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Axially enhanced far field and radiation flux in a magnetoplasma
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Conditions for the existence of an inversely (distance)' '-dependent far field along the direction of
the external magnetic field in a cold magnetoplasma are studied and applied to classify the plasma
parameter domains in the Clemmow-Mullaly-Allis diagram. Such an axially enhanced far-field flux

from a dipole source is then evaluated explicitly and found to be confined within a finite cross-
sectional area in most cases. Origin of the axial enhancement is explained and its relevance to ener-

gy conservation is discussed; in particular, the divergent radiation flux lines are described by
z/r', =const, where z and r~ are, respectively, the axial and the transverse coordinates. Attention is

also drawn to the existence of an enhanced electric far field oscillating parallel to the magnetic field

and at frequencies below the plasma frequency.

I. INTRODUCTION

It is well known that the far field (i.e., the field in the
far zone) caused by a radiating source in a homogeneous,
isotropic, and loss-free medium is inversely proportional
to the distance as required by the law of energy conserva-
tion. However, for a source in an anisotropic medium,
this simple inverse relation may fail to hold along certain
angular directions. Lighthill, in a paper mainly ad-
dressed to the calculation of the far field due to a mono-
chromatic source, appears to be the first one to have
shown the existence of this peculiarity. His method, fol-
lowed and developed by Giles, consists of the following
steps. First, only the excited waves satisfying the disper-
sion relation are shown to contribute to the far field
which can then be expressed as an integral over the
wave-vector surface (WS); a WS is the surface in the
wave-vector space satisfying the dispersion relation for a
given frequency. Secondly, the integral is evaluated by
applying the standard method of stationary phase to the
WS and the result for the far field, depending inversely on
the square root of the Gaussian curvature K of the WS at
the point of stationary phase, can be interpreted as the in-
terference maximum of the excited waves whose group
velocity is directed towards the observer. Finally, and
more interestingly, in the special case where K=O, the
far field is shown to be inversely proportional to either
r or r', where r is the distance between the source
and the observer. It should be pointed out that such a
peculiar dependence, valid only in the direction of the
group velocity at the point of stationary phase with zero
Gaussian curvature, by no means holds within a finite
solid angle and thus has no contradiction with the law of
energy conservation.

For a cold plasma in a uniform external magnetic field
B=Boz, the WS is a surface of rotation of the k, -vs-k„
dispersion curve (for a given frequency) about the z axis,
whose direction will also be referred to as the axial direc-
tion; k and k, are the two components of the wave vec-
tor in the x-z plane. Three cases of zero Gaussian curva-
ture have been shown (i) the resonance cone case

where the wave number goes to infinity at a finite polar
angle and thermal effects have to be included; (ii) the
case of an inAection point on the dispersion curve; and
(iii) the case of an extremum of k, at a nonzero k„[Fig.
1(a)] so that there is a ring of extrema on the WS. How-
ever, there is the fourth case where the ring coalesces to
the pole and the derivatives of k, with respect to k„are
zero up to the third order, rendering a zero K at the two
poles of the WS [Fig. 1(b)]. As we shall see, the last two
cases need separate consideration and they are of particu-
lar interest because they both lead to an inverse r'
dependence of the far field along the axial direction of the
WS and hence possibly a much enhanced radiation.
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FIG. 1. Dispersion curves, the WS of each is a surface of ro-
tation. (a) Extremum k, at a nonzero k, , forming a ring on the
WS; (b) extremum ring coalescing to the point at k =0, giving
rise to a quasiflat surface near each of the poles on the WS.
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The present paper is addressed to the study of this axi-
ally enhanced far field (AEFF) and related problems. In
Sec. II we shall classify analytically the plasma parameter
domains in the well-known Clemmow-Mullaly-Allis
(CMA) diagram where such an AEFF phenomenon could
occur, taking into account the ion motions. The result
obtained can be seen as a supplement and an extension to
the earlier work by Giles, who had made the
classification in a numerical way and had restricted to the
high-frequency regime. In Sec. III we start by a brief re-
view of Lighthill's method in the context of a source in a
cold magnetoplasma, while introducing notations and
supplying explanations to be used later on. We next con-
sider the AEFF situation and calculate explicitly the far
field on the z axis caused by an electric dipole source at
the origin; for a dipole oriented along the z axis, we show
the existence of an enhanced electric far field on the axis
oscillating longitudinally (i.e., parallel to the external
magnetic field) at frequencies less than the plasma fre-
quency. Assuming the case of a ring of extrema on the
WS (i.e. , the third case), the enhanced far field around the
axis is calculated and it is found mainly confined within a
constant cross section of the size of the transverse wave-
length. Explanations for the inverse r' dependence and
the parallel oscillation at sub plasma frequencies are
given. In Sec. IV we calculate the radiation energy Aux

and discuss the problem of energy conservation in view of
the inverse r dependence. Conclusions and further re-
marks are given in Sec. V.

