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The Reynolds-number dependence is calculated for the shear stress, normal stress difference, ve-

locity, effective viscosity, and effective normal stress coefficient by using the generalized hydro-
dynamic equations in the case of cylindrical Couette flow of a Lennard-Jones gas. The drag
coefficient is shown to decrease more rapidly than the inverse Reynolds number and rapidly vanish
on passing a critical Reynolds number. The shear stress and normal stress difference also vanish
beyond the critical Reynolds number, and there is a region in space where the effective shear viscos-
ity and normal stress coefficients become so small that the fluid behaves like an almost inviscid fluid
in the region. These numerical results indicate that the generalized hydrodynamic equations tend to
the Euler equations in the limit of sufficiently large Reynolds number at a rate faster than that for
the Navier-Stokes equation and that the fluid is almost inviscid in some parts where the velocity
changes steeply, and viscous in the rest.

I. INTRODUCTION

In the Na vier-Stokes theory of Auid dynamics the
effects of viscosity is accounted for by the term —gpV U,
where gp is the viscosity coefficient and u is the Auid ve-
locity. When cast in reduced form, this term is multi-
plied by the inverse Reynolds number A'R, ', while the rest
of the momentum balance equation —i.e., the Navier-
Stokes equation —is the order of unity with respect to
JVR, . Therefore the importance of the viscous term di-
minishes as JV&, increases, and the Navier-Stokes equa-
tion asymptotically approaches the Euler equation for
ideal Iluids. It turns out that the reduced stress is O(1) in
the Aow geometry considered in the present work, and
therefore does not change as the flow conditions, such as
the density and the reference velocity —e.g. , the mean ve-
locity or the mainstream velocity —vary. This feature is
an important characteristic of the Navier-Stokes equation
in the present geometry.

When the stress tensor is proportional to the velocity
gradient, as in the Navier-Stokes theory, the Auid is said
to be Newtonian, but fluids are generally Newtonian only
if the shear rate is sufficiently small, and become non-
Newtonian, that is, the viscosity is dependent on the
shear rate, as the shear rate increases to a large value.
An interesting example is the molecular-dynamics calcu-
lations' on argon, which show that even argon, which is a
typical simple Auid, becomes a non-Newtonian Auid as its
density and temperature reach those of the triple point
and the shear rate increases to a sufficiently large value.
Non-Newtonian Auids are generally known to have a
high value for the zero-shear-rate viscosity. However, in
the case of argon, since the potential energy of interac-
tion is rather small, its Newtonian viscosity gp is also
quite small, and yet it can become non-Newtonian under
such conditions. This strongly suggests that all Auids can
generally become non-Newtonian when they reach a state

in which their constitutive equation for their stress tensor
becomes nonlinear with respect to the velocity gradient
and/or stress tensor, and therefore the viscosity is shear-
rate dependent. If this is the case, then the viscous term
in the Navier-Stokes equation must be replaced by V H,
where H is the stress tensor given by a nonlinear constitu-
tive equation, and, when cast in a suitable reduced form,
V*.H* in the present geometry is expected to be no
longer O(1) with respect to JVR, , but a function of A'z,
whose precise form is determined by the solution of the
constitutive equation for H and the momentum balance
equation. In this paper we investigate the Reynolds-
number dependence of shear stress and normal stress
differences of a Lennard-Jones fluid in the case of cylin-
drical Couette flow, by using generalized hydrodynamic
equations. "

In the previous papers on cylindrical Couette Aow
of a Lennard-Jones gas, we have used a steady general-
ized hydrodynamic equations derived from the
Boltzmann equation. When appropriately cast into simi-
larity forms by using reduced variables, the generalized
hydrodynamic equations contain, in addition to the
Prandtl and Eckert numbers associated with heat transfer
between the gas and the walls, two important Auid
dynamical numbers, Reynolds (or Mach) and Knudsen
numbers, and the dependence on the latter of Aow prop-
erties has been the focus of interest in our previous
work. Since the available experimental data were ob-
tained for various values of the Knudsen number at a
fixed Mach, Prandtl, and Eckert number, the generalized
hydrodynamic equations were numerically solved only
for cases corresponding to the experimental conditions at
a fixed Mach number. The results of calculation are in
good agreement with experiment and the Monte Carlo
direct simulation results, and have been reported.
The reduced generalized hydrodynamic equations used
for the purpose suggest that they should reduce to the
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corresponding set of Euler's (ideal) hydrodynamic equa-
tions at a rate different from that predicted by the
Na vier-Stokes equation as the Reynolds number in-
creases. In the present paper we address our inquiry to
this question and report on the salient features of our
study on the Reynolds-number dependence of the shear
stress, normal stress differences, and related quantities in
the case of cylindrical Couette flow. From the JVa,
dependence calculated, we may make some inference on
the approach of the generalized hydrodynamic equations
to Euler's equations, at least, in the case of the Aow under
consideration.

