.

where r= o I t /8 is the dimensionless time and

QO

erfc(z) = —f e " du
&rt

(4.&)

1X3X5X7
(r/2)'

(4.6)

In order to have a clearer picture, let us study the dis-
tribution function p(x, t) and the weighted survival prob-
ability P(xo, t ), Eqs. (2.20) and (2.21). The weighted
Green's function G(x, xo;t), Eq. (2.19), can be easily
evaluated. We have

is the complementary error function. Using the asymp-
totic expansion of erfc(z), we obtain the asymptotic ex-
pansion for C(t)

8e '~ 1X3 1X3X5Cr=
V ~r r/2 (r/2)

A. The case of d ~ 4

Because the spectrum s( k) is discrete, the slowest
mode in the sum in Eq. (2.22) will make the largest con-

2
e —( /20)( + )

G(x, xo;t ) = e
&4~8rt

—(x —x&) /40I t —{x+xo) /40I t
X(e ' —e ' ). (4.7)
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And

p(x, t)=P(x, t)= f G(x, xo;t)dx,
00( /g) f r~t —x

&40rt

I o.t+x—erfc
&401 t

(4.8)

ly, we can estimate the asymptotic behavior for large t us-
ing a WKB approximation (see the Appendix for
mathematical details). To check these asymptotic esti-
mates, and also to obtain results valid for all t, we have
solved (2.5) numerically. Our results are shown in Figs.
2 —5 and are referred to throughout the following para-
graphs.

The asymptotic form of C (t) turns out to be

One sees from Eq. (4.8) that for any given initial size x
the survival probability decays exponentially as e ' for
t »x/I o, or in a dimensionless form r»r l2, where
r =&2o x /0 is the dimensionless droplet radius. One can
also show easily from Eq. (4.8) that the most probable
droplet size x*~20/o as t —+~, although the term
"most probable" makes less and less sense because the
peak gets broader and broader. Accordingly, initially as
well as presently, small droplets make the most contribu-
tion to the autocorrelation function C (t) at all times. Re-
call that the drift force on the random walkers is constant
for d =3 [Eq. (2.5)], so it does not distinguish between
small or large droplets. Because small droplets have
larger Boltzmann weights initially, they dominate C(t) at
all times. The half-time distribution function
H(x, t/2~xot;x00), Eq. (2.23), for xo=x*=20/cr is easily
calculated,

e
—)/(2/3)r (4.13)

where r=o I t /0 =3a I t/20 is the dimensionless
time. Equation (4.13) is a stretched exponential with ex-
ponent P= —,'. The time after which Eq. (4.13) is expected
to be valid is

8
Q0 ~ ~ (4.14)

In Fig. 2(a), C(r) is plotted as obtained by a direct nu-
merical solution of the Langevin equation (2.5) for d =2.
It nicely fits a stretched exponential form C(r)
-e ', in excellent agreement with Eq. (4.13) which
gives C(r)-e ' '. Also shown in Fig. 2(b) and 2(c),
are numerical solutions of (2.5) for d = 3 and d =4, which
illustrate the simple exponential behavior deduced above.

It is also shown in the Appendix that the most prob-
able droplet size x* at time t is

3/8

H(x, t/2~xot; x00)

—o 1 t/40
0 0 )2

—(x —x ) /20I t —(x+x ) /291 t

2~BI t
(4.9) or

B I t
9a

(4.15a)

This function remains peaked near x0 for all t. Thus for
a small droplet with initial and present size -x *=20/cr,
the most probable history remains at all times in the
neighborhood of x*, staying small. From the above dis-
cussion, we see that in three dimensions the large droplet
fiuctuations do not contribute significantly to C(t) This.
result is consistent with the asymptotic exponential decay
of C(t), but not with the picture proposed by Huse and
Fisher.

C. The case of d =2

We now consider the two-dimensional system. In this
case, we have a continuous spectrum from zero and a
nonexponential decay can be expected. The potential
U(x) [Eq. (2.6)] on the random walkers is

e () )i/4
8

(4.15b)

where r =oR /0=0 (3x /2) / /0 is the dimensionless
droplet radius. Equation (4.15) also means that at time r
the droplets of initial radius r* contribute most to C(r).
We compare Eq. (4.15) with our numerical solution of
(2.5). Figure 3 shows the distribution function p(x, t) as a
function of x for various t. The maximum point for each
curve x* is plotted as a function of t in Fig. 4. The agree-
ment with Eq. (4.15a) is very satisfactory. In order to see
how the relatively small droplets of size r-~' that
dominate the distribution at early and late times produce