Fq. (la) is positive. Because a WS is a surface of rotation
of the k, -k curve about the z axis and has reflection

symmetry with respect to the k, =0 plane, it may be

graphically represented by the k, -k„(or n, -n„) dispersion
curve given by Eq. (la) in the first quadrant. Further-
more, the appearance of two solutions means that the WS
could be two-sheeted.

To find the parameter domain where there is an ex-
tremum of k, at nonzero k in the first quadrant, we

reproduce the CMA diagram in Fig. 2 where the mass ra-
tio M/m has been set equal to 10 for the convenience of
displaying the graphs. The solid curves (given by L =0,
R =0, P =0, Y= 1 and 10) are the usual ones dividing the
diagram into various "ponds, " while the small k, -k

graphs (in the first quadrant) in each pond, representing
the wave-vector surfaces in a topological way, replace the
usual phase-velocity surfaces; the two kinds of surfaces
are related by an inversion with respect to a sphere
around the origin. The numbering of the ponds follows
that of Stix. We note the following known properties of
the WS's: (i) topologically, a WS must be either an ellip-
soid, a two-sheeted hyperboloid, or a one-sheeted hyper-
boloid; (ii) there is no two-sheeted hyperboloidal WS for
X (1; (iii) in the k„-k, plane, there are at most two posi-
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II. CMA DOMAINS WITH AXIALLY ENHANCED
FAR FIELD (AEFF)

For a two-component cold magnetoplasma, the k, -k
dispersion curve for a given frequency ~ is determined
essentially by
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h(n )=(1—S/P) n, /4+D (1—n /P), (lb)

n —=ck/~ (lc)

has been defined with c being the speed of light in vacu-
um, arid

S=(R +L)/2, D =(R L)/2, P =1—X—,

R = 1 —X/[(1 —Y)(1+m Y/M) ],
L =1—X/[(1+ Y)(1—m Y/M)],
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where the "refractive-index vector" or the dimensionless
wave vector
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with m (M), Q„and co =(co, +co;)' being, respective-
ly, the electron (ion) mass, the electron gyrofrequency
and the plasma frequency; a singly ionized plasma has
been assumed. Clearly, the dispersion curve is meaning-
ful only in the domain of k„where the right-hand side of

FIG. 2. The usual 13 CMA domains (defined by the solid
lines) and the AEFF subdomains 4a, 7a, 7c, Sb, 11a, 13a, and
13c (defined by the dashed lines). Mass ratio is set to 10.
Graphs in the first quadrant indicate the shape of the WS in

each subdomain.
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tive values of k„ for a given k, . Property (iii) immediate-

ly rules out the one-sheeted hyperboloidal WS to have an
extremum of k, versus k„. It is also not dificult to see
that, for an ellipsoidal WS, k, must be minimum at k =0
in order to have an extremum (which is a maximum) at a
nonzero k„without contradicting property (iii), whereas
for a two-sheeted hyperboloidal WS, k, must be max-
imum at k =0 in order to have an extremum (which is a
minimum) at a nonzero k„. Now we have, from Eq. (la),
the following relation:

dn, /dn„= n—( I + n o /P ) /2n, (3)

in the neighborhood of the origin, where no=R or L is
the square of the refractive index for waves propagating
along the magnetic field. Therefore, for an ellipsoidal
WS, P &0 must be satisfied. Together with property (ii)
and the implication from property (iii), we may conclude
that AEFF exists only in the region of P &0 or X) 1. In
other words, AEFF is possible only if the wave frequency
is below the plasma frequency. Moreover, for an R-
labeled (or an L-labeled) ellipsoidal WS, the further con-
dition from Eq. (3) is R+P &0 (or L+P &0) whereas,
for an R-labeled (or an L-labeled) two-sheeted hyper-
boloidal WS, it is R +P &0 (or L +P &0); an R- or L la--
beled WS is that which describes the right-handed or
left-handed circularly polarized wave at k, =0. In Fig. 2
the two dashed lines give L+P=O and the dotted line
gives R +P =0; the positive and negative side of each of
these curves is also indicated for convenience. These
lines divide the X) 1 region into domains of far-field
enhancement. For example, the CMA domain 7 (bound-
ed by L =0, P =0, and Y= 1) is divided into subdomains
7a, 7b, and 7c; since both an L-labeled ellipsoid and an
R-labeled two-sheeted hyperboloid exist in the original
domain, subdomain 7a (defined by L +P & 0) gives rise to
an "L-type" AEFF (associated with the L-labeled sur-
face), whereas subdomain 7c (defined by R +P & 0) gives
rise to an "R-type" AEFF (associated with the R-labeled
surface). Incidentally, we should like to point out that
subdomain 7c exists only if M/m & 8. 1. Similar analysis
shows that subdomains 4a and 13c give rise to L-type
AEFF's while 8b, 11a, and 13a give rise to R type
AEFF's. In total there are seven such subdomains. It is
of interest to point out that, except for subdomain 13b,
which is a relatively small domain (especially so for large
M/m), far-field enhancement along the external magnetic
field direction always exists in the low-frequency region
where Y& M/m (i.e., co & 0;, the ion gyrofrequency) and
X & 1 (i.e., co & co ), and the ion motions have to be fully
taken into account.