The Navier-Stokes equation contains a constant viscos-
ity coefficient as a constitutive parameter. Since the
viscosity of a gas of normal density is independent of the
gas density, the Navier-Stokes equation becomes incap-
able of describing the gas behavior in the low-density re-
gime, where the viscosity vanishes with the diminishing
density of the gas. This low-density difficulty is a major
weakness of the Navier-Stokes theory, which is usually
avoided by modifying the boundary conditions in the
conventional methods in rarefied gas dynamics. Howev-
er, such modifications yield only adjustable parameter
theories, since they contain accommodation coefficients
which are adjustable parameters in practice. In the pre-
vious papers on cylindrical Couette flow of a
Lennard-Jones gas, we have shown that generalized hy-
drodynamic equations can explain experimental data on a
low-density gas without modifying the boundary condi-
tions from stick to slip boundary conditions, provided
nonlinear transport processes are appropriately taken
into consideration. The nonlinear transport processes
and the terms in the generalied hydrodynamic equations
yield an entropy production qualitatively different from
the linear irreversible thermodynamic form (i.e., the
Rayleigh-Onsager dissipation function ). Since they are
also largely responsible for providing the features missing
in the Navier-Stokes and Fourier equations, they provide
a logical object of investigation to answer the question
posed above. We have previously shown ' that the same
terms provide a way to avoid the aforementioned
difficulty with the Navier-Stokes equation in gas dynam-
ics. Therefore, answering the question regarding the A'R,
dependence of Aow properties would, simultaneously,
answer whether the scope of generalized hydrodynamic
equations can cover a wider range of fluid density and
thermodynamic forces within a single framework of
theory. Moreover, understanding the manner in which
inviscid Auid behavior is approached by a fluid as the
Reynolds number increases, may also provide some clues
to how a turbulent fluid behavior might arise in a Auid
Aow since turbulence occurs beyond a sufficiently large
Reynolds number. In this connection it is useful to refer
to a recent work by Hellberg and Orszag, who have
studied instability of a three-mode projection of the
Navier-Stokes equation and found that decreasing the
viscosity below a critical value is accompanied by
period-doubling bifurcations by the flow. It is interesting
that these authors elect to change the viscosity instead of
simply increasing the Reynolds number. However, it
must be noted that changing the viscosity in the Navier-

Stokes equation is equivalent to changing the substance
to another, since the viscosity is invariant in the Navier-
Stokes equation, and consequently, the effect of the
change in viscosity is seen only over a class of substances
but not in a particular substance undergoing the flow un-
der consideration. In generalized hydrodynamics an
effective viscosity appears in the place of go (Newtonian
viscosity). Therefore it is interesting to examine a mode
by which the effective viscosity locally changes in a given
substance. As we will see, the generalized hydrodynam-
ics approach does not require changing the substance to
vary the effective viscosity. The nonlinear transport pro-
cesses in the Aow automatically take care of that, since
the effective viscosity can be a strong function of posi-
tion, and thus significantly deviate from the zero-shear-
rate viscosity (i.e., Newtonian viscosity) as the position
changes. Under these circumstances the question ad-
dressed here becomes quite interesting and may even
have a deeper meaning to Auid dynamics in general, since
the Auid over a volume may appear to be a spatially inho-
mogeneous blend of almost inviscid and viscous Auids,
the inviscid part arising from the rapidly changing veloci-
ty field while the viscous part arising from the slowly
changing velocity field.

Here we examine, in particular, the Reynolds-number
dependence of shear stress and normal stress differences
along with the velocity, shear viscosity, normal stress
coefficient, and drag coefficient for cylindrical Couette
flow of a Lennard-Jones gas. We find them rapidly de-
creasing in general, and eventually vanishing altogether,
except for the transport coefficients which attain a con-
stant value, as the Reynolds number increases beyond a
critical value. In our previous studies we have made anti-
cipatory remarks without proof or concrete evidence re-
garding the asymptotic approach to the Euler equations
taken by the generalized hydrodynamic equations. The
Aow behavior mentioned above confirms our anticipation,
and here we provide a piece of evidence for such behav-
ior.

In Sec. II we present a short summary of generalized
hydrodynamic equations for the Aow problem in equation
and in Sec. III the numerical results are presented for
flow profiles and the Reynolds-number dependence of
shear stress, primary normal stress difference (the secon-
dary normal stress coefficient is equal to the negative of
the primary one in the present theory), and drag
coefficient. Section IV is for concluding remarks.

II. GENERALIZED HYDRODYNAMIC EQUATIONS:
A BRIEF SUMMARY

In a macroscopic description of irreversible processes
we aim to obtain a theory completely consistent with the
thermodynamic laws, since no irreversible process is pos-
sible if it violates the thermodynamic laws. If we start
the description from a statistical-mechanical —namely,
kinetic —theory of matter, then the evolution equations
derived from the kinetic equation must be made con-
sistent with the statistical-mechanical representation of
the second law in particular. In the modified moment
method "' ' ""of solution for the Boltzmann equa-
tion and generalized Boltzmann equation' ' ' for dense
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A. Generalized hydrodynamic equations
for a single-component fluid

To such an approximation, and to the usual 13-
moment approximation, ' the set of evolution equations
is as follows:

p(r, r) = Vpu—(r, t), —
at

p u(r, t)= —V P(r, t),
dt

d
p 6'(r, t)= —V Q —P:Vu,

dt
(3)

d ~ ~ (2) ~ ppP sinhK
p P(r, t)=2py+2p[P y]' ' —p[co, P]—

dt 10

(4)

fluids, approximate solutions to the kinetic equation are
obtained in such a way that the H theorem is satisfied by
them. Since the evolution equations for macroscopic
variables necessary for describing a process of interest are
derived with such an approximate solution, they are fully
consistent with the thermodynamic laws, and we are as-
sured that physical deductions we make from the evolu-
tion equations so obtained are also consistent, at least,
with the important second law of thermodynamics.

The modified moment method "' ' " yields a set of
evolution equations for macroscopic variables, which
generalize the conventional hydrodynamic equations.
The evolution equations consist of the usual conservation
equations and constitutive equatioris for fluxes. The
latter consist of terms collectively called the convective
term, which contains the thermodynamic force driving
the particular flux, and a term that we call the dissipative
term. This term originates from the collision term in the
kinetic (i.e., Boltzmann) equation and is the seat of ener-

gy dissipation. The derivatives of constitutive equations
that we use in practice involve an approximation for the
nonlinear collision integral in the Boltzmann equation, or
the generalized Boltzmann equation, but the approxima-
tion does not involve a linearization of the collision in-
tegral. This feature is an important one that sets the
modified moment method apart from the Chapman-
Enskog method of solution, or the conventional moment
method. " To obtain such an approximation we use a cu-
mulant expansion method for the collision integral, and,
to first-order cumulant approximation, the collision in-
tegral yields dissipative terms in the constitutive equa-
tions for fluxes which are proportional to a hyperbolic
sine function whose argument is simply the Rayleigh-
Onsager dissipation function. Therefore, the cumulant
expansion yields dissipative terms that amount to a par-
tial resummation of infinite Chapman-Enskog series for
the collision term in the Boltzmann equation. The con-
stitutive equations thus obtained are expected to be better
behaved, but they are highly nonlinear with respect to
fluxes