U(x) =—'ux
2

(4.10) 10

The larger the x, the smaller the drift force is; thus large
droplets may play an important role in determining C(t).
The "Schrodinger equation" (2.13) is

10

10

a'—0 + V(x) y, (x) =e)p, (x),
Bx

where the potential V(x) [Eq. (2.13)] is

(4.1 1)
10

0 2 4 6 8 10 0 4 B 12 16 20 0 2 4 6 B 10
0.5j

V(x)= +
4B 2/3 6 4/3 (4.12)

Although we cannot solve Eqs. (4.11) and (4.12) exact-

FIG. 2. Numerical results for the autocorrelation function
C(~) as a function of the dimensionless time ~ which is defined
as ~=o'"+'' '" "0 '" ''Vt for (a) d =2, (b) d =3, and (c)
d =4.
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APPENDIX

In this appendix we derive Eqs. (4.13)—(4.16) using a
WKB approximation for (4.11).

Define

p(x)=&E —V(x) .

Then the WKB solution is

(A 1)

that the droplet approximation by itself predicts the de-
cay of C(t) to be faster than exponential for d & 3. Our
analysis predicts exponential decay for d ~ 3 without ap-
pealing to any considerations beyond the droplet model.

The above results for C (t) in the droplet model are dis-
tinctly di6'erent from the results of Ogielski's simulations
for the Glauber model. Although C(t} had become as
small as 10 in his simulations, Ogielski conjectured
that he might not have reached the asymptotic region in
the time that was computationally accessible. As shown
in Fig. 2, however, the asymptotic region starts quite ear-
ly in the droplet model. We conclude that the present
simple-droplet picture must be insuScient and that the
effects neglected (the shape effects, the interaction be-
tween droplets, etc. ) are important at least in the region
where the simulations were performed.

On the other hand, the exponents P predicted by
Takano et al. agree reasonably well with Ogielski's re-
sults for all dimensions. Their argument, however, is
based on the simple assignment of gapless modes in the
Glauber model to the droplet motion. Such a naive as-
signment seems dubious because the relaxation-rate spec-
tra for droplet fluctuations were shown to have gaps for
d ~ 3. Although the gapless modes themselves can be ex-
pected from the ~ t scaling law in the quenched system,
these gapless modes may not have weight in the states of
broken symmetry. We think it might be interesting to see
whether the gap that has been found in Monte Carlo
simulations for the Glauber model in d =3 actually cor-
responds to the gap of the droplet fluctuations by examin-
ing its temperature dependence.

We are interested in the behavior of C(t) for large t,
which is determined by the properties of p, (x) for small

In the subsequent discussion we assume that t is large
enough that the relevant c.'s satisfy

3a
c. (

80
(A3)

Then the first term on the right-hand side of (3.1) is dom-
inant near the turning point, and a =(a /40e) ~ . This
will simplify some calculations. The regions in which the
WKB eigenfunctions (A2a) and (A2b) are good approxi-
mations are

' 3 /2
20 &x &a —6,3a

(A4a)

and

a 2/3= f q L(x) exp — x'" dx
0 4g

QO 3a+ f q ~(x) exp — x'" dx .
40

The second term can be ignored in the energy region
defined by Eq. (A3). We estimate the first term by a
saddle-point method:

q)(x)e '"' dx
0

exp — — &V(x') —e dx' — x dx
1 &, , 3a

0 v'8 x 40

f e
—s( )d

0

=e s'" '= exp( —a /80 e),
where

(A5)

(A4b)

respectively, where 5=3' a/40' c is the width of the
region in which the WKB approximation breaks down
near the turning point.

We now proceed to calculate the autocorrelation func-
tion C(t), the distribution function p(x, t), the weighted
survival probability P(xo, t), and the half-time history
H(x, t/2~xot;xoo) via Eqs. (2.19)—(2.23). Let us first
evaluate the integral

( )e
—U(x)/2ed

0

1 a
q&, (x)=, , exp — ~p(x') ~dx'[4' p(x} 0' ]' v'0 x X

6c
a

—3/4

(A6)

—=p, (x) (0(x (a), (A2a)

1 x
y, (x)=

, i2, 2
cos — p(x')dx' ——

[rrp(x)0' ]' 0 ~ 4

is the saddle point, and

S(x*)=
80 c

(A7)

=y, (x) (x )a), (A2b)

where a is the classical turning point, V(a) =e. Note that
we have chosen to normalize y, so that sums over k in
equations such as (2.15) or (2.22) become integrals over e.