We now turn to the parameter points on the boundary
line determined by R+P=O. At any such point, the
second derivative d k, /dk is zero at the origin for the
R-labeled surface [see Eq. (3)]. Since WS is a surface of
rotation, we conclude that the derivatives of k, with
respect to k at the origin are zero up to the third order
and the pole surface is almost Hat. A similar conclusion
can be achieved for a parameter point on the boundary
lines of L +P =0. In particular, we have, from Eq. (la),
the following expansion:

n, = ~P~' +ctn /4

around n =Oor k =0, where

(4a)

a=+S/(DiPi i2) (4b)

is the coe%cient with the plus sign corresponding to the
case of R = —P and the minus sign for the case of
L= P. —It is not difficult to see that a is positive (or
negative) for a two-sheeted hyperboloidal (or an ellip-
soidal) WS.

Finally, the exact position of the extremum in each
subdomain of AEFF can be calculated. By solving
dn, /dn, =0, only one real root of positive n, is found
and it is equal to

[2PD + iD(l+P/S)~[SP(P —R )(L P)]'i—I'i
IS PI—

and the corresponding n, is obtained to be

v, =
i [ PD+ [PS(P —R )(L P)]' I

—/(S P) iP i

'—

(5b)

where P (0 has been assumed. Since there is only one
extremum value, one still has to make a choice between
the two values in Eq. (5b). To this aim, we note that in
Fig. 2, as the boundary line R = P(or L =— P) is ap-—
proached by any parameter point (X, Y) in a nearby sub-
domain of AEFF, v~ will tend to zero and the extremum
value must be v'R (or v'L ). Such a criterion leads to the
choice of the plus sign in Eq. (5b) for subdomains 7a, 1 la,
and 13c and the choice of the minus sign for 4a, 7c, 8b,
and 13a, in order to have v, as the proper extremum
value. (Note that D is positive in between Y= 1 and
Y=M/m, and is negative otherwise. )

III. FAR-FIELD EVALUATION

According to Lighthill, ' Giles, and Lai and Chan, the
far field E(r)exp(

idiot

) at r —caused by a stationary
source of current density J(r)exp( idiot) located at th—e
origin is given by the following integral over the wave-
vector surface:

aE(r)=(co /c m) d n e' 'I J(k), (6)
ws Bn

where J(k) is the Fourier transform of J(r), 2)(k, co) is the
dispersion function equal to the determinant of the
dispersion tensor

b, ,"=e;t(k,co)+n, n —n 5,". (7)

(e; being the dielectric tensor), I is the adjoint of 5 (i.e.,
the matrix element I," is the cofactor of 5, ),
B2)/Bng =—(cu/c)(82)/Bk)~ is the gradient of 2) along the
direction of the group velocity Vg =Bee(k)/Bk [co(k) be-
ing the solution of 2)(k, co) =0], and the integration is
over that part of the WS satisfying V -r) 0. Since a
wave-vector surface is essentially an "equal-frequency"
surface [i.e., a surface given by co(k) =const], the group
velocity, being the gradient of the frequency function, is
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obviously normal to the surface. Physically, Eq. (6)
shows that only the excited waves satisfying the disper-
sion relation contribute to the far field.