p Q(r, t)= —(V P) P+Q y —C P VT —p[co, Q]dt

p ppQ sinh~

p b, (r, t) =
—,'pP:y —

—,'pb, V y —p in(pv )

ppA sinh~

'gbP K

where the flux evolution equations are in the Jaumann
derivative form, whose kinetic theory basis is discussed in
Refs. 12 and 13. In (1)—(6) 0/dt is the substantial deriva-
tive, p is the mass density, U = 1/p is the specific volume,
u is the fluid velocity, 6 is the internal energy, C is the
specific heat per unit mass, P is the stress tensor, Q is the
heat flux, p is the hydrostatic pressure,

y= —
—,'[Vu+(Vu)']+ —,

' UV u,
co= —,

' [Vu —(Vu)'],

P =[—,'(P+P') —
—,
' U trP]/p,

6=(—,'trP —p)/p,

Q=Q/p

[co, A]=co 3 —A co,

Ic=p[(r /2i)0) P:P+(rb lrlI, O) b,

+(~ /A, ) Q Q]'

r =[2qo(m„kii T/2)' ]' /nkvd Tcr,

r =[Ao(m„k&T/2)'~ ]'~ Inkii TcJ

rb =[gbo(m„k~ T/2)'~ ]' Inkii Tcr .

Here gp is the Newtonian viscosity, kp is the Fourier
thermal conductivity, gbp is the bulk viscosity, m„ is the
reduced mass, n is the number density, o. is the size pa-
rameter of the molecule, k~ is the Boltzmann constant,
and U is the unit second-rank tensor.

The set of evolution equations (1)—(6), which we will
call generalized hydrodynamic equations, is closed except
for the equation of state and the caloric equation of state
necessary for the pressure and the specific heat in the
evolution equations, and their solutions subject to bound-
ary and initial conditions will enable us to describe flow
properties of a substance of interest. The first three equa-
tions (1)—(3) are familiar conservation laws for mass,
momentum, and internal energy. The last three equa-
tions (4)—(6) are the constitutive equations for the trace-
less symmetric part of the stress tensor, its excess trace
part, and the heat flux of the substance. These constitu-
tive equations contain information on the molecular con-
stitution of the substance in the transport coefticients-
viscosity, bulk viscosity, and thermal conductivity—
appearing in them. Except for these, the parameters ~,
~b, and ~ and the specific heat, no other variables in the
set (1)—(6) reflect the molecularity of the substance in
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question. It is significant that the molecular parameters
appear in the dissipative terms —i.e., the terms involving
the hyperbolic sine function —in (4}—(6). Thus we see that
energy dissipation is a result of molecular interactions in
the system. The dissipative terms in the constitutive
equations are directly associated with the entropy pro-
duction occurring in the system because of the dissipative
fluxes present in the system: momentum fluxes (stress
tensors), heat fluxes, and diffusion fluxes in the case of a
mixture. The entropy production is in fact given by the
formula

ent k~ g KsinhK, (7)

B. Steady generalized hydrodynamic equations

g =(m„/2k~T)' /(no. )

This form of entropy production is always positive and
reduces to the Rayleigh-Onsager dissipation function ap-
pearing in linear irreversible thermodynamics holding
near equilibrium. Therefore the irreversible processes de-
scribed by (4)—(6) may be regarded as occurring far from
equilibrium, in the sense that the entropy production (7)
reduces to its linear-theory version as the values of the
fluxes get small.

Since we will consider gases with no bulk viscosity, we
may set b =0 and neglect (6) entirely. We must add to
the set (1)—(6) an equation of state, as well as the caloric
equation of state for the specific heat. In our calculation
below we will take the ideal-gas versions for them.

The reader is referred to the previous papers ' in this
series for a discussion on the significance of the Jaumann
derivatives and corotational formulation of constitutive
equations. The kinetic equations, such as the Boltzmann
equation for dilute gases and the generalized Boltzmann
equation for dense fluids, produce constitutive equations
containing higher-order moments. The latter are neglect-
ed in (4)—(6), since the number of moments is limited to
13 in the present theory. %'e believe that it makes more
sense to simply neglect the higher moments than to cal-
culate them in terms of lower-order moments, since the
13-moment approximation is equivalent to mutilating a
mathematical space of macroscopic variables (Gibbs
space) to a space of lower dimension, and it does not
make sense to include variables in the subset truncated
away in the approximation. Note, however, it is the con-
ventional practice to include higher-order moments ex-
pressed in terms of lower-order moments in the usual mo-
ment method. "

pp = rr = rr,„S,S„+n„,S„S,+ II„S„S,+ rr„S,6„

+Hss5s5s+ Hs, 5s5, + II,„5,5, +H, ~5,5s

+H„6,5, ,

and similar decompositions can be made for tensors y
and ~. Here 5„6&, and 6, are unit vectors in the cylin-
drical coordinate system. The vector and tensor com-
ponents u„, H„„,etc. depend on r, 0, and z in general.