One can easily check that x * is within the region
specified by Eq. (A4a}. The function exp[ —S(x)] is
sharply peaked for small 0, but (b,x /x * )2

—[(x*)S"(x*)] ' —0 is independent of E, as e~O.
Substituting Eq. (A5) into Eq. (2.22), we have
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QO aC(t)= exp — eI—t de .
48 c.

Again we evaluate the above integral via the saddle-point
method. We find the saddle point

3//2

(A8)
28 It

and in this way obtain Eq. (4.13). From Eqs. (A3) and
(A8), we get Eq. (4.14). The most probable droplet size
x' at time t, Eq. (4.15), is easily obtained from Eqs.
(2.20), (A5), (A7), and (A8).

We now calculate the time dependence of the weighted
survival probability P(xo, t). Substituting Eq. (A5) into
(2.21), we have

P(xo, t)=e
V(xO )

f y, (xo)exp( —art —a /88 e)de+ f, y, (xo)exp( —crt a—3/88 e)dE
0 0

(A9)

26
xp &)

3(x

3/2

(A10a)

or in a dimensionless form

I o))1 (A10b)

There is an energy gap V(xo) in the second integral, so it
decays exponentially for large t. The first integral gives
an anomalous decay. For

1/2

3/2

f &V(x') —edx'= f —E dx'
xo x 4g 2/3

2 —ex o/ . (A 1 1)
1

40

Substituting Eq. (Al 1) into y, (xo) in the first term of Eq.
(A9), Eq. (4.16) is obtained via the saddle-point estima-
tion.

Finally, we calculate the half-time history, Eq. (2.23),
which is the square of the following integral (x )xo):

V(xo )

d ge, ( x)oy, ( x)e
'"' = f y, (xo)g, (x)e ' '/ dE+ f yL(xo)y~(x)e '~'/2de

0 0 V(xj

+ +~ Xo +E X e
0

—:I, +I2+I3 . (A12)

What we have in mind is that xp is small compared with
x (xo ((x ). I3 can then be ignored. Let us now consider

I],.

I, = f exp — f &V—Edx'
0 QI9 xo

S,(u, g)= (1+u )+ (1—u)
A I

g(1 —u) 2

rtg w rtg ~ 3/2

2 g 2

A+ Q + 0 0 ~ (A16)
0 cI t&V—Edx'— dE,

u'g x 2

(A13)

S, (E,x)= 1

c.O

3
2 2

+ — CX
1 cx

pv'L9 40

3/2
cIt+

2

(A14)

exp —5, E,x dc .
0

Using Eq. (Al 1), we get (xo ((x )

(A17)

and

where A =(a/2) /9 . S, (0,() has minimum at

g*=&2A/I t. Letting g=g" +w, we have

( rt )3/2w 2

S, (u, g)=U'22 I t + —I twuz'"&~
1/2

A rt
( 3/2+ 2)+

2

To study Eqs. (A13) and (A14), it is convenient to use the
variables g and u' defined by V(x ) =g and E =g( 1 —u ).
Equations (A13) and (A14) then become

I, = f exp[ —S,(u, g)]du, (A15)
0

I, = exp —&231 T—( rt )3/2w 2

2'"&~
X f exp[I twu —&AI t/2(u / +u )]du

0

(A18)

and The integral in (A18) gives an unimportant prefactor for



DROPLET MODEL FOR AUTOCORRELATION FUNCTIONS IN. . . 1003

w &0. For w &0, it is exp[8(l t ) w /273 ] by a saddle-
point estimation. Thus for w «&A/I t, which is the
region we are interested in,

r

(I t) 3/2w2
I, = exp —&2A I t—2'"&~

Iz can be calculated in the same manner if one notices
that

I2 = f I exp[ —S ~+(u, g)]+ exp[ —S ~ (u, g)] I du,

(A22)

where

2= exp ——rh

(r —
rt, )

3rh
(A19)

where e —=g(1+ u ) and

S ~ (u, g) = (1+iu )+ (1+u) . (A23)
g(1+u) 2

(3 )I/2
h (A20)

Comparing Eqs. (A22) and (A23) with (A15) and (A16),
we find that I2 =I, . So for ro (& rh,

1/2 1/4 (A21)

and r =3+x /28 and r=3a I t /20 is the dimension-
less droplet radius and the dimensionless time, respective-
ly. Equation (A20) applies for any ro «rI ~ The width of
the Eq. (A19) is

2(r r„)—
3rh

H(r, r/2~ror;ro0)= exp —
r&
——

3
(A24)

Thus H is peaked at rh =&r with its maximum value be-
ing —exp( 4rz/3)- e—xp( —&2r/3) and width -r'
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