For a cold magnetoplasma the elements of the adjoint
matrix are given by

I „=a,+a~cos P,
I y~=a, +a2sin P,
I, =I * =a2singcosg+ia3,

I „,=I,*„=—/a 4SEnf+ a ~ cosp

I,=I,* =ia icos/+ a ~sing,

I „=a6,

(8a)

(8c)

(8d)

(8e)

where Q* is the complex conjugate of Q, n is given in
terms of the cylindrical coordinates n~, P, and n„and

a, =SP—Sn ~
—Pn

a~=n~(n P), —

a3=D(P —n~ ),
ag =Dn ny

a& =(n —S)n, nz,

a6=($ n)(—5 —n, )
—D

(9a)

(9c)

(9e)

(9fl

are real and P independent. The dispersion function is
equal to

2)(k, co)=[n, f+(n~, co)]—[n, —f (n~, co)]P, (10)

K= fX,k~/

where

(a'n/an' , ), =n,"/(1+n,'
)

~

(Bn/Bni)

(8 n/BP ) =n,'/[n~(1+n, ' )'~ ],
(Bn/BP)

(13)

(14a)

(14b)

are the two principal curvatures, with n,
' and n,

" being
the derivatives with respect to nj. Note that the two

where f+ are the two functions on the right-hand side of
Eq. (la) with n„replaced by nz, and the WS may thus be
represented parametrically in terms of n~ and P by

n=n~p+n, (n~ )z,
where p =x cosP+y sing and n, (nI) is simply the square
root of f+ or f . Bearing in mind that V k)0 for a
spatially nondispersive medium, it is not dificult to
show, except for the one-sheeted hyperboloidal WS,

g=(z —n,'p)/[1+(n, ') ]'

is the unit vector normal to the WS and parallel to V,
and the parametric coordinate lines on the surface are the
lines of curvature, with the Gaussian curvature ex-
pressed as

principal curvatures become equal to each other as one
approaches the pole on the WS and thus K, defined by
Eqs. (13) and (14), again gives the correct Gaussian cur-
vature at the pole even though the coordinates n~ and P
are ill-defined there.

As shown by Lighthill, ' the method of stationary phase
implies that the contribution to the far field at r in Eq.
(6) comes mainly from the points on the WS where the
surface normals are directed towards r. If the Gaussian
curvature K at every such point is nonzero, the far field
has been shown to be equal to

E(r ) = [co /( c r ) ]g, e ' '2 (15)

which is the sum of contributions from all such points n

where g is parallel to r, the coefficient A being given by

3 =exp[(i n/4)(A~/~k, ~+A&/~A@~ )] .

We have seen, in Eq. (6), that the far field is a linear su-
perposition of plane sinusoidal waves satisfying the
dispersion relation, but here we obtain a result which is
inversely proportional to the distance r. Although the
1/r dependence is not unexpected, its origin is nonethe-
less worth pursuing and, as we shall see, its understand-
ing helps to explain the existence of 1/&'r-dependent far
field later on. In fact, the answer lies in the method of
stationary phase in which the surface integral in Eq. (6) is
reduced to a product of two line integrals each of the fol-
lowing form:

Idu exp(i A„ru ), ,

where u is essentially n~ or P and the integration domain
is around the point of stationary phase. Because r is
large, the dominant contribution comes from the central
domain of width (k„r) ' . This naturally leads to the
following interpretation. The far field comes from those
plane waves whose wave vectors end on a small element
of the WS around the point of stationary phase, other
waves simply superposing more or less in a destructive
way and making a negligible contribution. The effective
area of this element is the product of (A,~r )

'~ and
( A&r ) ', cor,responding to the two effective widths.
The larger the distance, the smaller the effective area and
thus fewer sinusoidal waves contribute constructively to
the far field. We see therefore that the inverse &Kr
dependence in Eq. (15) really stems from the size of the
effective area or, more physically, it comes from the
"number" of plane sinusoidal waves contributing to the
far field in a constructive way.

From now on, we shall consider the case with a zero
Gaussian curvature; in particular, we shall concentrate
on the problem where the far field is enhanced along the
axial direction with an inverse v'r dependence. In this
AEFF situation, the far field on the axis [i.e. , r=(0, 0,z)
with a positive z, say] will be considered first; from the
previous considerations, there are two cases to study, and
in Secs. III A and III B each will be treated separately.
Section III C is devoted to th calculation of the far field
in the neighborhood of the axis.
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A. AEFF on axis from a ring of stationary phase

Here the points of stationary phase are determined by
the extremum point on the n, n„c-urve (or the n, ni-
curve for any one P) at a nonzero n (or ni) as given by
Eq. (5); they obviously form a ring about the z axis. Be-
cause X&=0 and subsequently K=O, Eq. (15) no longer
applies. One has to go back to Eq. (6). In terms of the
parametric coordinates (ni, P), the phase factor within
the surface integral can be Taylor-series-expanded about
any point (vi, P) on the ring as

k,z = [v, +v,"(ni —vi) /2]zoo/c, (17)

which is independent of P, where v,"=d n, /dni at vi.
The integration over n~ for large z can now be performed
by means of the method of stationary phase and we ob-
tain an inverse-z ' -dependent field:

E(z)= IG e px[i(v, z+n/4)]/(coz/c)' ] & I J),
where ~, =catv, /c,

& g ) = ( I /2n) f 'd
y g

is the average of Q over the azimuthal angle P,

G=(8~)' co v /(c ~v,"~' M)/Bn, )

(18)

(19)

is a coefficient evaluated at v~, and the positive (negative)
~/4 phase is taken if the WS is topologically a two-
sheeted hyperboloid (an ellipsoid). For reference, we
write down the values of v,

" and M)/dn, :

v,"=[—(I+S/P)+(h "/2 —h' /4h )/v'h ]/2v, ,

which equals A.~ at v~, and

(20)

=+4v, v'h P,
Bn,

(21)

J(k)= icgp . — (22)

Being independent of k, J can be taken out of the average
operation. Obviously, Eq. (8) leads to

where h is given by Eq. (lb), h' and h" are derivatives
with respect to n„, all evaluated at n„=v~ and n, =v,
given by Eqs. (5a) and (5b). Again, there appear two
values of v,

" in Eq. (20). To determine which is the prop-
er one, we again note that, in Fig. 2, as the boundary line
R = —P or L = —P is approached by any parameter
point in a nearby subdomain of AEFF, the proper v,

" will
tend to zero. This criterion leads to the choice of the plus
sign in Eq. (20) for subdomains 4a, 7c, 8b, 1 la, and 13c,
whereas it leads to the choice of the minus sign for 7a and
13a.

To evaluate the P integral, we assume an electric dipole
source of dipole moment p so that

we may take p=(p„0,p, ) and the far field at (0,0,z) is
therefore given by Eq. (18) with the components of & I J )
being

& I J) = ice—p (a, +a&/2),

& I J) =- —cop, a3,
& I J),= —icup, a, ,

(24) .

P. /iE„= —a3/(a, +a&/2), (25)

which must tend to 1 (or —1) as the R = P(or L = P)— —
boundary line in Fig. 2 is approached by any parameter
point. Numerically, we have found that E /iE„keeps its
sign within any subdomain of AEFF and we may con-
clude that the R-type (or L-type) AEFF is right-handed
(or left-handed) as far as the state of polarization in the
xy plane is concerned.

with the a's given by Eq. (9) evaluated at vi. We see that
the enhanced (total) far field on the z axis is transverse or
longitudinal according to the dipole source being perpen-
dicular or parallel to the external magnetic field, respec-
tively. In the latter case, the parallel oscillation is at fre-
quencies below the plasma frequency. However, this
parallel electric field oscillation, being valid only on the
axis, by no means contradicts the well-known result that
there is no plane-wave oscillation parallel to the field in a
cold magnetoplasma below the plasma frequency. The
cause of this longitudinal oscillation may be described as
follows. The dipole source is parallel to Bo; all the excit-
ed waves with their wave vectors ending on the ring of
stationary phase are thus of equal magnitude and phase
when reaching the observer at z. Each wave field has a
component parallel as well as a component perpendicular
to Bo. From cylindrical symmetry, a11 the perpendicular
components cancel one another while the parallel com-
ponents add up to give the resultant longitudinal electric
field.

We now come to explain the origin of the 1/v'z depen-
dence. This is not dificult to do in view of the explana-
tion of the 1/r dependence following Eq. (16). The phase
given by Eq. (17) is independent of the azimuthal angle P;
this immediately indicates that, while the effective length
along the ni-coordinate line is (Aiz)

'~ or (v,"z) '~ as
in the normal case, the effective length along the P-
coordinate line is the whole length of the ring and there is
no restriction from the distance z. Physically, this means
that all the plane sinusoidal waves with wave vectors end-
ing on the ring contribute to the far field on an equal foot
ing and they reach the observer at z with the same phase.
The eftective area is therefore equal to the product of
(v,"z) '~ and 2mvi, leading to the inverse v'z-dependent
result as given by Eq. (18).