If we assume that the length of cylinders is infinite in
order to remove the end effect, the system becomes
translationally symmetric along the z axis. Consequently,
the fluid properties are translationally invariant in z and
the macroscopic variables become independent of z.
Since there is also axial symmetry around the z axis, they
are also independent of the angle variable 0. Thus the
macroscopic variables depend on the radial position r
only. Taking these symmetry properties into account, we
obtain the steady-state equations for (1)—(5) in cylindrical
coordinates in the following forms

d
(rpu )=0,

du»
P (p+ H„„)—( H„„—H«) /r, (9a)

d
df'

du g u»ug
p u„+

dl" T

= —r (r H„s)+(H„s—Hs„)/r,
dl"

(9b)

dupu„= —r ' (rII„,),
dp" dp'

(9c)

dugpu„= —r (rQ„)—He„dr

du, H„,u, (p+ H«)u—„—H„+
cA' 7"

cylinder. To study this system it is convenient to express
the generalized hydrodynamic equations in the cylindri-
cal coordinates. For this purpose we first decompose
various vectors and tensors into components:

u =u„5„+u q6q+ u, 5, ,

Q =Q„5„+Q ~5s+ Q, 5, ,

Since we are interested in the cylindrical Couette Bow
of a Lennard-Jones gas, the most appropriate coordinate
system is that of cylindrical coordinates (r, 8,z). We im-
agine that two concentric cylinders of a su%ciently long
length are aligned along the z axis. The radii of the inner
and outer cylinders are, respectively, R, and R„and the
inner cylinder rotates at angular speed 0 around the z
axis. The inner and outer cylinders are at different tern-
peratures T; and T„respectively, and T, ) T, . There-
fore, there is a heat Bow from the inner to the outer

du»—(p+II„„}
dr

~e
p H„„=—

2p y„', (y H„~+—f3H—~, )
IO

+ —', ( H «y s+ H„y, —2H„„y„)

dH„„—3vH„„—u„ dl'

(10)

(1 la)
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qe
pII„g = —2py —2(yIIgg+Pllg, )+(y, —3 )II,g

go
, du, , d(rug), d(ug/r)

P=2 ', co=(2r} ', y=2 'r
dr ' dr dr

dH„g

Gr
(1 lb) , d(ru„)

v=(3r) ', y„=2v-
Gr

u»
y'g = —v+

plIgg = —2pyg+ —', (yll„g+PII„, )

+-', (11„„y„+11„y,—211„y,)

dHgg
3vHgg u„ dr

pII = —2pP —2(ylIg, +Pll„)+(yg —»)II
90

dH„,

plI, =(y„—3v}ll, u„—
gp dr

(1 lc)

(1 ld)

(1 le)

d lnT ~ sinh~
y, = —v, g=, a=T(. p, q, =

The symbol y represents the shear rate and cu the angular
speed at distance r. Note that y„+kg+@,=0, since the
rate-of-strain tensor y is traceless.

On integration of (8) we obtain

rpu„=const .

Since u„=0 at the boundaries, the integration constant
must be equal to zero, and we conclude u„=0 everywhere
in the interval R; ~r ~R, . The radial velocity gradient
(du„/dr) must also vanish. Then we can deduce from
(lie) that IIg, =0. Therefore all terms containing u„, in

the steady-state equations presented above, vanish. With
these results and by using (1 la)—(1 lf), it is also possible to
show that P=O, everywhere. This in turn means II„,=0.
Therefore we conclude that

Xo
Q„q, = —A~ — (2y+ co)gg

2ug u„ +3u„v H,„

+3PQ, +2Pu„II„,+2cgu„ll„g

6f—(y „+3v) Q„—u„ dr

pII„=—2py, + —', (ylI„g+PII,„)
Qo

+ —,'(II„„y„+II y
—2II„y, }—3vtI„

dH„
dr

(12a)

11g, =lI,g=II =II,„=O, Q, =0, everywhere .

This result considerably simplifies the steady-state equa-
tions. Since normal stress differences are measured in ex-
periment, it is useful to define them as follows:

X, =H„—H„„, iV, =H„„—H„.
There are primary and secondary normal stress
coefFicients associated with them. As we will see, they are
generally second order in shear rate, and therefore do not
manifest themselves when the shear rate is small, but be-
come very important in the high-shear-rate regime.

C. Reduced steady-state generalized
hydrodynamic equations

It is convenient to work with reduced, dimensionless
generalized hydrodynamic equations when their solutions
are sought after. For the purpose of reducing them, we
define

Xo
Qge, = — TC,X—

2ug +3vu„—
u 2

Hg„r
A=T, —T, , D =R, —R,.

ko+ (cog„—2cou„IIgg —2Pu„IIg, )
a

G g—(3v+ yg)gg —u„ dr
(12b)

for the temperature difference and the annular gap be-
tween the concentric cylinders, respectively. Then, with
the reference variables denoted by T„p„p„,U„q„and

for temperature, pressure, mass density, velocity,
viscosity and heat conductivity, respectively, we define
the reduced variables

Q.e, =—

where

u ugTC' y — +3vu, — II„,r

—2PQ„+2~u„ll„+2Pu„lI„

dQ,—(y, +3v)Q, —u„ Jr

T'= T/T„, p'=p/p„, u*=ug/U„,

p"=pip„, g=r/D, h"=TC' /TC (T„),

=pTCp/p. TC (T. ) rjo =rlo/'c}. Ao =ho/X.

y
*=y /( U, /D ), y* =yD, co

' = co /( U„ /D ),
(12c)

11*= II„ /(2g„U„ID), Q* =Q„ l(k, „b,/DT„),

&,*=&;/(2q„U, /D) (i =1,2), Q,* =Qg/(A. „~/DT„) .
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The reference variables are taken as follows:

T„=(T,+ T; )/2, p„=RT„/p„, U„=OR;,

T)„=t)o( T„,p„), A.„=A o( T„,p„) .

where p„ is the initial chamber pressure taken as the
reference pressure. We also define various dimensionless
numbers occurring in Quid dynamics in terms of the
reference variables introduced above: the Mach number,

JVM = U„l(yoRT„)'/

where yo=C~/C, and R is the gas constant per unit
mass, the Reynolds number,

JVR =p„U„D/2)„,

the Eckert number,

JV~ = U, IC b„, [C = C ( T„)],
the Prandtl number,

JVp, =C g„T„/A,„,
the Knudsen number,

A'R„= 1 /D,
where l is the mean free path. The Reynolds number is
related to the Mach and Knudsen numbers as follows:

N*, q„=45(goy*/p*)H*,

N2q, = —45(2)o y*/p*)II*,

Q*q, = —Roy* —(5/JVp, )(AO /a*)

X [(2y*+co*)gs

+ —,'JVp„(h*y* —JV~u* /g)

X(N2 —N*, )],
Qgq, = —(5/JVp, )(ko /a*)[JVp, (h *y*—JV~u * /g)H*

where

q, =sinh~/~,

K=6K

(
3/2/ )1/2( Ts 1/4/2 e 1/2 e

)xo 90

X[II* + —'(N* +N* +N*N* )3

+ ~( s Igs )( g +2+ g s2 )]1/2

the reduced shear rate,

d(u /g)
d

(20)

(21)

(22)

(23)

(25)

the reduced angular velocity,
(13)

It is also useful to define a composite dimensionless num-
ber

gaby

5 = (2yol~)'/ A'M JVy„= (2/~)A'R, JVK„. (14)

y(Y M [p*+—,'5(N2 N,* )] 5N f I(,— —

d
d (g H*)=0,

(15)

(16)

(gg*)+2JVp~Ey*H* =0,

H*q, = —2r)0 y* ——', 5(2toy*/p*)(2N ) +N2 ), (18)

The first mode of expression for 5 has been used in the
previous papers, but the second mode for 5 provides
another fluid dynamic aspect to the parameter, which we
would like to discuss here. That is, since 5 is a measure
of the importance of nonlinear transport processes, the
latter will become important to flow properties as the
value of JVR„A'K„, or both increases.

The viscosity go and thermal conductivity A.o are as-
sumed to obey the density and temperature dependence
obtained by Ashurst and Hoover, ' by using a nonequili-
brium molecular-dynamics method. A similar expression
for viscosity was also obtained by one of us' by using the
generalized Boltzmann equation.

By using the reduced variables defined above, we ob-
tain the steady-state generalized hydrodynamic equations
in reduced units as follows:

co* =(2$), e = b, /4T„N~A'p„.) d(gu*)

We stress that the factor q, is responsible for nonlinear
transport processes and the reduced entropy production
may be defined as

0 ]
— hK

In the limit of small ~, or small H*, etc. this entropy pro-
duction may be approximated by o,„,=~, and thus we
recover the Rayleigh-Onsager form of o.,„, for linear
processes.

Note that the equation of continuity is omitted from
the set (15)—(22), since u„=0, everywhere, as we have al-
ready discussed. Therefore the equation of continuity
does not show up in the set. The density is determined
through the equation of state.

In the set (15)—(22) the reduced pressure p* is defined
with a reference pressure p„, but if p* were instead
defined relative to the kinetic energy p, U„/2, and then if
the relations (13) and (14) between 5, JVR„JVM, and JVR„
were used, (15) in particular would have JVR,

' multiplied
to the normal stress differences instead of JVM on the left
and 6 on the right. In any case, since 6 is a composite
number consisting of either A'~, and JVK„, or JVM and
JVK„, the constitutive equations (18)—(22) contain the Rey-
nolds number, and therefore II*, N &, Nz, etc. depend on
JVR, among other parameters. It then is interesting to see
how they vary with JV&, or 6 at a given &~K„, in the case
of the cylindrical Couette flow under consideration.
Since the set (15)—(22) is not possible to solve analytically,
the question must be answered by a numerical solution
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method. Since we have discussed the numerical method
in detail in the previous papers, ' we wi11 refer the reader
to them for it. We simply remark that a sixth-order
Runge-Kutta method is used together with a shooting
method.

It is useful to remark that the Navier-Stokes and
Fourier equations' for the cylindrical Couette flow are

(ii ) d

dg
d

d
(g'11*)=O,

(26)

(27)

(28)

H' = —2go y',
Q

(29)

(30)

which arise from (15)—(22) if we set X*, = —Xz =0,
Qs=0, and q, =l. Note that these conditions are ar-
rived at if the fluxes are suKciently small, so that the
terms of quadratic or higher order in the fluxes are
neg1ected in the constitutive equations. Thus we see that
the Navier-Stokes and Fourier equations are a particular
case of the generalized hydrodynamic equations (15)—(22).
Since go and A,o are independent of the gas density, the
set (26)—(30) yields, for example, 11,which in this partic-
ular case does not change with JVR„as is easily expected
from the fact that the Reynolds number does not appear
in (29) and (30). We will find that this is not the case with
the set (15)—(22).

If the factor q, is retained in (29) and (30), then the
shear stress and heat flux depend on the shear rate and
the temperature gap, and the effective shear viscosity, for
example, becomes non-Newtonian and varies with in-
creasing shear rate or JVR, . This is one of the aspects we
would like to show with the set (15)—(22) in this paper.

We obtain from (19) and (20) the relation

iV) = —N2

Therefore we may eliminate (20) from the set of general-
ized hydrodynamic equations to consider for the problem
in hand. We also obtain from (18) and (19) the following
relation between X& and II*:

(X*+3p*/25) +6II* =9p* /45

at the inner cylinder wall;

u*=i, T'=T, /T„

at the outer cylinder wall; and
R

[2n(R, —R; )] ' f dr 2vrrp (r)=1
l

for the mass density. We observe that the condition on
the mass density is, strictly speaking, not a boundary con-
dition. It simply expresses the mass conservation law.
Since experiment does not provide us with a density
boundary condition or a pressure boundary condition, it
is the only sensible option left for us to take.

The vanishing discriminant of the stress ellipse gives
the relation p*=4&211*5/3 at the inner boundary when
A'R, «JP~, . We replace the boundary condition on u * at
the inner boundary when JVR, «Az, . We remark that the
boundary conditions presented above are stick boundary
conditions. More detailed discussions of the question of
boundary conditions for rarefied gases are given in Ref. 3.