Finally, we would like to discuss the state of polariza-
tion of the wave field in the xy plane. From Eq. (24),

(23)

other e1ements being zero. If the source is a linear dipole,

B. AEFF on axis from the quasiflat pole

We now turn to the case where the derivatives of k,
with respect to k„at the origin are zero up to the third
order. This happens when the plasma parameter point
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E(z ) =E exp[i(co~P ~
' z/c+m. /4)]/(coz/c )'~

with

(26)

2

E ct) 77

c'

1/2

J
Bn,

(27)

sits exactly on one of the 8 = —P and L = —P lines in
Fig. 2. The Gaussian curvature at the pole of the WS is
obviously zero. Again we have to go back to Eq. (6). Us-
ing n„and n as the parametric coordinates for the sur-
face, expanding k, in the phase factor according to Eq.
(4a) with n„repl aced by ni, the integration can again be
done according to the standard method of stationary
phase and the result, also inversely z ' dependent, is

again apply the method of stationary phase to the k~ —or
ni —integral (see Appendix B for more details). For the
case of a ring of stationary phase at vi%0 on the WS and
for a dipole source, the electric far field is

G exp[i(lr, z+m /4)]
E(r)= H.J,

(coz/c )'

where G is given by Eq. (19) and with Iri =vice/c

II = ( I exp[is j ricos(P —4)] )

(30)

(31)

and J has been taken out of the average operation be-
cause of its k independence. Subsequent evaluations are
readily carried out in terms of the Bessel functions
J„(g)'s and the results are

where the whole expression is evaluated at n~=0, n is
given by Eq. (4b), the upper positive (lower negative) sign
in the phase is taken if the WS is a two-sheeted hyper-
boloid (an ellipsoid), and the relation n, =& ~P ~

has been
used. The actual evaluation of I J and M)/Bn, at ni=0
and k, =co&~P~/c are quite simple and Eq. (27) thus
reduces to

II„„=(a, +a2/2) Jo(g)
—

a& [Jo(g) /2+ Jo' (g) ]cos(2@),

II y =(a, +a~/2)JO(g)

+az[Jo(g)/2+ Jo (g)]cos(24),

(32a)

(32b)

1/4

J(+' )
4 C3 S2 (28)

=ia3JO(g) —a2[JO(g)/2+ Jo'(g)]sin(2@), (32c)

where the current density has been assumed lying in the
xz plane, and the plus (or minus) sign is for the R = P—
(or L = P) case. S—ince the far field comes from the sur-
face element at the pole of the WS or from the plane
waves propagating along the external magnetic field, it is
circularly polarized as expected.

The origin of the inverse &z dependence again lies in
the method of the stationary phase. Because the surface
around the pole is flatter, there are more plane sinusoidal
waves arriving at z with the same phase. The effective
area is (

~
a ~z )

' [each effective length being about
1/(

~
a ~z )' ), larger than for an ordinary pole with a

nonzero Gaussian curvature. This explains the proper
dependence of the far field on the distance.

Note that Eq. (18) does not lead to Eq. (26) if the vi~0
limit is taken. This could be explained by the fact that
only terms up to the second order had been kept in the
derivation [see Eq. (17)]; as vi tends to zero and the pa-
rameter point in the CMA diagram approaches the
R = P(or L = P) —boundary line, v,

"—at the point of the
stationary phase itself becomes vanishingly small and the
higher-order terms can no longer be neglected. In other
words, the result of Eq. (18) is valid only within the sub-
domains of AEFF. In Appendix A, consideration beyond
the method of stationary phase is made and the connec-
tion between the results in the two cases is shown.

C. AEFF around the axis from a ring of stationary phase

We now consider the far field around the z axis. If the
observation point r is written as (ricos4, raisin@, z ) in cy-
lindrical coordinates, the phase in Eq. (6) becomes

k.r =k,z+ kiricos(P @) . —

Given a finite r) and for a su%ciently large z, one can

II„,= —H; = [a~sin@+ ia 5cos@]J, (g),
H, = —H,*~ =[—a4cos@+iassin@]J, (g),
H„=a6JO(g),

where g= triri and—Jo (g) =d Jo(g)/dg . Note that

Jo(g)~1,
J,(g)~0,
Jo'(g) ~—1/2,

(32d)

(32e)

as ri or g tends to zero, the elements in Eq. (32) reduce to
those in Eq. (23) as expected. We therefore see that the
strength of the enhanced far field, of 1/v'z dependence
along the axis, varies essentially as Jo(l~iri) in the trans-
verse direction, meaning that the AEFF is confined to an
area of radius of the order of the transverse wavelength—1
Kg

IV. RADIATION ENERGY FLUX

Since a cold magnetoplasma is spatially nondispersive,
the energy flux density is simply given by the Poynting
vector. For the case of AEFF from the quasiflat pole as
discussed in Sec. III B, the corresponding wave magnetic
field is merely n, x XE, and thus the time-averaged Poynt-
ing vector, being the real part of c(EXB*)/8m, is easily
obtained to be

S(z) =c'~P~'"~E, ~'z/(8~~z) (33)

on the z axis where E is given by Eq. (28) and n, = ~P ~

'

has been substituted.
As for the case of AEFF from a ring of stationary

phase, the wave magnetic field cannot be obtained as sim-
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ply because waves of different wave vectors are involved.
However, it can still be obtained in a straightforward way
from Faraday's law B=cV XE/iso, with E given by Eq.
(6) or Eqs. (30) and (31). To 1/&z order, the magnetic
field can be written as