III. REYNOLDS-NUMBER DEPENDENCE
OF FLOW PROPERTIES

Equations (15)—(22) are numerically solved, subject to
the stick boundary conditions as described in Refs. 2 and
3, and fiow profiles are obtained for various values of JVa,
at a given gas density (i.e., Knudsen number). Although
we have calculated flow profiles for all the flow quantities
appearing in the set (15)—(22), for lack of space we will
present only those related to the velocity and stresses,
since the latter are the most interesting from the
viewpoint of flow instability' and turbulence. ' The pa-
rameter values for various results are summarized in
Table I.

In Figs. 1(a)—1(c) the reduced velocity, shear stress, and
primary normal stress difference are plotted against the
reduced radial distance g for various values of the Rey-
nolds number indicated. The value of the Knudsen num-
ber is fixed at JVK„=0.0544. Since the secondary normal
stress difference is related to the primary one by the rela-
tion N2 = —X& in the present case, we do not show the
results for N2. The velocity profiles show a slip on pass-
ing the critical value of JVR, listed in Table I. Judged

TABLE I. Parameter values.

which we call the stress ellipse. This is a generator of a
cone in (II,Ni, p*) space, and the solutions of the gen-
eralized hydrodynamic equations must follow a trajectory
confined to a sector on the cone surface. This restriction
leads to the singular behavior of various fluid variables at
the critical Reynolds number, as we will show in Sec. III.
In fact, the discriminant of the ellipse vanishes as the
Reynolds number surpasses the critical value, and the
vanishing discriminant in turn provides a boundary con-
dition for pressure. This pressure boundary condition
frees one of the boundary conditions on velocity, temper-
ature, and mass density, which we assume to be

Curve

0.0544
0.0544
0.0544
0.0544
0.0544
0.0544

0.005 44
0.0544
0.544

29.73
0.34

69.02
148.6
208. 1

297.2

1699.4
69.02

1.397

1.00
2.03
2.32
5.00
7.00

10.00

u*=O, T*=T, /T„ 'Critical values of A'R, .
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n*= V ' "(a+bJVRe Re

X*, =JVg, /[csinh '(f JV~, )+d] .

(ii) Supercri tical region:

11*=a log, oJVa, +b,
N*, =n log, oJVR, +m,
for JV~„=0.005 44, and 11*=s /JPa, ,

X*, = —
n/MR, ,

(32a)

(32b)

(33a)

(33b)

(33c)

(33d)

for AK„=0.0544 and 0.544. The correlation coefficients

4~—.—

(&)
3-

wall. The curves indicate that there is a transition (singu-
lar) point beyond which II* and .V& sharply decrease in
magnitude, eventually vanishing as JV&, increases to a
sufficiently large value. We find that the JVa, -dependence
of II' and .V*, can be empirically fitted to good accuracy
by the following functional forms.

(i) Subcritical region:

of the linear regressions for the equations presented
above range from 0.9988 to 0.9999, indicating good
fittings. The fitting functions for JV~„=0.0544 and 0.544
change to a simple power form from a logarithmic func-
tion holding for JVK„=0.005 44. Therefore there appears
to be some qualitative change in dynamics on transition
from JV&„=0.00544 to JVK„=0.0544. We have no ex-
planation for this change at present, although this density
(i.e., JVK„) dependence is reminiscent of that of the drag
coe%cient for a compressible Quid. '

The various parameter values in the formulas above
are summarized in Table II. We have shown in a previ-
ous work that the slip exhibited by the velocity and the
stresses at the inner cylinder wall is due to the constraint
imposed by the constitutive equations on the shear stress
and the normal stress, which must remain on the stress
ellipse. This constraint has led to a relationship between
the pressure and the shear stress at a boundary, and this
relation makes one of the boundary conditions
superfluous. The velocity boundary condition at the
inner cylinder wall turns out to be such a boundary con-
dition to be removed, and the consequence is the velocity
slip at the inner cylinder wall. The velocity slip neces-
sarily gives rise to anomalous reductions in the stresses
and the drag force at the inner wall. This aspect was in-
vestigated with respect to the JV~„dependence in a previ-
ous paper. Here we have presented the JVR, dependence
of the behavior. We And that the slip phenomenon ap-

d d d d
d

TABLE II. Parameter values for fitting functions.

Subcritical
+ =sJV1 (a +b~ ~a/~ a

0 b

0.005 44
0.0544
0.544

1.0182
1.0516
1.0642

10
10
11

0.014
0.1

0.2

1.0116
0.0116
0.9086

C
log 1 0( ((-Re/+Re)

N,* =JVg, /[csinh '(0.5'„,)+d]
f) c d

2
0.005 44
0.0544
0.544

0.3
0.3
0

—9879.82
—110.62

—0.199 25

81.8875
5.647 57
0.515 63

0.5
0.5

300

-0
I

C„=H*/JV, '

3]
oJ Supercritical

l I *= a log, oJV„,+ b; N*, = n log, OJVa, + m; JVx„=0.005 44
a b n Pl

—5 ~ 88 22.21 8.315 —31.41

—1
C

log &0(+Rei'+Re~
ll*=sIJVa„N,* = —n IJVa„JVx„~0.0544

FIG. 3. (a) Shear stress at the inner cylinder wall vs

loglo(JV&, /JV&, ). The symbols are for A'„„=0.005 44, + for
JVK„=0.0544, and 0 for JV„„=0.544. (b) Primary normal stress
dift'erence at the inner cylinder wall vs loglo(A'R, /JV'R, ). The
meaning of the symbols is the same as in panel (a).

0.0544
0.544

275.8
4.336

1.005
1.001

C„=II*/W„,
'Il* is the same as above.

1.005
1.001

195.0
3.066
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pears as either one of JVK„and JV„, is increased beyond
the critical value; the two parameters appear only in the
form of a composite parameter 6; and 6 is associated with
the nonlinear constitutive equations. These facts suggest
that the origin of the slip phenomenon lies in the non-
linear constitutive equations, especially, for the stress ten-
sor components. This observation is strengthened by the
fact that the slip does not arise if the constitutive equa-
tion for the shear stress is linear and the normal stress
differences vanish. (This is the case not only for the
Navier-Stokes equation, but also for the fixed-frame-of-
reference Maxwell model for the stress tensor, which
does not include the stress-shear rate coupling term
[II y )' ', see Ref. 2.)

It is clear from (33) that the reduced shear and normal
stresses decrease with the Reynolds number, and eventu-
ally vanish in the limit JV~,~ ~, where the fiuid ap-
proaches the ideal (Euler's) flow behavior. The Navier-
Stokes theory in the present Aow geometry, however, pre-
dicts that the reduced shear stress is independent of JV~,
and that the normal stress difference is equal to zero, and
thus the Aow will not become ideal for any Reynolds
number. The present Couette-flow configuration thus
turns out to be one of situations where the Navier-Stokes
equation does not offer a mechanism capable of rendering
the fiow inviscid as JV~,~ ~. This lack of mechanism
for transition to ideal fluid behavior in the present
geometry is essentially due to the independence of dissi-
pative processes from convective effects vested in the in-
ertia terms in the Navier-Stokes equation. From (26),
(27), and (13) it is seen that, for a fixed Knudsen number,
inertia effects grow with increasing Reynolds number,
and yet the dissipative terms remains uninfluenced by the
inertia terms, since the velocity and shear stress profiles
can be separately solved for from (27) and (29) without in-

voking (26). This lack of coupling may be restored only if
other terms left out are included in the Navier-Stokes
equation by increasing the dimensionality of the equa-
tion; only then do the inertia and dissipative effects have
an influence on each other. Unlike the Navier-Stokes
equation, the generalized hydrodynamic equations, name-
ly (15)—(22), exhibit an effective coupling between the con-
vective and dissipative terms through the products of
thermodynamic Auxes and gradients, and the nonlinear
factor q„and such a coupling ensures the approach to
ideal Aow behavior in the large-Reynolds-number limit,
even in the present geometry.

We have so far discussed the dependence on Reynolds
number of flow properties irrespective of the position of
the fiuid particle (by this we do not mean a molecule in
the fiuid but an element of fiuid volume), and the ap-
proach of the governing equations to the Euler equations.
In the case of generalized hydrodynamic equations, it is
possible for a local inviscid Aow behavior to arise in the
presence of large local thermodynamic gradients. In the
case of a high shear rate (e.g. , such as the one in the vi-
cinity of a sharp boundary), the nonlinear factor q, in-
creases owing to the increased stresses and Auxes, and it,
in turn, diminishes the value of effective transport
coefficients, such as viscosity and thermal conductivity,
or the stresses and heat flux. This results in a locally

Cd = H„&A /(p„U„A /2) = II„ /(p„U„ /2), (34)

where A is the area of the surface over which the Aow
occurs. We will take it as the area of the inner cylinder
per unit height. By using the Aow profile data we have
obtained, we have computed the drag coefficient at the
inner cylinder wall. The result is presented in Fig. 4,
where three different symbols stand for three difFerent
Knudsen numbers: C' for JVK„=0.=.44, + for JVK„
=0.0544, and for JV&„=0.005 44. Thus they represent
different states of the gas, and the drag coefficient de-

inviscid and non-heat-conducting fluid, owing to the feed-
back mechanism inherent to the nonlinear factor q, and
the inertia terms in the generalized hydrodynamic equa-
tions. This aspect is absent in the Navier-Stokes equation
and its absence is a cause for the latter's weakness in deal-
ing with systems far from equilibrium. The discussion
given above is an elaboration on the remarks made in the
introduction in connection with the calculation reported
by Helberg and Orzsag.

The JVit, dependence, as summarized in (32) and (33)
and in Figs. 3(a) and (b), is essentially due to three fac-
tors: the first is the presence of the normal stresses in (15)
and (18)—(20); the second is the nonlinear factor q,,
present in the constitutive equations for H*, N*, , etc. ; and
the third is the inertia terms in the momentum balance
equation and the constitutive equations. The first factor,
as shown, gives rise to a stress ellipse, which the solution
to (15)—(22) must always satisfy; to the sharp singular be-
havior exhibited by N*, and H*; and to the velocity slip.
The second factor q, further modifies the profiles from
those predicted by the linear constitutive equations —i.e.,
the Navier-Stokes theory. This nonlinear factor q, is inti-
mately related to the entropy production, as indicated be-
fore, which vanishes as A'~, increases to a sufficiently
large value. This behavior is not possible to understand
from the standpoint of linear irreversible thermodynam-
ics, since the Rayleigh-Onsager dissipation function in
the linear theory increases, quadratically, with
However, since as long as the flow remains laminar, the
nonlinear factor q,, in effect brings about, for example, di-
minished shear and normal stresses at high Reynolds
numbers, as indicated in Fig. 2, the energy dissipation is
reduced, and, consequently, the entropy production di-
minishes with increasing JVR, . There remains a question
of whether or not the Aow is stable at such a high Rey-
nolds number and the energy dissipation remains of the
same nature as in a laminar flow. The stability of such a
Aow, however, is not possible to investigate with
(15)—(22), and a fuller set is required for this purpose. A
study of flow stability is in progress and will be reported
in the near future.