Gviexp[i(~, z+~/4))
B(r)=v, z XE(r)+, X.J,

(coz/c )'
(34)

X [Jo(g)/2+ Jo'(g)], (35a)

where X= (pX I exp[ii~iricos(P —4}]), an average over
the azimuthal angle P in the wave-vector space, has the
following components:

2„,=ia 4Jo(g) /2+ [ia4cos(24) —a ~ sin(24) ]

Since both E and B fields depend on the Bessel functions,
we see immediately that the radiation flux, if it exists, will
be confined to the axis with a cross-sectional area roughly
equal to the square of the transverse wavelength Ky '.
The actual evaluation of the time-averaged Poynting vec-
tor, on the other hand, is quite a tedious matter. Howev-
er, if we limit ourselves to the immediate region around
the axis so that only terms up to the first order in j=viri
in the expansion of the Bessel functions need to be kept,
the expressions for E and B can be substantially
simplified. In what follows, we shall write down such
simplified results for three orientations of the dipole
source.

(i) For a dipole source parallel to Bo, i.e. , p=pz, the
time-averaged Poynting vector is

X»» =ia4J o(g) /2 [ia—&cos(24) —a&sin(24)]

X [Jo(g)/2+ Jo'(g)], (35b)
S= i~ia4(via~ —a6v, )(yx —xy) .(chai) (36)

r.„=x.„+r.„,
&„»=a, JO(g) /2+ [ia4sin(2% ) +a, cos(2% ) ]

X [Jo(g)/2+ Jo'(g)],

&»„=—a,Jo(g)/2+ [ia4sin(24)+a, cos(2%)]

X [Jo(g)/2+ Jo'(g)],

X„,= ia 6sin+ Ji ( g),
X„=[ ia, sin@—+a3cos@]J,(g),

&» = ia6co—s@J,(g),

X,» = [ia, cos@+a 3sin@]J, (g) .

(35c)

(35d)

(35e)

(35f)

(35g)

(35h)

(35i)

Note that S is zero on the axis; this is expected in view of
the existence of only a parallel electric far field on the
axis. However, the fact that S=O while EWO on the axis
raises an interesting question on the relation between
wave energy flux density S and wave energy density U.

All the waves contributing to the far field do have the
same and nonzero group velocity parallel to the z axis,
but since their wave vectors, which end on the ring of a
finite radius, could differ by a finite amount, the usual re-
lation S=V U no longer holds. Note also that the trans-
verse divergence V~ S~ is zero and, in fact, the energy flux

lines form circles, indicating circular energy flow around
the axis.

(ii) For a dipole perpendicular to Bo and lying along

the x axis, i.e., p=px, we have

(cGpri) }
vj Q )a3

16mcoz

a4Q5 ap

2 .
'

. 2
+v, a4 a, + KggX V~ a )Q3—

2

Q4Q& a2a32+2 v Q3ag Kgxg

+ v~ a3a4 —a a5—aza5 Q22. '. 2
+2v a)+ +2v, a3 z . . (37)

This time S„being 1/z dependent, is much stronger than a usual 1/r -dependent radiation flux. On the other hand,
Vy ' Sg =0 is still true, though the energy does not necessarily flow in circles about the axis.

(iii} For a dipole circling the xy plane, i.e. , J= i cop(x+i y), we h—ave

(cGpco) 2 Q2S=
Std)z 2 2 2

v, (a4 a&) ai+ -+a3 + (a4 a&) +vi a&+ +a3 (a3+a& ) (yx —xy}
2

2
a2 vq 2+2 v, a&+ + a3 + (a4+a&) ai+ +a3
2 2 2

z (38)

Again we have a much enhanced energy flow along the
axial direction, but the transverse flux lines, different
from those in case (ii), are now circular about the axis as
perhaps expected from cylindrical symmetry considera-
tion. The actual radiation flux therefore flows helically
forward and degenerates to a pure axial flow on the axis.

We are now in a position to discuss the 1/z dependence

TS =0 (39)

where ST refers to the total energy flux density. What we
have just obtained is of the following form:

of the radiation flux in relation to the law of energy con-
servation. Since we have been considering a steady-state
source, we must require
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S=(Fi+F,z)/z, (40)

where F~ and F, are z independent; it is not divergence-
free. This is because only dominant terms, of the order of
1/z, have been kept. Including the subdominant terms of
relevance, we may write

S=(Fi+F,z)/z+( fi+f,z)/z (41)

with f~ and f, again z independent. The requirement of
a divergence-free Poynting vector at each level of 1/z im-

plies

V F~=O,

F, =V' f( .

(42)

(43)

While we have seen the validity of Eq. (42) in our results
so far obtained, Eq. (43) can be used to obtain f~ as fol-
lows. Noticing that F, is constant in the immediate re-
gion around the axis, we have, good to first order in r~,

f, =C,x,
fy = &y3' ~

(44a)

(44b)

where C„+C =F, . Disregarding, for the moment, the
contribution from F~ which itself conserves energy, the
energy flux lines in the xz plane and the yz plane are de-
scribed by

F /Cz=constXx '

F /Cz=constXy '
(4Sa)

(45b)

respectively. In particular, for the cylindrically sym-
metric case, C =C =F, /2, the flux line varies as

z =const X r~ . (46)

( f„)=riF, /2 . (48)

The energy flux line, in the averaged sense, is again given
by Eq. (46).

V. CONCLUSIONS AND FURTHER REMARKS

In this paper we have classified the plasma parameter
domains in the CMA diagram where an axially enhanced
far field exists. Such an AEFF depends on distance in an
inverse square-root manner and is found confined within
a constant cross section in most cases. Its origin has been
explained and its associated radiation characteristics
have been obtained and discussed. The existence of an
AEFF parallel to the axis and oscillating below the plas-

The actual flux lines, besides circling about the axis ac-
cording to the F~ term, are therefore curved from the ra-
dial direction towards the axis, but they are nevertheless
pointing outward, both transversely and axially. Note
that, in the absence of cylindrical symmetry, we may in-
troduce an averaged transverse outflow as

(f„)= f f~ da!A = f dP f„/2m, (47)
0

where 3 is a small cylindrical surface area about the axis.
It is then not difficult to show that

ma frequency has also been noted.
From the CMA classification, the axial enhancement of

the far field is a common occurrence (especially in the
low-frequency regime) and should be of experimental
relevance. Furthermore, knowledge about it may be use-
ful in the understanding of field-aligned radiation phe-
nomena (such as whistler ducting, pulsar radiation, etc. )

from a new perspective.

APPENDIX A

To get an idea of the relation between the two results
in Eqs. (18) and (26), the radius of the ring of extrema on
the WS is assumed so small that the integrand in Eq. (6),
except the exponential function, may be approximated by
the value at the pole, and the resultant surface integral
essentially takes the following form:

NI=2' k~dk~exp(ik, z),
0

where k, =k,0+bk ~ +ak ~ is valid, with real constants
a, b satisfying b/a &0, and furthermore, N & ( b/—
2a )'~, meaning that the integration domain includes the
position of the extremum.

By changing the integration variable to g:—k~+6/2a,
we may rewrite I as

I=sr exp[i(k, o b /4a —)z]
N +b/2a; 2 Lt)/2&~

0 0

If b =0 exactly, only the first integral survives and, for
(z a I)' )&1/N, it gives rise to the result as obtained in
Eq. (26). If b&0, both integrals have to be considered;
for (zla )' ))1/(N Ib/2a I) and (zla I) » l2a/b,
each integral contributes an equal amount and the total
gives rise to the ring result in Eq. (18). For a very small
b, the second inequality as required above may not hold
and Eq. (18) is no longer good. However, the second in-

tegral can be expressed in terms of the Fresnel integral

V+(x) —= —f e "dt, —

and we have

3/2
I=—,e '

r exp[i sgn(a)n/4]
2(l~ lz)'"

+ 7, „„)((bz/4la
I

)'~ ) )

where sgn(a)=a/lal. Knowing the series expansion and
the asymptotic expression of the Fresnel integral, this
formula obviously connects the results in Eqs. (18) and
(26).

APPENDIX 8

To evaluate the far-field integral in Eq. (6) with the
given phase in Eq. (29), the contribution from an integral
domain of width 2A around a point x~ is considered:
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Ki+ b, Kz
bI = d$ dktexp i v, +ir,'(kt —Itt)+ (kt —Irt) z+iktrtcos(P 4—) Q(kt, g),

0 K~
z z l l

where ~~,"'~h (( ~~,"~ has been assumed in the expansion. For sufficiently large z while rt remaining finite, the contribu-
tion from the domain where a.,'=0 is again dominant. In particular, if ~~,"z~ is assumed much greater than b, and rt,
the dominant contribution can be obtained in a straightforward way and the result is that given in Sec. III C. The con-
dition for applicability is therefore that the axial distance z has to be much larger than the absolute values of
( ~,'" ) /( a,") and r ~ /~,".
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