The drag coefficient is known to contain useful infor-
mation on Aow over a surface or a body, and its calcula-
tion presents all the salient difficulties associated with un-
derstanding the details of fluid dynamics of Aow over
many decades of the Reynolds number. We define the
drag coefficient, as usual, by the ratio of H' at the surface
to the area times the reference kinetic energy per unit
volume of the Auid:
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FIG. 4. Drag coefficient vs loglo(A'R, /JP&, ). The meaning of
the symbols is the same as in Fig. 3.

creases with JVR„exhibiting a drastic decrease past the
critical value. It must be pointed out that the velocity
slips in the postcritical region. It is then quite reasonable
that the drag on the body decreases as the flow slips over
the body, and thus results in a reduction in the energy
dissipation due to friction. The data cover approximately
three decades of JVR„and the qualitative trend is reminis-
cent of the JVR, dependence' of the drag coefficient of an
incompressible fluid over a flat plate or a cylinder. We
note that at high Reynolds numbers, Cd is not showing
the JVa,' dependence predicted by the Navier-Stokes
theory, and the deviation is again attributable to the non-
linear dissipation factor q, (II*,X;, etc. ) and the presence
of the normal stresses. By the manner of definition the
drag coefficient in (34) is directly proportional to the
shear stress at the inner cylinder wall. The singular be-
havior at the critical value of JVR, apparent in II* is neu-
tralized in the case of the drag coefficient, since there is
an additional factor of Ãi~, , and a logarithmic scale is
used for the ordinate. The magnitude of the drag
coefficient increases with increasing Knudsen number
over the entire range of JVR, . This means that the fric-

FIG. 5. b II*/II vs log, oJVa, in the case of JVK„=0.0544.

for the subcritical region,

Cd =(D/2nR; )(a log, ~.R, +b)/JVR,

for JVK„=0.005 44 (35b)

=(D/2n. R; )s/JP, for JVK„&0.0544 . (35c)

Here 8,- is the radius of the inner cylinder and the param-
eters are given in Table II. We observe that the JVa,
dependence in (35a) is similar to the empirical formula '

used in fiuid dynanucs. Therefore the JVR, dependence

tional force on the inner cylinder decreases at a relatively
lower rate than does the kinetic energy of the low. In
other words, the dissipative effect due to friction remains
dominant over the kinetic energy effect as the density is
reduced.

The drag coefficient can be fitted to a function of A'R,
as II* and N*, are done in (32) and (33). In fact, since Cd
is proportional to H* itself, it is easy to find the fitting
function for it. For the supercritical region,

Cd=(D/2nR; )II /JVR, =(D/2vrR, )sJVR, (a +.bJV&, )
~

(35a)

TABLE III. Shear stresses and drag coefficients for q, = 1 (Maxwell model) and q, %1.

Cd
nonlinear Maxwell

29.72
60.34
66.49 (JPR, )

69.02 (JPg, )

89.17
145.6
208. 1

297.2
445.9
743.1

1189

1.85
1.96

1.51
0.90
0.65
0.45
0.205
0.12
0.075

1.85
2.00
2.02
1.95
1.50
0.90

0.45
0.30
0.18
0.115

0.124
0.065

0.057 (q, %1)
0.034
0.012
0.006 (q, &1)
0.0030
0.000 92
0.000 32
0.000 13

0.124
0.066
0.061 (q, =1)

0.034
0.012

0.0030
0.0013
0.000 19
0.000 19
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above is rather suggestive as to the utility and scope of
the generalized hydrodynamic equations used to calculate
it.

In order to see how the nonlinear factor q, affects the
Reynolds-number dependence, we have put q, = 1 and
calculated flow profiles. In Fig. 5 is presented the
Reynolds-number dependence of b, II*/II', where
AH* = H* —H*, H* and H* denoting the shear stress at
the inner wall in the case of q, =1 and q, &1, respective-
ly. The numerical values for the shear stresses in Fig. 5
are presented in Table III. It must be noted that, except
for the stress-shear rate coupling term [II y]' ' produc-
ing the normal stress term in (18) (see Ref. 2 for the de-
tails about this), the case of q, = 1 corresponds to the
corotational (Jaumann derivative) Maxwell' ' model for
the stress evolution equation. For JVK„=0.0544, the
model with q, =1 is seen to give numerical values for the
shear stress which are virtually identical with those for
q, &1, if JV'a, (208. 1, but if JVR, ) 208.1, there are
significant differences. These differences are expected to
be more noticeable as JV~„ increases, according to our
previous study on the JV~„dependence of flow proper-
ties. The numerical results presented here confirm again
that the nonlinear factor q, (or equivalently, nonlinear
transport processes) plays an important role in determin-
ing the (low behavior in the high-JVR, regime as it does in
the high-JVK„regime, as shown in a previous work.

IV. CONCLUDING REMARKS

The Reynolds-number dependence of shear stress and
normal stress differences can indicate how the fluid
responds to the external perturbation and dissipates the
energy supplied to it thereby. One of the motivations for

the present study is for gaining a better picture about the
fluid beyond the critical Knudsen number or, equivalent-
ly, the critical Reynolds number, which is reached as the
gas density diminishes. The numerical evidence indicates
that the energy dissipation diminishes past the critical pa-
rameter owing to the fact that stresses become vanishing-
ly small in the supercritical region. The behavior exhibit-
ed by the stresses beyond the critical JVR, is interesting,
since it indicates that the stresses are predicted to decay
faster than those predicted by the Navier-Stokes theory,
and thus the generalized hydrodynamic equations not
only mimic the Euler equations at a smaller value of JVR,
than do the Navier-Stokes and Fourier equations, but
also have an intrinsic feedback mechanism for locally
changing the effective viscosity or the stress. The calcu-
lation indicates that there are regions in space where the
viscosity is markedly diminished owing to a rapid change
in the local velocity field, and in those regions the hydro-
dynamic equations are approximately Eulerian and non-
dissipative. We believe that this picture is interesting and
might turn out to be useful in examining complex flows
such as vortex shedding and perhaps the onset' ' of
turbulence. At this point in time the physical significance
of the critical Reynolds number, especially its possible
connection with turbulence, is not fully clarified. We
hope to address to this question in a study on hydro-
dynamic instability of flow predicted by (15)—(22), which
is in progress at present.
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